Bioenergetics and Habitat Suitability Models for the Chinese Mystery Snail (Bellamya Chinensis) Danielle M

Total Page:16

File Type:pdf, Size:1020Kb

Bioenergetics and Habitat Suitability Models for the Chinese Mystery Snail (Bellamya Chinensis) Danielle M University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Natural Resources Natural Resources, School of 5-2015 Bioenergetics and habitat suitability models for the Chinese mystery snail (Bellamya chinensis) Danielle M. Haak University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/natresdiss Part of the Aquaculture and Fisheries Commons, Natural Resources Management and Policy Commons, and the Terrestrial and Aquatic Ecology Commons Haak, Danielle M., "Bioenergetics and habitat suitability models for the Chinese mystery snail (Bellamya chinensis)" (2015). Dissertations & Theses in Natural Resources. 107. http://digitalcommons.unl.edu/natresdiss/107 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. i BIOENERGETICS AND HABITAT SUITABILITY MODELS FOR THE CHINESE MYSTERY SNAIL (BELLAMYA CHINENSIS) by Danielle M. Haak A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Natural Resource Sciences Under the Supervision of Professors Kevin L. Pope and Valery E. Forbes Lincoln, Nebraska May, 2015 ii BIOENERGETICS AND HABITAT SUITABILITY MODELS FOR THE CHINESE MYSTERY SNAIL (BELLAMYA CHINENSIS) Danielle M. Haak, Ph.D. University of Nebraska, 2015 Advisors: Kevin L. Pope and Valery E. Forbes Relatively little is known about the invasive Chinese mystery snail (Bellamya chinensis). This research aims to elucidate some of the mystery surrounding this species. First, we place the species in context with other invasive freshwater snails of the USA and Canada, identifying current information gaps, categorizing shared characteristics among families and species, and comparing functional roles and ecological effects of freshwater snails. We conclude that more focus needs to be directed to regulating the aquarium, pet, and food trades if we are serious about preventing future invasions. Next, we develop a bioenergetics model for the species by quantifying and comparing consumption, egestion, respiration, and production of the Chinese mystery snail at varying water temperatures. We observed differences in these values across different water temperatures, indicating that temperature affects growth and reproductive strategies of this species. Then we focused on analyzing a specific case study to identify physical, chemical, and biological lake characteristics that help predict where the Chinese mystery snail is found. The top predictor model found that Chinese mystery snail presence is correlated with Secchi depth, latitude, and the presence of other aquatic invasive species. Finally, we use network analysis to develop a method for coupling social and ecological network models so they may be used in tandem to assess how humans aid the movement of the Chinese mystery snail, as well as how the snail affects an ecosystem after invasion. This was achieved through the adaptation of the framework of infectious disease network modeling. iii i Author’s Acknowledgments Where do I start? A PhD is so much more than just this document. To my co- advisors, Dr. Kevin Pope and Dr. Valery Forbes: thank you. There were ups and downs and surprises along the way, and you two guided me through each step with patience and encouragement (and tough love when I needed it). Not only have I changed as a scientist, I've changed as a person as a result of the past 4 years and for that I will always be grateful. Thank you for taking a chance on me. To my committee members, Dr. Chad Brassil, Dr. Amy Burgin, and Dr. Mark Pegg: thank you for enduring the snail ride as it evolved. Your suggestions, thought-provoking meetings, and inspiration were critical to the completion of this project. To Dr. Craig Allen and the IGERT committee: thank you for the unique opportunity of being an IGERT student. This program is an incredible launching pad and opened doors I didn't even know existed. To the University of Nebraska Foundation: thank you for the financial support enabling me to focus on my dissertation full time as a Presidential Graduate Fellow. To Dr. Brian Fath and the IIASA staff: thank you for giving me the opportunity to spend a terrific summer in Austria with i a magnificent international team. YSSP was a highlight of grad school, without a doubt. A very special thank you to the wonderful staff that keeps the NE Coop Unit and IGERT moving forward, especially Valerie Egger and Caryl Cashmere. I will be forever appreciative for the hours of work you both saved me and for your patience when I made things more difficult than they needed to be. Valerie, thank you for all of the help organizing 2 European adventures; I definitely didn't make things easy, but your support resulted in two flawless trips. I was lucky to join a great group of people comprised of SNR faculty, the NE Coop ii Unit, and the IGERT crew. I was even luckier to be part of the Pope Lab, and I cannot thank you guys enough. I am especially grateful to Chris Wiley, Robert Kill, Jason DeBoer, Brian Hammond, Kelly Turek, Luke Kowalewski, Nathan Stewart, Dr. Dustin Martin, and Dr. Chris Chizinski: we had some awesome (and a few not-so-awesome) times and my memories of graduate school will always be dominated by this beautiful, motley crew we were lucky to be a part of. To the Forbes Lab: I loved our talks on science and on life – thank you! To my fellow IGERTs, especially Shelli Hellman, Hannah Birgé, Maggi Swilinski, Ilonka Zlatar, and Noelle Hart: nothing bonds a group faster than being plopped down in a new country where no one speaks the native language. I am continuously inspired by your enthusiasm, optimism, encouragement, and quests for self-improvement, and I am so blessed to be able to call you all friends. To my fellow snailer, Bruce Stephen: thank you for the snail enthusiasm and the endless edits – I would have been lost without your snail expertise! Alec Wong: thank you for all of your dedication to field and lab work! I don’t have room to name everyone who contributed to this process but know you are in my heart and I am thankful for the role you played as ii advisor or friend or combination of the two. Last, but definitely not least, to my wonderful family, Dad, Mom, and Jonathon: thank you for not forcing me to grow up too fast. I've been able to wander, explore, question, and figure things out as I go, and none of that would be possible without an unbreakable support system. You taught me to keep striving for growth (and to remember there's always room for improvement), while still providing encouragement and unconditional love. And to my friends who became family, Lindsay Schaffner and Jereme Gaeta: thank you for everything you both are (On Wisconsin!). iii Table of Contents Chapter 1: Introduction ............................................................................................1 Chapter 2: Non-native and invasive freshwater snails of the USA and Canada....................................................................................................................15 Chapter 3: Carbon budget of the adult Chinese mystery snail (Bellamya chinensis) at various water temperatures ....................................................................................76 Chapter 4: Identifying environmental predictors of presence or absence of the adult Chinese mystery snail ..........................................................................................112 Chapter 5: Coupling ecological and social network models to assess “transmission” and “contagion” of an aquatic invasive species ..........................138 Chapter 6: Conclusions, management implications, and directions for future research ................................................................................................................186 iii Appendix A. Wet weight snail data .....................................................................194 Appendix B. Dominant fish species found in each water body ...........................199 Appendix C. Assessing pH and calcium requirements of the Chinese mystery snail ......................................................................................................................205 Appendix D. Ecological network development ...................................................212 iv List of Tables Table 2-1. Taxonomy and native ranges of the invasive freshwater snail species included in this review, as well as the number of species from each family native to the USA and Canada. An * indicates a “native transport” rather than an exotic species ............................................................................74 Table 2-2. Taxonomy of both native and non-native gastropods of North America ............................................................................................................75 Table 3-1. Summary data for adult snails at each of 3 water temperatures. Significant differences are indicated by different superscript letters ...............................104 Table 3-2. Mean (±SD) carbon and nitrogen content (%) for adult body tissue, fecal matter, and juveniles produced at each water temperature. Statistically significant differences within each category are
Recommended publications
  • Cipangopaludina Chinensis: Effects of Temperatures and Parasite Prevalence
    Cipangopaludina chinensis: Effects of temperatures and parasite prevalence BIOS 35502-01: Practicum in Environmental Field Biology Jennifer Lam Advisor: Sara Benevente 2016 Lam 2 Abstract Comparison of parasite prevalence between native snail species, Lymnaea stagnalis, and invasive snail species, Cipangopaludina chinensis, was conducted by euthanizing snails one day after capture from Brown Lake. Looking at if parasitism is a main factor in intraspecific competition of C. chinensis at different temperatures, snails were captured, measured for height and width, housed under different temperature settings (20◦C, 25◦C, and 34◦C), and competed against other for a week-long trial. After the week-long trial or when the last snail died, snails were re-measured for growth and checked for parasites. Result from parasite prevalence between two snails species was significant, C. chinensis rarely had infections compared to L. stagnalis. From the result, native parasites were predicted to be highly specialized for L. stagnalis and lack mechanisms to penetrate C. chinensis. Result from the intraspecific competition suggested that parasite prevalence was not important as survival (in weeks) in the change in growth. Since parasite prevalence was low, and sample size was small, conclusion on parasite prevalence not being a factor in growth was not robust. Further studies on impact of C. chinensis on freshwater systems and native snail species are needed. Introduction Climate change is a concerning factor for freshwater ecosystems. Climate change increases the average temperature of water in some aquatic systems. With warmer water temperatures, more exotic species can establish as native species disappear (Rahel and Olden 2008). As native species disappear from the ecosystem, other species dependent on a specific native species may not be able to sustain the loss, leading to a decrease in biodiversity.
    [Show full text]
  • Distribution and Identification of the Genus Biomphalaria Preston
    Revista da Biologia (2017) 17(2):31-37 Revisão DOI: 10.7594/revbio.17.02.06 English version Distribution and identification of the genus Biomphalaria Preston (1910): important insights into the epidemiology of Schistosomiasis in the Amazon region Tatiane Alencar Lopes1, Stella Yasmin Lima Nobushige1, Ana Paula Santos Silva2, Christiane de Oliveira Goveia3, Martin Johannes Enk3, Iracilda Sampaio2, João Bráulio de Luna Sales4, Luis Fernando da Silva Rodrigues Filho5* 1 Curso de Licenciatura em Ciências Biológicas, Estácio/Faculdade de Castanhal (FCAT), Castanhal, Pará. 2 Universidade Federal do Pará, Laboratório de Genética e Biologia Molecular, Campus de Bragança Bragança/ PA, Brasil. 3 Instituto Evandro Chagas (IEC), Laboratório de Parasitoses Intestinais, Esquistossomose e Malacologia. 4 Universidade Federal do Pará, Campus Universitário do Marajó-Breves, Faculdade de Ciências Naturais (FACIN), Breves-PA. 5 Universidade Federal Rural da Amazônia, Campus Universitário de Capanema, Faculdade de Ciencias Biológicas, Capanema/PA, Brasil. *Contato: [email protected] Recebido: 13jun16 Abstract. Schistosomiasis is a disease transmitted by flatworms of the speciesSchistosoma mansoni Aceito: 04ago17 (Sambon, 1907). The spread of the disease is dependent on the presence of snails of the genus Biomphalaria Publicado: 04/08/17 (intermediate hosts). In Brazil, while 11 species and one subspecies have been identified, only three – B. glabrata, B. straminea and B. tenagophila – are known to eliminate cercariae into the environment. However, Editado por only B. peregrina and B. amazônicaare susceptible to infection in the laboratory. Research on schistosomiasis Davidson Sodré and its intermediate hosts in Brazil is restricted to the country’s southern and southeastern regions, and little e revisado por is known of the occurrence of Biomphalaria in the Amazon region, where the disease is probable endemic Anônimo due to the ideal environmental conditions and the availability of hosts.
    [Show full text]
  • BIO 475 - Parasitology Spring 2009 Stephen M
    BIO 475 - Parasitology Spring 2009 Stephen M. Shuster Northern Arizona University http://www4.nau.edu/isopod Lecture 12 Platyhelminth Systematics-New Euplatyhelminthes Superclass Acoelomorpha a. Simple pharynx, no gut. b. Usually free-living in marine sands. 3. Also parasitic/commensal on echinoderms. 1 Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites Euplatyhelminthes 2. Superclass Rhabditophora - with rhabdites a. Class Rhabdocoela 1. Rod shaped gut (hence the name) 2. Often endosymbiotic with Crustacea or other invertebrates. Euplatyhelminthes 3. Example: Syndesmis a. Lives in gut of sea urchins, entirely on protozoa. 2 Euplatyhelminthes Class Temnocephalida a. Temnocephala 1. Ectoparasitic on crayfish 5. Class Tricladida a. like planarians b. Bdelloura 1. live in gills of Limulus Class Temnocephalida 4. Life cycles are poorly known. a. Seem to have slightly increased reproductive capacity. b. Retain many morphological characters that permit free-living existence. Euplatyhelminth Systematics 3 Parasitic Platyhelminthes Old Scheme Characters: 1. Tegumental cell extensions 2. Prohaptor 3. Opisthaptor Superclass Neodermata a. Loss of characters associated with free-living existence. 1. Ciliated larval epidermis, adult epidermis is syncitial. Superclass Neodermata b. Major Classes - will consider each in detail: 1. Class Trematoda a. Subclass Aspidobothrea b. Subclass Digenea 2. Class Monogenea 3. Class Cestoidea 4 Euplatyhelminth Systematics Euplatyhelminth Systematics Class Cestoidea Two Subclasses: a. Subclass Cestodaria 1. Order Gyrocotylidea 2. Order Amphilinidea b. Subclass Eucestoda 5 Euplatyhelminth Systematics Parasitic Flatworms a. Relative abundance related to variety of parasitic habitats. b. Evidence that such characters lead to great speciation c. isolated populations, unique selective environments. Parasitic Flatworms d. Also, very good organisms for examination of: 1. Complex life cycles; selection favoring them 2.
    [Show full text]
  • Original Article Influence of Food Type and Calcium
    doi: 10.5216/rpt.v49i1.62089 ORIGINAL ARTICLE INFLUENCE OF FOOD TYPE AND CALCIUM SUPPLEMENTATION ON GROWTH, OVIPOSITION AND SURVIVAL PARAMETERS OF Biomphalaria glabrata AND Biomphalaria straminea Wandklebson Silva da Paz1, Rosália Elen Santos Ramos1, Dharliton Soares Gomes1, Letícia Pereira Bezerra1, Laryssa Oliveira Silva2, Tatyane Martins Cirilo1, João Paulo Vieira Machado2 and Israel Gomes de Amorim Santos2 ABSTRACT Schistosomiasis is a parasitic disease caused by Schistosoma mansoni whose intermediate host is the snail of the genus Biomphalaria. This snail is geographically widespread, making the disease a serious public health problem. The purpose of this study was to analyze the growth, reproductive rates and mortality of B. glabrata and B. straminea in different calcium concentrations and food types. Freshly hatched snails stored in aquariums under different dietary and calcium supplementation programs were studied. Under these conditions, all planorbids survived, so there was no mortality rate and 79,839 eggs of B. straminea and 62,558 eggs of B. glabrata were obtained during the 2 months of oviposition. The following conditions: lettuce + fish food and lettuce + fish food + powdered milk resulted in the highest reproductive rates. In addition, supplementation with calcium carbonate and calcium sulfide in three different concentrations did not significantly influenced the amount of eggs or ovigerous masses. Thus, this study shows that changes in diet are crucial for the survival/oviposition of these planorbids, being an important study tool for population control. Calcium is also a key factor in these conditions, but more work is necessary to better assess its effect on snail survival. KEY WORDS: Laboratory breeding; Biomphalaria glabrata; Biomphalaria straminea; food type; calcium concentration.
    [Show full text]
  • First Report of the Invasive Snail Pomacea Canaliculata in Kenya Alan G
    Buddie et al. CABI Agric Biosci (2021) 2:11 https://doi.org/10.1186/s43170-021-00032-z CABI Agriculture and Bioscience RESEARCH Open Access First report of the invasive snail Pomacea canaliculata in Kenya Alan G. Buddie1* , Ivan Rwomushana2 , Lisa C. Oford1 , Simeon Kibet3, Fernadis Makale2 , Djamila Djeddour1 , Giovanni Cafa1 , Koskei K. Vincent4, Alexander M. Muvea3 , Duncan Chacha2 and Roger K. Day2 Abstract Following reports of an invasive snail causing crop damage in the expansive Mwea irrigation scheme in Kenya, samples of snails and associated egg masses were collected and sent to CABI laboratories in the UK for molecular identifcation. DNA barcoding analyses using the cytochrome oxidase subunit I gene gave preliminary identifcation of the snails as Pomacea canaliculata, widely considered to have the potential to be one of the most invasive inver- tebrates of waterways and irrigation systems worldwide and which is already causing issues throughout much of south-east Asia. To the best of our knowledge, this is the frst documented record of P. canaliculata in Kenya, and the frst confrmed record of an established population in continental Africa. This timely identifcation shows the beneft of molecular identifcation and the need for robust species identifcations: even a curated sequence database such as that provided by the Barcoding of Life Data system may require additional checks on the veracity of the underlying identifcations. We found that the egg mass tested gave an identical barcode sequence to the adult snails, allowing identifcations to be made more rapidly. Part of the nuclear elongation factor 1 alpha gene was sequenced to confrm that the snail was P.
    [Show full text]
  • 15. Especies Nuevas
    Graellsia, 63(2): 371-403 (2007) NOTICIA DE NUEVOS TÁXONES PARA LA CIENCIA EN EL ÁMBITO ÍBERO-BALEAR Y MACARONÉSICO Nuevos táxones animales descritos en la península CNIDARIA Ibérica y Macaronesia desde 1994 (XI) Alcyonium megasclerum Stokvis y van Ofwegen, 2006 Anthozoa, Familia Alcyoniidae LOCALIDAD TIPO: “Tydeman” Cape Verde Islands Expedition 1982, J. FERNÁNDEZ Museo Nacional de Ciencias Naturales, C.S.I.C. CANCAP-VI, sta. 6.096, SW de Razo, archipiélago de Cabo Verde, José Gutiérrez Abascal, 2. 28006. Madrid. 16°36’N 24°39’W, 1.000-1.350 m de profundidad. E-mail: [email protected] MATERIAL TIPO: holotipo (RMNH Coel. 33877) y tres preparaciones microscópicas en el National Museum of Natural History, Leiden. DISTRIBUCIÓN: conocida sólo por el holotipo. REFERENCIA: Stokvis, F.R. y van Ofwegen, L. P., 2006. New and redes- Como cada final de año, como si de una nueva cribed encrusting species of Alcyonium from the Atlantic Ocean cosecha se tratase, reflejamos aquí la actual relación de (Octocorallia: Alcyonacea: Alcyoniidae). Zoologische Mededelingen nuevos táxones animales. Recordamos que el asterisco (Leiden), 80(4): 165-183. indica que no hemos podido ver la publicación original. Alcyonium profundum Stokvis y van Ofwegen, 2006 Esta lista habría sido mucho más escueta y menos Anthozoa, Familia Alcyoniidae completa sin la cuantiosa ayuda recibida. LOCALIDAD TIPO: CENTOB-Cruise Marvel, PL 1199, 36°32’N 33°24’W, Queremos destacar, en primer y más importante Famous, Mid Atlantic Ridge, 2.200-2.600 m de profundidad. lugar, a muchos compañeros que nos han proporciona- MATERIAL TIPO: holotipo en el Muséum National d’Histoire Naturelle, Parísm y tres preparaciones microscópicas del holotipo (RMNH do información, separatas y ánimos (y algún que otro Coel.
    [Show full text]
  • Redalyc.Total Protein Composition of Young and Adult Biomphalaria
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Sadaka, Hayam A.; Abou-El-Naga, Iman F.; Amer, Eglal I.; Diab, Iman H.; Khedr, Safaa I. A. Total protein composition of young and adult Biomphalaria alexandrina snails with different compatibilities to Schistosoma mansoni infection Revista de Biología Tropical, vol. 64, núm. 4, 2016, pp. 1747-1757 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44947539030 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Total protein composition of young and adult Biomphalaria alexandrina snails with different compatibilities to Schistosoma mansoni infection Hayam A. Sadaka1, Iman F. Abou-El-Naga1*, Eglal I. Amer1, Iman H. Diab2 & Safaa I. A. Khedr1 1. Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; [email protected], [email protected], [email protected] 2. Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; [email protected], [email protected] * Correspondence Received 04-XI-2015. Corrected 05-IV-2016. Accepted 06-V-2016. Abstract: Schistosomiasis remains a disease of major global public health concern since it is a chronic and debilitating illness. The widely distributed Schistosoma mansoni that causes intestinal schistosomiasis represents a great threat. Its world-wide distribution is permitted by the broad geographic range of the susceptible species of its intermediate host, Biomphalaria, which serves as an obligatory host for the larval stage, at which humans get infected.
    [Show full text]
  • Population Dynamics of Pomacea Flagellata
    Limnetica, 29 (2): x-xx (2011) Limnetica, 34 (1): 69-78 (2015). DOI: 10.23818/limn.34.06 c Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Population dynamics of the native apple snail Pomacea flagellata (Ampullariidae) in a coastal lagoon of the Mexican Caribbean Frank A. Ocaña∗, Alberto de Jesús-Navarrete, José Juan Oliva-Rivera, Rosa María de Jesús- Carrillo and Abel Abraham Vargas-Espósitos1 Departamento de Sistemática y Ecología Acuática. El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal. Av. Centenario km 5.5, Chetumal, Quintana Roo, México ∗ Corresponding author: [email protected] 2 Received: 25/07/2014 Accepted: 20/11/2014 ABSTRACT Population dynamics of the native apple snail Pomacea flagellata (Ampullariidae) in a coastal lagoon of the Mexican Caribbean Apple snails Pomacea spp inhabit tropical and subtropical freshwater environments and are of ecological and economic importance. To evaluate the population dynamics of P. flagellata, monthly samples were collected from Guerrero Lagoon (Yucatán Peninsula) from June 2012 to May 2013. The measured environmental variables did not differ significantly among the sampling stations. However, salinity was lower during the rainy season, and the temperature was lower during the north season (i.e., the season dominated by cold fronts). The snails were more abundant during the rainy season, and they were restricted to the portion of the lagoon that receives freshwater discharges. The snails ranged from 4 to 55 mm in size, with a –1 maximum estimated length of L∞ = 57.75 mm and a growth rate of K = 0.68 y (the abbreviation “y” means “year”) with a seasonal oscillation; the lowest growth rate occurred in early December.
    [Show full text]
  • Pomacea Canaliculata (Lamarck, 1822)
    Pomacea canaliculata (Lamarck, 1822) Diagnostic features Distinguished from Pomacea diffusa by its larger sized shell (up to 75 mm in height) and deeply channelled suture. Animal with distinctive head-foot; snout uniquely with a pair of Pomacea canaliculata (adult size up to 75 mm in height) Characteristic pink egg mass, commonly laid on vegetation. distal, long, tentacle-like processes; cephalic tentacles very long. A long 'siphon' is also present. Classification Pomacea canaliculata (Lamarck, 1822) Common name: Golden apple snail Class Gastropoda I nfraclass Caenogastropoda I nformal group Architaenioglossa Order Ampullarida Superfamily Ampullarioidea Family Ampullariidae Genus Pomacea Perry, 1810 Original name: Ampullaria canaliculata Lamarck, 1822. Lamarck, J. B. P. A. de M. de (1822). Histoire naturelle des animaux sans vertèbres Tome sixième.LĘauteur, Paris. 1-232 pp. Type locality: Laguna Guadeloupe ? Santa Fe, Argentina (as ėRivierès de la Guadeloupe) Biology and ecology This species lives on sediment and on aquatic and semi-aquatic vegetation. t lays pink coloured egg masses on plants above the waterline. t has become a major pest of aquatic crops as it eats living plants including rice and taro crops. Distribution ntroduced from South America into the southern United States, East Asia, islands of the ndian Ocean and New Guinea. Notes This pest species has not as yet entered Australia, but ought to be considered a significant risk due to its presence as an invasive in the adjacent ndo-west Pacific region. Two other south Asian ampullariid species have regularly been intercepted by Australian Biosecurity ĕ they are Pila ampullacea (Linnaeus, 1758) and Pila globosa (Swainson, 1822).
    [Show full text]
  • Bilharziasis Survey in British West and East Africa, Nyasaland and Tie Rhodesias *
    Bull. Org. mond. Santu 1956, 15, 203-273 Bull. Wld Hlth Org. BILHARZIASIS SURVEY IN BRITISH WEST AND EAST AFRICA, NYASALAND AND TIE RHODESIAS * DYSON M. BLAIR Director of Medical Services, Health Department of Southern Rhodesia, Salisbury WHO Consultant on Bilharziasis SYNOPSIS The author, in his capacity as a WHO consultant, undertook a survey of bilharziasis in British West and East Africa and Nyasaland during 1950-51. The information thus obtained has been revised and brought up to date and is recorded in the present article together with similar observations on Northern Rhodesia, which was not visited, and on Southern Rhodesia, the author's own country. In Part I, each country is dealt with in turn. The history of the disease and the findings of field surveys are reviewed, and, wherever possible, personal observations have been included. The fact that the informa- tion is of a scanty and incomplete nature is an indication that further local studies in all areas are badly needed. In Part II an attempt is made to survey the situation from the point of view of the various aspects of the subjects-methods of obtaining morbidity data, intensity of infection, effects of the disease on human health, treat- ment, and the molluscan vectors. PART I. EPIDEMIOLOGICAL DATA The Joint OIHP/WHO Study Group on Bilharziasis in Africa, meeting in Cairo in October 1949, recommended that the " surveys on the geographical distribution of human bilharziasis and its vector snails should be carried out by individual experts to be selected and sent by WHO to the countries and territories in which the presence of bilharziasis is known or suspected, but for which adequate information is not available." As part of this plan, British territories in West, East and Central Africa were visited in 1950 and 1951 and the account given here is based on the * This is the sixth of a series of articles, published in the Bulletin of the World Health Organization, describing the epidemiology of bilharziasis in the African and Eastern Mediterranean regions.
    [Show full text]
  • The Malacological Society of London
    ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45
    [Show full text]
  • Fecundity of the Chinese Mystery Snail in a Nebraska Reservoir
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications Unit 2013 Fecundity of the Chinese mystery snail in a Nebraska reservoir Bruce J. Stephen University of Nebraska-Lincoln, [email protected] Craig R. Allen University of Nebraska-Lincoln, [email protected] Noelle M. Chaine University of Nebraska-Lincoln, [email protected] Kent A. Fricke University of Nebraska-Lincoln Danielle M. Haak University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/ncfwrustaff Part of the Aquaculture and Fisheries Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, and the Water Resource Management Commons Stephen, Bruce J.; Allen, Craig R.; Chaine, Noelle M.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.; and Wong, Alec, "Fecundity of the Chinese mystery snail in a Nebraska reservoir" (2013). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 121. https://digitalcommons.unl.edu/ncfwrustaff/121 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Bruce J. Stephen, Craig R. Allen, Noelle M. Chaine, Kent A.
    [Show full text]