Beating the Bugs: Roles of Microbial Biofilms in Corrosion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sulfuric Acid Corrosion to Simulate Microbial Influenced Corrosion on Stainless
Sulfuric Acid Corrosion to Simulate Microbial Influenced Corrosion on Stainless Steel 316L by Jacob T. Miller Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering in the Chemical Engineering Program YOUNGSTOWN STATE UNIVERSITY December, 2017 Sulfuric Acid Corrosion to Simulate Microbial Influenced Corrosion on Stainless Steel 316L Jacob T. Miller I hereby release thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Jacob T. Miller, Student Date Approvals: Dr. Holly J. Martin, Thesis Advisor Date Dr. Pedro Cortes, Committee Member Date Dr. Brett P. Conner, Committee Member Date Dr. Salvatore A. Sanders, Dean of Graduate Studies Date Abstract The continued improvement of additive manufacturing (3D printing) is progressively eliminating the geometric limitations of traditional subtractive processes. Because parts are built up in thin layers, such as in processes like Laser Powder Bed Fusion, complex parts can be manufactured easily. However, this manufacturing method likely causes the parts to have rougher surfaces and decreased density compared to their traditional counterparts. The effect of this difference has not been researched thoroughly, but may have a significant impact on the properties of the parts. For example, the 3D printed parts could more easily collect micro-organisms that produce sulfuric acid as byproducts of their metabolic processes. Uninhibited microbial growth on the sample surface could produce enough sulfuric acid to degrade the parts through hydrogen embrittlement. -
Sulphate-Reducing Bacteria's Response to Extreme Ph Environments and the Effect of Their Activities on Microbial Corrosion
applied sciences Review Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion Thi Thuy Tien Tran 1 , Krishnan Kannoorpatti 1,* , Anna Padovan 2 and Suresh Thennadil 1 1 Energy and Resources Institute, College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, NT 0909, Australia; [email protected] (T.T.T.T.); [email protected] (S.T.) 2 Research Institute for the Environment and Livelihoods, College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, NT 0909, Australia; [email protected] * Correspondence: [email protected] Abstract: Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a Citation: Tran, T.T.T.; Kannoorpatti, significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme K.; Padovan, A.; Thennadil, S. pH environments and their effect on microbial corrosion are presented and discussed. -
Hal 89-106 Alimuddin Enzim
Microbial community of black band disease on infection ... (Ofri Johan) MICROBIAL COMMUNITY OF BLACK BAND DISEASE ON INFECTION, HEALTHY, AND DEAD PART OF SCLERACTINIAN Montipora sp. COLONY AT SERIBU ISLANDS, INDONESIA Ofri Johan*)#, Dietriech G. Bengen**), Neviaty P. Zamani**), Suharsono***), David Smith****), Angela Mariana Lusiastuti*****), and Michael J. Sweet******) *) Research and Development Institute for Ornamental Fish Culture, Jakarta **) Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, Bogor Agricultural University ***) Research Center for Oceanography, The Indonesian Institute of Science ****) School of Biology, Newcastle University, NE1 7RU, United Kingdom *****) Center for Aquaculture Research and Development ******) Biological Sciences Research Group, University of Derby, Kedleston Road, Derby, DE22 1GB, United Kingdom (Received 19 March 2014; Final revised 12 September 2014; Accepted 10 November 2014) ABSTRACT It is crucial to understand the microbial community associated with the host when attempting to discern the pathogen responsible for disease outbreaks in scleractinian corals. This study determines changes in the bacterial community associated with Montipora sp. in response to black band disease in Indonesian waters. Healthy, diseased, and dead Montipora sp. (n = 3 for each sample type per location) were collected from three different locations (Pari Island, Pramuka Island, and Peteloran Island). DGGE (Denaturing Gradient Gel Electrophoresis) was carried out to identify the bacterial community associated with each sample type and histological analysis was conducted to identify pathogens associated with specific tissues. Various Desulfovibrio species were found as novelty to be associated with infection samples, including Desulfovibrio desulfuricans, Desulfovibrio magneticus, and Desulfovibrio gigas, Bacillus benzoevorans, Bacillus farraginis in genus which previously associated with pathogenicity in corals. -
Desulfovibrio Vulgaris Defenses Against Oxidative and Nitrosative Stresses
Desulfovibrio vulgaris defenses against oxidative and nitrosative stresses Mafalda Cristina de Oliveira Figueiredo Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Supervisor: Dr. Lígia M. Saraiva Co-supervisor: Prof. Miguel Teixeira Oeiras, September 2013 From left to right: Carlos Romão (president of the jury), Fernando Antunes (3rd opponent), Ana Melo (4th opponent), Lígia Saraiva (supervisor), Carlos Salgueiro (2nd opponent), Mafalda Figueiredo, Alain Dolla (1st opponent) and Miguel Teixeira (co-supervisor). 17th September 2013 Second edition, October 2013 Molecular Genetics of Microbial Resistance Laboratory Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa 2780-157 Portugal “Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.” Marie Curie Acknowledgments The present work would not have been possible without the help, the support and the friendship of several people whom I would like to formally express my sincere gratitude: Dr. Lígia M. Saraiva Firstly I would like to express my gratitude to my supervisor Dr. Lígia M. Saraiva, without her ideas and persistence I would not have come this far. I thank her for the constant support and encouragement when things did not go so well, for the trust she placed in me and in my work and for always being there when I needed over these five years. I have to thank Dr. Lígia for the good advices and for the careful revision of this thesis. Thanks for everything!!! Prof. Miguel Teixeira To my co-supervisor Prof. -
Laboratory Based Investigation of Stress Corrosion Cracking of Cable Bolts
Laboratory Based Investigation of Stress Corrosion Cracking of Cable Bolts Saisai Wu A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Mining Engineering Faculty of Engineering July 2018 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Wu Other name/s: First name: Saisai Abbreviation for degree as given in the University calendar: PhD School: Mining Engineering Faculty: Engineering Title: Laboratory-Based Investigation of Stress Corrosion Cracking Of Cable Bolts Abstract 350 words maximum Premature failure of cable bolts due to stress corrosion cracking (SCC) in underground excavations is a worldwide problem with limited cost-effective solutions at present. To determine the cause and mechanism of SCC, identify potential technologies and eventually avoid catastrophic failure of cable bolts, a two-step methodology was implemented: (i) a long-term test using groundwater collected from underground mines, and (ii) an accelerated test using an acidified solution. Laboratory experimentation on both representative coupon and full-size cable bolt specimens was conducted. In the long-term tests, simulated underground environments were recreated in ‘corrosion cells’ which contained a newly designed cable bolt coupon together with a mixture of groundwater, coal and clay, to measure the potential for developing SCC. The incidence of SCC failures was not related to groundwater alone. Geomaterials in the corrosion cells accelerated the corrosion of cable bolts by increasing the concentrations of total dissolved solids and electrical conductivity of the water. Following this, an acidic solution containing sulphide, synthesised based on the chemical properties of groundwater from twelve Australian underground mines, was used as the testing solution for the accelerated tests. -
Characterization of Sulfur Oxidizing Bacteria Related to Biogenic Sulfuric Acid Corrosion in Sludge Digesters Bettina Huber, Bastian Herzog, Jörg E
Huber et al. BMC Microbiology (2016) 16:153 DOI 10.1186/s12866-016-0767-7 RESEARCH ARTICLE Open Access Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters Bettina Huber, Bastian Herzog, Jörg E. Drewes*, Konrad Koch and Elisabeth Müller Abstract Background: Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. To obtain more information on BSA corrosion in sludge digesters, microbial communities from six different, BSA-damaged, digesters were analyzed using culture dependent methods and subsequent polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). BSA production was determined in laboratory scale systems with mixed and pure cultures, and in-situ with concrete specimens from the digester headspace and sludge zones. Results: The SOB Acidithiobacillus thiooxidans, Thiomonas intermedia,andThiomonas perometabolis were cultivated and compared to PCR-DGGE results, revealing the presence of additional acidophilic and neutrophilic SOB. Sulfate concentrations of 10–87 mmol/L after 6–21 days of incubation (final pH 1.0–2.0)inmixedcultures,andupto 433 mmol/L after 42 days (final pH <1.0) in pure A. thiooxidans cultures showed huge sulfuric acid production potentials. Additionally, elevated sulfate concentrations in the corroded concrete of the digester headspace in contrast to the concrete of the sludge zone indicated biological sulfur/sulfide oxidation. Conclusions: The presence of SOB and confirmation of their sulfuric acid production under laboratory conditions reveal that these organisms might contribute to BSA corrosion within sludge digesters. -
Pseudodesulfovibrio Indicus Gen. Nov., Sp Nov., a Piezophilic Sulfate
1 International Journal Of Systematic And Evolutionary Microbiology Achimer October 2016, Volume 66 Pages 3904-3911 http://dx.doi.org/10.1099/ijsem.0.001286 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00359/47018/ © 2016 IUMS Printed in Great Britain Pseudodesulfovibrio indicus gen. nov., sp nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio Cao Junwei 1, 2, 3, 4, 5, 6, 7, 8, *, Gayet Nicolas 9, Zeng Xiang 5, 6, 7, 8, Shao Zongze 5, 6, 7, 8, *, Jebbar Mohamed 1, 2, 3, Alain Karine 1, 2, 3, * 1 UBO, UEB, IUEM, UMR 6197,LMEE, Pl Nicolas Copernic, F-29280 Plouzane, France. 2 CNRS, IUEM, UMR 6197, LMEE, Pl Nicolas Copernic, F-29280 Plouzane, France. 3 IFREMER, UMR 6197, LMEE, Technopole Pointe Diable, F-29280 Plouzane, France. 4 Harbin Inst Technol, Sch Municipal & Environm Engn, Harbin 150090, Peoples R China. 5 State Key Lab Breeding Base Marine Genet Resource, Xiamen, Peoples R China. 6 Third Inst State Ocean Adm, Key Lab Marine Genet Resources, Xiamen, Peoples R China. 7 Collaborat Innovat Ctr Marine Biol Resources, Xiamen, Peoples R China. 8 Key Lab Marine Genet Resources Fujian Prov, Xiamen, Peoples R China. 9 IFREMER, Ctr Brest, REM, EEP,LEP,Inst Carnot,EDROME, F-29280 Plouzane, France. *Corresponding authors : email addresses : [email protected] ; [email protected] ; [email protected] Abstract : A novel sulfate-reducing bacterium, strain J2T, was isolated from a serpentinized peridotite sample from the Indian Ocean. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J2T clustered with the genus Desulfovibrio within the family Desulfovibrionaceae , but it showed low similarity (87.95 %) to the type species Desulfovibrio desulfuricans DSM 642T. -
Investigation of Sulfate-Reducing Bacteria
INVESTIGATION OF SULFATE-REDUCING BACTERIA GROWTH BEHAVIOR FOR THE MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSlON (MIC) A Thesis Presented to The Faculty of the Fritz. J. and Dolores H. Russ College of Engineering and Technology Ohio University In Partial Fulfillment of the Requirement for the Degee Master of Science November, 2004 Acknowledgements I would like to express my sincere gratitude and deep appreciation to my academic advisor, Dr. Tingyue Gu for his expert guidance, continuous encouragement and patience. I would also like to specially thank Dr. Srdjan Nesic, director of Institute for Corrosion and Multiphase Flow Technology of Ohio University, for his help, guidance and support. I would also like to thank Dr. Peter Coschigano for his suggestions while serving as my committee members. Under their help and supervision, I was able to turn my Master's study into a hlfilling, intellectually challenging and enjoyable journey. I would also like to extend my gratitude to the technical staff at the Institute for their expertise in designing, troubleshooting the equipment. I would also like to thank all the ~y-aduatestudents at the Institute. Special thanks go to my fellow graduate student Mr. Chintan Jhobalia for sharing his experiences and having helpful discussjons with me. I would also like to thank Mr. Kaili Zhao and Mr. Jie Wen for their help during the busiest days in my work. Table of Contents ... Acknowledgements ........................................................................................................... -
Ketogenic Diet Enhances Neurovascular Function with Altered
www.nature.com/scientificreports OPEN Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy Received: 14 September 2017 Accepted: 17 April 2018 mice Published: xx xx xxxx David Ma1, Amy C. Wang1, Ishita Parikh1, Stefan J. Green 2, Jared D. Hofman1,3, George Chlipala2, M. Paul Murphy1,4, Brent S. Sokola5, Björn Bauer5, Anika M. S. Hartz1,3 & Ai-Ling Lin1,3,6 Neurovascular integrity, including cerebral blood fow (CBF) and blood-brain barrier (BBB) function, plays a major role in determining cognitive capability. Recent studies suggest that neurovascular integrity could be regulated by the gut microbiome. The purpose of the study was to identify if ketogenic diet (KD) intervention would alter gut microbiome and enhance neurovascular functions, and thus reduce risk for neurodegeneration in young healthy mice (12–14 weeks old). Here we show that with 16 weeks of KD, mice had signifcant increases in CBF and P-glycoprotein transports on BBB to facilitate clearance of amyloid-beta, a hallmark of Alzheimer’s disease (AD). These neurovascular enhancements were associated with reduced mechanistic target of rapamycin (mTOR) and increased endothelial nitric oxide synthase (eNOS) protein expressions. KD also increased the relative abundance of putatively benefcial gut microbiota (Akkermansia muciniphila and Lactobacillus), and reduced that of putatively pro-infammatory taxa (Desulfovibrio and Turicibacter). We also observed that KD reduced blood glucose levels and body weight, and increased blood ketone levels, which might be associated with gut microbiome alteration. Our fndings suggest that KD intervention started in the early stage may enhance brain vascular function, increase benefcial gut microbiota, improve metabolic profle, and reduce risk for AD. -
Chromate Reduction by Desulfovibrio Desulfuricans ATCC 27774 Ning Zhang
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Duquesne University: Digital Commons Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations 2012 Chromate Reduction by Desulfovibrio Desulfuricans ATCC 27774 Ning Zhang Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Zhang, N. (2012). Chromate Reduction by Desulfovibrio Desulfuricans ATCC 27774 (Master's thesis, Duquesne University). Retrieved from https://dsc.duq.edu/etd/1409 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. CHROMATE REDUCTION BY DESULFOVIBRIO DESULFURICANS ATCC 27774 A Thesis Submitted to the Bayer School of Natural and Environmental Sciences Duquesne University In partial fulfillment of the requirements for the degree of Master of Science in Environmental Science & Management By Ning Zhang May 2012 Copyright by Ning Zhang 2012 CHROMATE REDUCTION BY DESULFOVIBRIO DESULFURICANS ATCC 27774 By Ning Zhang Approved on January 4, 2012 ________________________________ ________________________________ Dr. John F. Stolz Dr. H.M. Skip Kingston Professor of Biology Professor of Analytical Chemistry (Committee Chair) (Committee Member) ________________________________ Dr. Michael J. Tobin Adjunct Professor of Chemistry (Committee Member) ________________________________ ________________________________ Dr. David W. Seybert Dr. John F. Stolz Dean, Bayer School of Natural and Director, Center for Environmental Environmental Sciences Research and Education iii ABSTRACT CHROMATE REDUCTION BY DESULFOVIBRIO DESULFURICANS ATCC 27774 By Ning Zhang May 2012 Dissertation supervised by Dr. John F. -
Comparative Analysis of Bacterial Communities Associated with Healthy and Diseased Corals in the Indonesian Sea
Comparative analysis of bacterial communities associated with healthy and diseased corals in the Indonesian sea Wuttichai Mhuantong1,*, Handung Nuryadi2,*, Agus Trianto2, Agus Sabdono2, Sithichoke Tangphatsornruang3, Lily Eurwilaichitr1, Pattanop Kanokratana1 and Verawat Champreda1 1 Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand 2 Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia 3 National Omics Center, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand * These authors contributed equally to this work. ABSTRACT Coral reef ecosystems are impacted by climate change and human activities, such as increasing coastal development, overfishing, sewage and other pollutant discharge, and consequent eutrophication, which triggers increasing incidents of diseases and deterioration of corals worldwide. In this study, bacterial communities associated with four species of corals: Acropora aspera, Acropora formosa, Cyphastrea sp., and Isopora sp. in the healthy and disease stages with different diseases were compared using tagged 16S rRNA sequencing. In total, 59 bacterial phyla, 190 orders, and 307 genera were assigned in coral metagenomes where Proteobacteria and Firmicutes were pre- dominated followed by Bacteroidetes together with Actinobacteria, Fusobacteria, and Lentisphaerae as minor taxa. Principal Coordinates Analysis (PCoA) showed separated clustering of bacterial diversity in healthy and infected groups for individual coral species. Fusibacter was found as the major bacterial genus across all corals. The lower number of Fusibacter was found in A. aspera infected with white band disease and Submitted 15 March 2019 Isopora sp. with white plaque disease, but marked increases of Vibrio and Acrobacter, Accepted 1 November 2019 respectively, were observed. This was in contrast to A. -
Understanding and Addressing Microbiologically Influenced Corrosion (MIC) Laura L
REVIEW PAPER Understanding and Addressing Microbiologically Influenced Corrosion (MIC) Laura L. Machuca OVERVIEW corrosion on underground pipelines [5]. We know MIC involves the interaction Microbial life is everywhere. The formation of biofilms on metals of electrochemical, environmental, Microorganisms have been found and alloys can result in corrosion rates operational, and biological factors inhabiting iced-covered lakes in in excess of 10 mm per year (mm/y) that often result in substantial Antarctica at -13°C and hydrothermal leading to equipment failure before increases in corrosion rates to metals vents at the bottom of the ocean their expected lifetime and serious in specific environments. However, at 120°C [1]. Microorganisms have environmental damage [6, 7]. The the complex and dynamic nature of inhabited our planet for billions 2006 trans-Alaskan pipeline failure, these interactions have made detailed of years before plants and animals which was attributed to microbial mechanisms elusive, i.e. the precise appeared. It was through their corrosion where 200,000 gallons of mechanism(s) of MIC is still being activities that higher forms of life crude oil leaked resulted in significant debated among corrosion specialists. could appear and thrive [2]. However, environmental pollution, lost The most challenging aspects of MIC microorganisms can also be harmful production of two million barrels and is its lack of predictability and the fact and their activities can result, under a worldwide impact on oil price [7] is a that it does not produce a distinct type certain conditions, in detrimental prime example of such issues. Incidents of corrosion or a unique morphology effects such as disease and damage like these have resulted in increased of corrosion damage, or any sort of to infrastructure.