Tracing Crustal Contamination Along the Java Segment of Sunda Arc

Total Page:16

File Type:pdf, Size:1020Kb

Tracing Crustal Contamination Along the Java Segment of Sunda Arc Goldschmidt 2012 Conference Abstracts Tracing crustal contamination along Multi-scale modeling of transverse the Java segment of Sunda Arc, reactive mixing in a coastal aquifer 1,3* 1 1,2 Indonesia H. M. NICK , A. RAOOF , M. THULLNER , P.A.G. REGNIER3 JOLIS, E. M.1*, TROLL, V. R.1, 4, DEEGAN, F. M. 2, 1Faculty of Geosciences, Utrecht University, Utrecht, The BLYTHE, L. S. 1, HARRIS, C.3, FREDA, C. 4, HILTON, D. 5, Netherlands (*correspondence: [email protected], [email protected]) 6 6 CHADWICK, J. , VAN HELDEN, M. 2Department of Environmental Microbiology, UFZ – Helmholtz Centre for Environmental Research, Leipzig, Germany 1 Dept. Earth Sciences, CEMPEG, Uppsala, Sweden ([email protected]) (*[email protected]) 3Department of Earth and Environmental Sciences, Université Libre 2 Lab. for Isotope Geology, SMNH, Stockhom, Sweden de Bruxelles, Brussels, Belgium ([email protected]) 3 Dept. of Geological Science, UCT, South Africa 4 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy The transverse mixing between freshwater and seawater in 5 Scripps Oceanographic Institute, San Diego, USA 6 Dept. Petrology, Vrije, Universiteit Amsterdam, Netherlands coastal aquifers is a key process controlling the chemistry of submarine groundwater discharge (SGD). The quantification of such Arc magmas typically display chemical and petrographic mixing and its effects on the fate of reactive chemical compounds in characteristics indicative of crustal input. Crustal contamination can take place either in the mantle source region or as magma coastal waters are still the subject of debate. We developed reactive traverses the crust (e.g. [1]). While source contamination is transport model approaches to study the mechanisms responsible for generally considered the dominant process (e.g. [2, 3, 4]), crustal contamination in high level magma chambers has also controlling reactive mixing processes in coastal aquifers. These been recognised at volcanic arcs (e.g. [5, 6]). In light of this, we models employ hybrid numerical methods for solving flow and aim to test the extent of upper crustal versus source contamination along the Java segment of the Sunda arc, which, transport [1,2], and benefit from utilizing the biogeochemical because of its variable upper crustal structure, is ideal for the reaction network simulator (BRNS) [3]. task. We present a detailed geochemical study of 7 volcanoes Critical to advancing our understanding is the study of the along a traverse from Anak-Krakatau in the Sunda strait interplay between reaction and flow. We particularly investigated the through Java (Gede, Slamet, Merapi, Kelut, Kawah-Ijen) and Bali (Batur). Using rock and mineral elemental geochemistry impact of dispersion, heterogeneity induced velocity variations and and radiogenic (Sr, Nd and Pb) and, stable (O) isotopes, we show a correspondence between changes in composition of the biogeochemical reactivities on reactive transport for density driven upper crust and the apparent degree of upper crustal flow scenarios representing seawater-groundwater-interface in contamination. There is an increase in 87Sr/86Sr and δ18O, and a decrease in 143Nd/144Nd from Krakatau towards Merapi, coastal aquifers. Our numerical observation showed e.g., that for indicating substantial input from the thick quasi-continental highly reactive dissolved organic carbon (DOC) degradation basement beneath East and Central Java. Volcanoes to the east of Merapi, and the Progo-Muria fault zone, where the upper processes are limited by the porous media properties controlling crust is thinner and increasingly oceanic in nature have lower dispersion, whereas for relatively less reactive DOC degradation is 87Sr/86Sr and δ18O, and higher 143Nd/144Nd indicating a stronger influence of the mantle source [7]. Our new data represent a controlled by reaction kinetics. systematic and high-resolution arc-wide sampling effort that In general, we found three reactive flow regimes: reaction allows us to distinguish the effects of the upper crust on the compositional spectrum of individual volcanic systems along controlled, reaction-dispersion controlled and dispersion the Sunda arc. controlled transport. This is supported by further simulations utilizing pore-scale models to investigate these regimes at the [1] Davidson, J.P, Hora, J.M, Garrison, J.M & Dungan, M.A smaller scale. Our results suggest that the chemical reactivity as (2005), J. Geotherm. Res., 140, 157-170. well as dispersivity are important parameters governing the [2] Hilton, D.R., Fischer, T.P. & Marty, B. (2002), Rev. Mineral. Geochem., 47, 319-370. biogeochemical dynamics of SGD. Hence, an adequate [3] Gertisser, R. & Keller, J. (2003). J. Petrol., 44, 457-489 representenation of these processes in the macro-scale models is [4] Debaille, V., Doucelance, R., Weis, D., & Schiano, P. (2005), Geochim. Cosmochim. Acta, 70,723-741. essential. [5] Gasparon, M., Hilton, D.R., & Varne, R. (1994), Earth Planet. Sci. Lett., 126, 15-22. [1] S.K. Matthai, et al. (2009) Transport in Porous Media 83, 289- [6] Chadwick, J.P., Troll, V.R., Ginibre, C., Morgan, D., 318. Gertisser, R., Waight, T.E. & Davidson, J.P. (2007), J. Petrol., [2] A. Raoof, et al. (2010) Vadose Zone Journal 9, 624-636. 48, 1793-1812. [3] P. Regnier, et al. (2002) Applied Mathematical Modeling 26, [7] Whitford, D.J. (1975), Geochim. Cosmochim. Acta, 39, 913-927. 1287-1302. Mineralogical Magazine | www.minersoc.org 2045 Downloaded from http://pubs.geoscienceworld.org/minmag/article-pdf/76/6/2045/2920060/gsminmag.76.6.13-M.pdf by guest on 25 September 2021 Goldschmidt 2012 Conference Abstracts Mantle Evolution from Plate Heterogeneous mantle sources of the Subduction to Post-orogenic alkaline-tholeiitic intraplate basalts Extension: Evidence from Permo- from the Aleppo Plateau, NW Syria 1,2* 2 3 Triassic Mafic Dike Swarms in GEORGE S.-K. MA , JOHN MALPAS , KATSUHIKO SUZUKI , 4 1 1 Northern Tibet Plateau CHING-HUA LO , KUO-LUNG WANG , YOSHIYUKI IIZUKA 2 AND COSTAS XENOPHONTOS CHANGQIAN MA1,2*, JINYANG ZHANG2, FUHAO 1IES, Academia Sinica, Taipei 11529, Taiwan, 2 2 2 2 XIONG , BIN LIU , JIAN HUANG AND BAIHUA WANG [email protected] 1 State Key Lab. of Geological Processes and Mineral Resources, 2Department of Earth Sciences, The University of Hong Kong, Hong Wuhan, China, [email protected] (* presenting author) Kong 3IFREE, JAMSTEC, Japan 2 China University of Geosciences,Wuhan,China 4Department of Geosciences, National Taiwan University, Taiwan Five large mafic dike swarms have been discovered within the ~270 km-long Xiangride-Golmud segment of the East Kunlun belt, Mantle-derived magmas are characterised by considerable chemical and isotopic variability that is difficult to reconcile with Northern Tibet Plateau, which are named, from east to west, the partial melting of a peridotite mantle alone. This reflects the Balong, Binggou, Xiaomiao, Bairiqili and Nanshankou dyke swarms. presence of heterogeneities in the mantle, originated from, for The number of dikes in a given swarm can vary from 10 to 42, and instance, recycled oceanic crust or metasomatised lithosphere [1, 2, the width of individual dikes ranges from 0.1 to 5 m. Most of the 3]. Identification of such heterogeneities and thus the mineralogy of the mantle source becomes more ambiguous because both crustal dikes trend N-S. The widest dikes are clearly banded with coarser contamination and crystal fractionation may mask important source textures and more phenocrysts in the middle portions than in the characteristics. margins. Most of the dikes are porphyritic diabase with the coarser- We present age, chemical and isotopic data to constrain the grained varieties grading into diorites. All of the mafic dikes are source and the chemical evolution of the continental alkaline- composed chiefly of clinopyroxene, plagioclase and amphibole. tholeiitic intraplate magmas from the Aleppo Plateau and vicinity, NW Syria. With the aid of new 40Ar/ 39Ar ages, two phases of Based on the field relationships, hornblende Ar-Ar and zircon volcanism have been recognised in the Miocene, ~19-18 Ma (Phase U-Pb dating we consider that the dike swams were formed in three 1) and ~13.5-12 Ma (Phase 2), in the studied area. The chemical and 87 86 143 144 episodes; Early Permian, late Permian and Triassic to Late Triassic. isotopic compositions [ Sr/ Sr = 0.7036-0.7051, Nd/ Nd = 0.51269-0.51287 and (187Os/188Os) = 0.151-0.453] of the lavas The Xiaomiao (277 Ma) and Binggou (225 Ma) mafic dikes are t reflect the unequivocal influence of crustal assimilation and calc-alkaline in composition with low ∑REE (˘100 ppm) and fractional crystallisation. However, it is interpreted that the two relatively flat, chondrite-normalized REE patterns with no Eu phases of volcanism likely sampled a mineralogically heterogeneous anomalies. These rocks also have low Ni, Cr and V but are enriched source, as reflected by their compositional variations seen in the in Rb, K, Pb and P, and depleted in Nb and Ta. In contrast, the Balong most-primitive, least contaminated magmas. Such variations are: (1) relatively high Si, low Ti and trace-element contents in the Phase 1 dike swarms (253 Ma) have high ∑REE (~100 to >150 ppm˅and lavas, consistent with partial melting of a largely peridotitic mantle are enriched in HREE, with higher trace element contents than the source; (2) relatively low Si, high Ti, Fe, Ca, P, alkalis, and L- other dikes. The Xiaomiao and Binggou dike swarms have similar MREE/HREE, plus sub-chondritic Th-(U)/Nb, Pb/Ce and Zr/Sm in Sr-Nd isotopic characteristics with ISr = 0.707-0.711 and εNd(t) the Phase 2 lavas, approaching compositions of experimental melts ranges from -3.4 to 3.9, whereas the Bairiqili (251 Ma) and Balong of amphibole-rich metasomatic veins [3]. Thus, it is inferred that the Syrian lithosphere had been pervasively metasomatised and dikes have somewhat more enriched and variable compositions, with contained veins of amphibole-rich cumulates shortly before ISr = 0.709-0.719 and εNd(t) ranging from -7.8 to -3.6.
Recommended publications
  • Quantification of Lithium Via Redox Titration and Ph Titration – a Method Comparison
    Quantification of Lithium via Redox Titration and pH Titration – A Method Comparison by Joseph J. Hebert A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Chemical Engineering and Chemistry (Honors Associate) Presented May 26, 2020 Commencement June 2020 AN ABSTRACT OF THE THESIS OF Joseph J. Hebert for the degree of Honors Baccalaureate of Science in Chemical Engineering and Chemistry presented on May 26, 2020. Title: Quantification of Lithium via Redox Titration and pH Titration - A Method Comparison. Abstract approved:_____________________________________________________ Michael Lerner Lithium serves an unparalleled role for high energy-density storage applications and is vital for the continued advancement of the world economy. However, global supply is heavily reliant on lithium deposits situated in select locations, creating unpredictability in the price and concerns for the sustained production of the resource. Additionally, future demands for applications in the small electronics, automotive, and renewable energy industries threaten to place further strain on the lithium supply. Thus, the implementation of lithium battery recycling methods is critical meet this expected surge in demand for lithium-based battery technologies. Several economic obstacles and safety considerations have halted the advancement of these necessary recycling techniques. A prominent barrier to recycling efforts revolves around the reactivity of active lithium compounds that remain in used lithium batteries. As a result, significant safety precautions must be taken when handling and transporting lithium-based batteries, adding to the costs associated with recycling methods. Current research has been dedicated to developing a passivation method for the remaining active lithium in used cells, seeking to lower the classification, and subsequently the costs, associated with these materials.
    [Show full text]
  • S41598-020-76691-1 1 Vol.:(0123456789)
    www.nature.com/scientificreports OPEN Rifting of the oceanic Azores Plateau with episodic volcanic activity B. Storch1*, K. M. Haase1, R. H. W. Romer1, C. Beier1,2 & A. A. P. Koppers3 Extension of the Azores Plateau along the Terceira Rift exposes a lava sequence on the steep northern fank of the Hirondelle Basin. Unlike typical tholeiitic basalts of oceanic plateaus, the 1.2 km vertical submarine stratigraphic profle reveals two successive compositionally distinct basanitic to alkali basaltic eruptive units. The lower unit is volumetrically more extensive with ~ 1060 m of the crustal profle forming between ~ 2.02 and ~ 1.66 Ma, followed by a second unit erupting the uppermost ~ 30 m of lavas in ~ 100 kyrs. The age of ~ 1.56 Ma of the youngest in-situ sample at the top of the profle implies that the 35 km-wide Hirondelle Basin opened after this time along normal faults. This rifting phase was followed by alkaline volcanism at D. João de Castro seamount in the basin center indicating episodic volcanic activity along the Terceira Rift. The mantle source compositions of the two lava units change towards less radiogenic Nd, Hf, and Pb isotope ratios. A change to less SiO2-undersaturated magmas may indicate increasing degrees of partial melting beneath D. João de Castro seamount, possibly caused by lithospheric thinning within the past 1.5 million years. Our results suggest that rifting of oceanic lithosphere alternates between magmatically and tectonically dominated phases. Oceanic plateaus with a crustal thickness to 30 km cover large areas in the oceans and these bathymetric swells afect oceanic currents and marine life 1,2.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Mass Spectrometry
    This page intentionally left blank Radiogenic Isotope Geology Modern isotope geochemistry is a rapidly expanding field that has a part to play in a broad range of Earth and planetary sciences – from extra-solar-system processes to environmental geoscience. This new edition of a popular textbook is completely updated and places more emphasis on the uses of radiogenic isotopes in environmental Earth science. The author reviews the field of radiogenic isotope geology in a concise and visual manner to provide a comprehensive introduc- tion to the subject and its wide variety of applications. For each technique, current ideas are presented in their historical context to allow the reader to understand the development of the theory. The latest ideas and methods, classic papers and case studies all come under scrutiny within this book. An accessible introduction for scientists from other disciplines and an important reference for students and researchers working in isotope geology. Alan Dickin has held a teaching position at McMaster University for 18 years. The first edition of this textbook was published in 1995, and has become widely established as the standard reference in the field. Radiogenic Isotope Geology Second Edition Alan P. Dickin School of Geography and Earth Sciences McMaster University, Hamilton, Ontario Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge ,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridg e.org /9780521823166 © A. P. Dickin 1995, 2005 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.
    [Show full text]
  • Acroseal Packaging Your Solution for Air- and Moisture- Sensitive Reagents
    AcroSeal Packaging Your solution for air- and moisture- sensitive reagents Extra dry solvents Deuterated solvents Organometallic compounds Reagents in solution Organics Introduction Since the launch of AcroSealTM packaging we have introduced a new septum, which helps preserve product quality for longer. In addition, our AcroSeal portfolio has been expanded to include a broad range of solvents, organometallics, reagents in solution and organic compounds. In this brochure we have categorized our products under chemical families to make it easier to locate the product you need. Introduction Page no. AcroSeal packaging highlights 3 AcroSeal packaging performance 4 New 25mL AcroSeal packaging 4 Solvents Extra dry solvents 5-7 Solvents for biochemistry 7 Deuterated solvents 7 Organometallics Grignard reagents 8-10 Organoaluminiums 11 Organolithiums 11 Organosodiums 12 Organotins 12 Organozincs 12 Reagents in solution Amines 13 Boranes 13 Halides 14-15 Hydrides 15 Oxides 16 Silanes 16 Other reagents in solution 17 Organics Aldehydes 18 Amines 18 Epoxides 18 Halides 19 Phosphines 19 Silanes 19 Other organics 20 How to use AcroSeal packaging 21 Alphabetical index 22-23 2 Introduction AcroSeal packaging: drier reagents for longer When using air- and moisture-sensitive solvents and reagents, it is essential that these products are not only as dry as possible when you first use them, but they should remain dry in storage as well. Through the innovative quadrant-style screw cap and specially designed septum, AcroSeal packaging ensures that you have access to high-quality and low-moisture products every use, guaranteeing improved yield and consistency of your research experiments while reducing chemical waste. AcroSeal packaging highlights New septum developed from a polymeric elastomer with an inert fluoropolymer-coated surface, preserves product quality for longer with better re-seal around needle punctures.
    [Show full text]
  • Structural and Morphologic Study of Shatsky Rise Oceanic
    STRUCTURAL AND MORPHOLOGIC STUDY OF SHATSKY RISE OCEANIC PLATEAU IN THE NORTHWEST PACIFIC OCEAN FROM 2D MULTICHANNEL SEISMIC REFLECTION AND BATHYMETRY DATA AND IMPLICATIONS FOR OCEANIC PLATEAU EVOLUTION A Dissertation by JINCHANG ZHANG Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, William W. Sager Co-Chair of Committee, Zuosheng Yang Committee Members, Mitch W. Lyle Richard L. Gibson Head of Department, Debbie J. Thomas May 2014 Major Subject: Oceanography Copyright 2014 Jinchang Zhang ABSTRACT Shatsky Rise is one of the largest oceanic plateaus, a class of volcanic features whose formation is poorly understood. It is also a plateau that was formed near spreading ridges, but the connection is unclear. The geologic structure and morphology of Shatsky Rise oceanic plateau provides key observations that can help understand its formation. Deep penetrating 2D multichannel seismic (MCS) reflection profiles and high-resolution multi-beam sonar data were acquired over the southern half of Shatsky Rise on R/V Marcus G. Langseth during two cruises. The MCS profiles allow us to image Shatsky Rise's upper crustal structure and Moho structure with unprecedented detail, and the multi-beam bathymetry data allow us to produce an improved bathymetric map of the plateau. MCS profiles and bathymetry data show that two of the volcanic massifs within Shatsky Rise are immense central volcanoes. Tamu Massif, the largest (~450 × 650 km) and oldest (~145 Ma) volcano, is a single central volcano with rounded shape and shallow flank slopes (<0.5o-1.5o), characterized by lava flows emanating from the volcano center and extending hundreds of kilometers down smooth, shallow flanks to the surrounding seafloor.
    [Show full text]
  • Lithium Aluminum Hydride
    Page 1 of 8 SDS Ref. No: 115 Date Approved: 1 October, 2018 Revision No: 02 Safety Data Sheet 1. Identification of the Substance/Mixture and of the Company/Undertaking: 1.1 Product Identifier: Lithium Methoxide In Methanol 1.1.1 Substances Not applicable 1.1.2 Mixture name: Lithium Methoxide In Methanol 1.2 Relevant Identified Uses of the Substance or Mixture and Uses Advised Against: Industrial Manufacturing Only to be supplied for industrial uses For use only as a chemical intermediate under Strictly Controlled Conditions 1.3 Details of the Supplier of the Safety Data Sheet North America Europe Asia Pacific FMC Lithium USA Corp. FMC Chemicals Limited FMC Specialty Chemicals (Zhangjiagang) 2801 Yorkmont Road, Suite 300 Commercial Road Co. Ltd. Charlotte, NC 28208 Bromborough, Merseyside 32 Beijing Road, Phone: +1.704.426.5300 CH62 3NL, England Yangtse River Chemical Park, Fax: +1.704.426.5370 Phone: +44.151. 334.8085 Zhangjiagang Free Trade Zone,Jiangsu 1.888.lithium Fax: +44.151.482.7361 215635, China T: +86.512.5832.7307 Fax: +86.512.5832.7311 email: [email protected] Web: www.livent.com 1.4 Emergency Telephone Number: North America Europe Asia Pacific CHEMTREC: +1.800.424.9300 24 hr Specialist advice number: Phone: +86.512.5832.7307 +1.703.527.3887 CHEMTREC: +44 870 8200418 Plant: +1.704.629.5361 2. Hazards Identification 2.1 Classification of the Mixture: 2.1.1 GHS Classification [EC Regulation No 1272/2008 and US OSHA regulations] Skin corrosive; Category 1B Eye damage; Category 1 Flammable liquid; Category 2 Acute Toxicity; Category 3 (inhalation) Acute Toxicity; Category 3 (skin contact) Acute Toxicity; Category 3 (ingestion) Specific target organ systemic toxicity – SE Category 1 2.2.2 EC: Classification according to 67/548/EEC or 1999/45/EC [DSD/DPD] F, R11 C, R34; T, R23/24/25, R39/23/24/25 2.2 Label Elements: 2.2.3 Hazard Pictograms: Page 2 of 8 SDS Ref.
    [Show full text]
  • Pervasive Hydrothermal Events Associated with Large Igneous Provinces Documented by the Columbia River Basaltic Province I
    www.nature.com/scientificreports OPEN Pervasive Hydrothermal Events Associated with Large Igneous Provinces Documented by the Columbia River Basaltic Province I. N Bindeman1,2 ✉ , N. D. Greber2,4, O. E. Melnik3,5, A. S. Artyomova3,5, I. S. Utkin5, L. Karlstrom1 & D. P. Colón1,2 The degree and extent of crustal hydrothermal alteration related to the eruption of large igneous provinces is poorly known and not easily recognizable in the feld. We here report a new δ18O dataset for dikes and lavas from the Columbia River Basalt Group (16–15 Ma) in the western USA, and document that dikes on average are 1–2‰ more depleted in δ18O than basalt fows. We show that this observation is best explained with the involvement of heated meteoric waters during their cooling in the crust. The largest 6–8‰ depletion is found around and inside a 10 m-thick feeder dike that intruded the 125 Ma Wallowa tonalitic batholith. This dike likely operated as a magma conduit for 4–7 years, based on the extent of heating and melting its host rocks. We show that this dike also created a hydrothermal system around its contacts extending up to 100 m into the surrounding bedrock. A model that considers (a) hydrothermal circulation around the dike, (b) magma fow and (c) oxygen isotope exchange rates, suggests that the hydrothermal system operated for ~150 years after the cessation of magma fow. In agreement with a previously published (U-Th)/He thermochronology profle, our model shows that rocks 100 m away from such a dike can be hydrothermally altered.
    [Show full text]
  • Rifting of the Oceanic Azores Plateau with Episodic Volcanic Activity 2 3 B
    1 Rifting of the oceanic Azores Plateau with episodic volcanic activity 2 3 B. Storch*1, K.M. Haase1, R.H.W. Romer1, C. Beier1,2, A.A.P. Koppers3 4 5 1GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 6 Schlossgarten 5, 91054 Erlangen, Germany (corresponding author: [email protected]) 7 2Department of Geosciences and Geography, Research programme of Geology and Geophysics 8 (GeoHel), PO Box 64, FIN-00014 University of Helsinki, Finland 9 3College of Earth, Ocean and Atmospheric Sciences, Oregon State University, 104 CEOAS 10 Admin Bldg, Corvallis, OR 97331-5503 USA 11 1 12 Abstract 13 Extension of the Azores Plateau along the Terceira Rift exposes a lava sequence on the steep 14 northern flank of the Hirondelle Basin. Unlike typical tholeiitic basalts of oceanic plateaus, the 15 1.2 km vertical submarine stratigraphic profile reveals two successive compositionally distinct 16 basanitic to alkali basaltic eruptive units. The lower unit is volumetrically more extensive with 17 ~1,060 m of the crustal profile forming between ~2.02 and ~1.66 Ma, followed by a second 18 unit erupting the uppermost ~30 m of lavas in ~100 kyrs. The age of ~1.56 Ma of the youngest 19 in-situ sample at the top of the profile implies that the 35 km-wide Hirondelle Basin opened 20 after this time along normal faults. This rifting phase was followed by alkaline volcanism at D. 21 João de Castro seamount in the basin center indicating episodic volcanic activity along the Ter- 22 ceira Rift. The mantle source compositions of the two lava units change towards less radiogenic 23 Nd, Hf, and Pb isotope ratios.
    [Show full text]
  • Production of Lithium Peroxide and Lithium Oxide in an Alcohol Medium
    PRODUCTION OF LITHIUM PEROXIDE AND LITHIUM OXIDE IN AN ALCOHOL MEDIUM by J avad Khosravi Department ofMining, Metals and Materials Engineering McGill University, Montreal, Canada March2007 A thesis submitted to the Office of Graduate and Postdoctoral Studies in fulfillment of the requirements for the degree of Doctor of Philosophy © Javad Khosravi, 2007 Libraryand Bibliothèque et 1+1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l'édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre référence ISBN: 978-0-494-38597-5 Our file Notre référence ISBN: 978-0-494-38597-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accordé une licence non exclusive exclusive license allowing Library permettant à la Bibliothèque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l'Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans loan, distribute and sell theses le monde, à des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, électronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriété du droit d'auteur ownership and moral rights in et des droits moraux qui protège cette thèse. this thesis. Neither the thesis Ni la thèse ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent être imprimés ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Plate” Model for the Genesis of Melting Anomalies
    The “Plate” model for the genesis of melting anomalies G. R. Foulger Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK ABSTRACT The Plate Tectonic Processes, or “Plate” model for the genesis of melting anomalies (“hot spots”) attributes them to shallow-sourced phenomena related to plate tectonics. It postulates that volcanism occurs where the lithosphere is in extension, and that the volume of melt produced is related primarily to the fertility of the source material tapped. This model is supported in general by the observation that most present-day “hot spots” erupt either on or near spreading ridges or in continental rift zones and intraplate regions observed or predicted to be extending. Ocean-island-basalt-like geochemistry is evidence for source fertility at productive melting anomalies. Plate tectonics involves a rich diversity of processes, and as a result the Plate model is in harmony with many characteristics of the global melting-anomaly constellation that have tended to be underemphasized. The melting anomalies that have been classified as “hot spots” and “hot spot tracks” exhibit extreme variability. This suggests that a “one size fits all” model to explain them, such as the classical Plume model, is inappropriate, and that local context is important. Associated vertical motion may comprise precursory-, contemporaneous- or post-emplacement uplift or subsidence. The total volume erupted ranges from trivial in the case of minor seamount chains to ~ 108 km3 for the proposed composite Ontong Java–Manihiki–Hikurangi Plateau. Time progressions along chains may be extremely regular or absent. Several avenues of testing of the hypothesis are underway and are stimulating an unprecedented and healthy degree of critical debate regarding the results.
    [Show full text]
  • Dynamics of Plume-Triple Junction Interaction
    Old Dominion University ODU Digital Commons OEAS Faculty Publications Ocean, Earth & Atmospheric Sciences 2016 Dynamics of Plume-Triple Junction Interaction: Results from a Series of Three-Dimensional Numerical Models and Implications for the Formation of Oceanic Plateaus Mladen Dordevic Jennifer Georgen Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/oeas_fac_pubs Part of the Geochemistry Commons, and the Geophysics and Seismology Commons Repository Citation Dordevic, Mladen and Georgen, Jennifer, "Dynamics of Plume-Triple Junction Interaction: Results from a Series of Three- Dimensional Numerical Models and Implications for the Formation of Oceanic Plateaus" (2016). OEAS Faculty Publications. 214. https://digitalcommons.odu.edu/oeas_fac_pubs/214 Original Publication Citation Dordevic, M., & Georgen, J. (2016). Dynamics of plume-triple junction interaction: Results from a series of three-dimensional numerical models and implications for the formation of oceanic plateaus. Journal of Geophysical Research: Solid Earth, 121(3), 1316-1342. doi:10.1002/2014jb011869 This Article is brought to you for free and open access by the Ocean, Earth & Atmospheric Sciences at ODU Digital Commons. It has been accepted for inclusion in OEAS Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Dynamics of plume–triple junction interaction:
    [Show full text]