Astronomy 110 Lecture 7 Days of Week Were Named for Sun, Moon, and Visible Planets Impact of Greek Thought: Philosophical Basis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Timeline 2 Geocentric Model
Ancient Astronomy Many ancient cultures were interested in the night sky • Calenders • Prediction of seasons • Navigation 1 Timeline Astronomy timeline • ∼ 3000 B.C. Stonehenge • 2136 B.C. First record of solar eclipse by Chinese astronomers • 613 B.C. First record of Halley’s comet by Zuo Zhuan (China) • ∼ 270 B.C. Aristarchus proposes Earth goes around Sun (not a popular idea at the time) • ∼ 240 B.C. Eratosthenes estimates Earth’s circumference • ∼ 130 B.C. Hipparchus develops first accurate star map (one of the first to use R.A. and Dec) 2 Geocentric model The Geocentric Model • Greek philosopher Aristotle (384-322 B.C.) • Uniform circular motion • Earth at center of Universe Retrograde Motion • General motion of planets east- ward • Short periods of westward motion of planets • Then continuation eastward How did the early Greek philosophers make retrograde motion consistent with uniform circular motion? 3 Ptolemy Ptolemy’s Geocentric Model • Planet moves around a small circle called an epicycle • Center of epicycle moves along a larger cir- cle called a deferent • Center of deferent is at center of Earth (sort of) Ptolemy’s Geocentric Model • Ptolemy invented the device called the eccentric • The eccentric is the center of the deferent • Sometimes the eccentric was slightly off center from the center of the Earth Ptolemy’s Geocentric Model • Uniform circular motion could not account for speed of the planets thus Ptolemy used a device called the equant • The equant was placed the same distance from the eccentric as the Earth, but on the -
A Philosophical and Historical Analysis of Cosmology from Copernicus to Newton
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2017 Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton Manuel-Albert Castillo University of Central Florida Part of the History of Science, Technology, and Medicine Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Castillo, Manuel-Albert, "Scientific transformations: a philosophical and historical analysis of cosmology from Copernicus to Newton" (2017). Electronic Theses and Dissertations, 2004-2019. 5694. https://stars.library.ucf.edu/etd/5694 SCIENTIFIC TRANSFORMATIONS: A PHILOSOPHICAL AND HISTORICAL ANALYSIS OF COSMOLOGY FROM COPERNICUS TO NEWTON by MANUEL-ALBERT F. CASTILLO A.A., Valencia College, 2013 B.A., University of Central Florida, 2015 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts in the department of Interdisciplinary Studies in the College of Graduate Studies at the University of Central Florida Orlando, Florida Fall Term 2017 Major Professor: Donald E. Jones ©2017 Manuel-Albert F. Castillo ii ABSTRACT The purpose of this thesis is to show a transformation around the scientific revolution from the sixteenth to seventeenth centuries against a Whig approach in which it still lingers in the history of science. I find the transformations of modern science through the cosmological models of Nicholas Copernicus, Johannes Kepler, Galileo Galilei and Isaac Newton. -
The Diophantine Equation X 2 + C = Y N : a Brief Overview
Revista Colombiana de Matem¶aticas Volumen 40 (2006), p¶aginas31{37 The Diophantine equation x 2 + c = y n : a brief overview Fadwa S. Abu Muriefah Girls College Of Education, Saudi Arabia Yann Bugeaud Universit¶eLouis Pasteur, France Abstract. We give a survey on recent results on the Diophantine equation x2 + c = yn. Key words and phrases. Diophantine equations, Baker's method. 2000 Mathematics Subject Classi¯cation. Primary: 11D61. Resumen. Nosotros hacemos una revisi¶onacerca de resultados recientes sobre la ecuaci¶onDiof¶antica x2 + c = yn. 1. Who was Diophantus? The expression `Diophantine equation' comes from Diophantus of Alexandria (about A.D. 250), one of the greatest mathematicians of the Greek civilization. He was the ¯rst writer who initiated a systematic study of the solutions of equations in integers. He wrote three works, the most important of them being `Arithmetic', which is related to the theory of numbers as distinct from computation, and covers much that is now included in Algebra. Diophantus introduced a better algebraic symbolism than had been known before his time. Also in this book we ¯nd the ¯rst systematic use of mathematical notation, although the signs employed are of the nature of abbreviations for words rather than algebraic symbols in contemporary mathematics. Special symbols are introduced to present frequently occurring concepts such as the unknown up 31 32 F. S. ABU M. & Y. BUGEAUD to its sixth power. He stands out in the history of science as one of the great unexplained geniuses. A Diophantine equation or indeterminate equation is one which is to be solved in integral values of the unknowns. -
A Diluted Al-Karaji in Abbacus Mathematics Actes Du 10^ Colloque Maghrebin Sur I’Histoire Des Mathematiques Arabes
Actes du 10 Colloque Maghrebin sur THistoire des Mathematiques Arabes (Tunis, 29-30-31 mai 2010) Publications de 1’Association Tunisienne des Sciences Mathematiques Actes du 10^ colloque maghrebin sur I’histoire des mathematiques arabes A diluted al-Karajl in Abbacus Mathematics Jens H0yrup^ In several preceding Maghreb colloques I have argued, from varying perspectives, that the algebra of the Italian abbacus school was inspired neither from Latin algebraic writings (the translations of al-Khw5rizmT and the Liber abbaci) nor directly from authors like al-KhwarizmT, Abu Kamil and al-KarajT; instead, its root in the Arabic world is a level of algebra Actes du 10*“® Colloque Maghrebin (probably coupled to mu^Smalat mathematics) which until now has not been scrutinized systematically. sur THistoire des Mathematiques Going beyond this negative characterization I shall argue on the present Arabes occasion that abbacus algebra received indirect inspiration from al-KarajT. As it will turn out, however, this inspiration is consistently strongly diluted, (Tunis, 29-30-31 mai 2010) and certainly indirect. 1. Al-KhwSrizml, Abu Kamil and al-KarajI Let us briefly summarize the relevant aspects of what distinguishes al-KarajT from his algebraic predecessors. Firstly, there is the sequence of algebraic powers. Al-KhwarizmT [ed., trans. Rashed 2007], as is well known, deals with three powers only: census (to adopt the translation which will fit our coming discussion of abbacus algebra), roots, and simple numbers. So do ibn Turk [ed., trans. Say_l_ 1962] and Thabit ibn Qurrah [ed., trans. Luckey 1941] in their presentation of proofs for the basic mixed cases, which indeed involve only these same powers. -
Normans and the Papacy
Normans and the Papacy A micro history of the years 1053-1059 Marloes Buimer S4787234 Radboud University January 15th, 2019 Dr. S. Meeder Radboud University SCRSEM1 V NORMAN2 NOUN • 1 member of a people of mixed Frankish and Scandinavian origin who settled in Normandy from about AD 912 and became a dominant military power in western Europe and the Mediterranean in the 11th century.1 1 English Oxford living dictionaries, <https://en.oxforddictionaries.com/definition/norman> [consulted on the 19th of January 2018]. Index INDEX 1 PREFACE 3 ABBREVIATIONS 5 LIST OF PEOPLE 7 CHAPTER 1: STATUS QUAESTIONIS 9 CHAPTER 2: BATTLE AT CIVITATE 1000-1053 15 CHAPTER 3: SCHISM 1054 25 CHAPTER 4: PEACE IN ITALY 1055-1059 35 CHAPTER 5: CONCLUSION 43 BIBLIOGRAPHY 47 1 2 Preface During my pre-master program at the Radboud University, I decided to write my bachelor thesis about the Vikings Rollo, Guthrum and Rörik. Thanks to that thesis, my interest for medieval history grew and I decided to start the master Eternal Rome. That thesis also made me more enthusiastic about the history of the Vikings, and especially the Vikings who entered the Mediterranean. In the History Channel series Vikings, Björn Ironside decides to go towards the Mediterranean, and I was wondering in what why this affected the status of Vikings. While reading literature about this conquest, there was not a clear matter to investigate. Continuing reading, the matter of the Normans who settled in Italy came across. The literature made it clear, on some levels, why the Normans came to Italy. -
Mathematicians
MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus -
Unaccountable Numbers
Unaccountable Numbers Fabio Acerbi In memoriam Alessandro Lami, a tempi migliori HE AIM of this article is to discuss and amend one of the most intriguing loci corrupti of the Greek mathematical T corpus: the definition of the “unknown” in Diophantus’ Arithmetica. To do so, I first expound in detail the peculiar ter- minology that Diophantus employs in his treatise, as well as the notation associated with it (section 1). Sections 2 and 3 present the textual problem and discuss past attempts to deal with it; special attention will be paid to a paraphrase contained in a let- ter of Michael Psellus. The emendation I propose (section 4) is shown to be supported by a crucial, and hitherto unnoticed, piece of manuscript evidence and by the meaning and usage in non-mathematical writings of an adjective that in Greek math- ematical treatises other than the Arithmetica is a sharply-defined technical term: ἄλογος. Section 5 offers some complements on the Diophantine sign for the “unknown.” 1. Denominations, signs, and abbreviations of mathematical objects in the Arithmetica Diophantus’ Arithmetica is a collection of arithmetical prob- lems:1 to find numbers which satisfy the specific constraints that 1 “Arithmetic” is the ancient denomination of our “number theory.” The discipline explaining how to calculate with particular, possibly non-integer, numbers was called in Late Antiquity “logistic”; the first explicit statement of this separation is found in the sixth-century Neoplatonic philosopher and mathematical commentator Eutocius (In sph. cyl. 2.4, in Archimedis opera III 120.28–30 Heiberg): according to him, dividing the unit does not pertain to arithmetic but to logistic. -
Mathematical Discourse in Philosophical Authors: Examples from Theon of Smyrna and Cleomedes on Mathematical Astronomy
Mathematical discourse in philosophical authors: Examples from Theon of Smyrna and Cleomedes on mathematical astronomy Nathan Sidoli Introduction Ancient philosophers and other intellectuals often mention the work of mathematicians, al- though the latter rarely return the favor.1 The most obvious reason for this stems from the im- personal nature of mathematical discourse, which tends to eschew any discussion of personal, or lived, experience. There seems to be more at stake than this, however, because when math- ematicians do mention names they almost always belong to the small group of people who are known to us as mathematicians, or who are known to us through their mathematical works.2 In order to be accepted as a member of the group of mathematicians, one must not only have mastered various technical concepts and methods, but must also have learned how to express oneself in a stylized form of Greek prose that has often struck the uninitiated as peculiar.3 Be- cause of the specialized nature of this type of intellectual activity, in order to gain real mastery it was probably necessary to have studied it from youth, or to have had the time to apply oneself uninterruptedly.4 Hence, the private nature of ancient education meant that there were many educated individuals who had not mastered, or perhaps even been much exposed to, aspects of ancient mathematical thought and practice that we would regard as rather elementary (Cribiore 2001; Sidoli 2015). Starting from at least the late Hellenistic period, and especially during the Imperial and Late- Ancient periods, some authors sought to address this situation in a variety of different ways— such as discussing technical topics in more elementary modes, rewriting mathematical argu- ments so as to be intelligible to a broader audience, or incorporating mathematical material di- rectly into philosophical curricula. -
In. ^Ifil Fiegree in PNILOSOPNY
ISLAMIC PHILOSOPHY OF SCIENCE: A CRITICAL STUDY O F HOSSAIN NASR Dis««rtation Submitted TO THE Aiigarh Muslim University, Aligarh for the a^ar d of in. ^Ifil fiegree IN PNILOSOPNY BY SHBIKH ARJBD Abl Under the Kind Supervision of PROF. S. WAHEED AKHTAR Cbiimwa, D«ptt. ol PhiloMphy. DEPARTMENT OF PHILOSOPHY ALIGARH IWIUSLIIM UNIVERSITY ALIGARH 1993 nmiH DS2464 gg®g@eg^^@@@g@@€'@@@@gl| " 0 3 9 H ^ ? S f I O ( D .'^ ••• ¥4 H ,. f f 3« K &^: 3 * 9 m H m «< K t c * - ft .1 D i f m e Q > i j 8"' r E > H I > 5 C I- 115m Vi\ ?- 2 S? 1 i' C £ O H Tl < ACKNOWLEDGEMENT In the name of Allah« the Merciful and the Compassionate. It gives me great pleasure to thanks my kind hearted supervisor Prof. S. Waheed Akhtar, Chairman, Department of Philosophy, who guided me to complete this work. In spite of his multifarious intellectual activities, he gave me valuable time and encouraged me from time to time for this work. Not only he is a philosopher but also a man of literature and sugge'sted me such kind of topic. Without his careful guidance this work could not be completed in proper time. I am indebted to my parents, SK Samser All and Mrs. AJema Khatun and also thankful to my uncle Dr. Sheikh Amjad Ali for encouraging me in research. I am also thankful to my teachers in the department of Philosophy, Dr. M. Rafique, Dr. Tasaduque Hussain, Mr. Naushad, Mr. Muquim and Dr. Sayed. -
Arithmetical Proofs in Arabic Algebra Jeffery A
This article is published in: Ezzaim Laabid, ed., Actes du 12è Colloque Maghrébin sur l'Histoire des Mathématiques Arabes: Marrakech, 26-27-28 mai 2016. Marrakech: École Normale Supérieure 2018, pp 215-238. Arithmetical proofs in Arabic algebra Jeffery A. Oaks1 1. Introduction Much attention has been paid by historians of Arabic mathematics to the proofs by geometry of the rules for solving quadratic equations. The earliest Arabic books on algebra give geometric proofs, and many later algebraists introduced innovations and variations on them. The most cited authors in this story are al-Khwārizmī, Ibn Turk, Abū Kāmil, Thābit ibn Qurra, al-Karajī, al- Samawʾal, al-Khayyām, and Sharaf al-Dīn al-Ṭūsī.2 What we lack in the literature are discussions, or even an acknowledgement, of the shift in some authors beginning in the eleventh century to give these rules some kind of foundation in arithmetic. Al-Karajī is the earliest known algebraist to move away from geometric proof, and later we see arithmetical arguments justifying the rules for solving equations in Ibn al-Yāsamīn, Ibn al-Bannāʾ, Ibn al-Hāʾim, and al-Fārisī. In this article I review the arithmetical proofs of these five authors. There were certainly other algebraists who took a numerical approach to proving the rules of algebra, and hopefully this article will motivate others to add to the discussion. To remind readers, the powers of the unknown in Arabic algebra were given individual names. The first degree unknown, akin to our �, was called a shayʾ (thing) or jidhr (root), the second degree unknown (like our �") was called a māl (sum of money),3 and the third degree unknown (like our �#) was named a kaʿb (cube). -
Meet the Philosophers of Ancient Greece
Meet the Philosophers of Ancient Greece Everything You Always Wanted to Know About Ancient Greek Philosophy but didn’t Know Who to Ask Edited by Patricia F. O’Grady MEET THE PHILOSOPHERS OF ANCIENT GREECE Dedicated to the memory of Panagiotis, a humble man, who found pleasure when reading about the philosophers of Ancient Greece Meet the Philosophers of Ancient Greece Everything you always wanted to know about Ancient Greek philosophy but didn’t know who to ask Edited by PATRICIA F. O’GRADY Flinders University of South Australia © Patricia F. O’Grady 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. Patricia F. O’Grady has asserted her right under the Copyright, Designs and Patents Act, 1988, to be identi.ed as the editor of this work. Published by Ashgate Publishing Limited Ashgate Publishing Company Wey Court East Suite 420 Union Road 101 Cherry Street Farnham Burlington Surrey, GU9 7PT VT 05401-4405 England USA Ashgate website: http://www.ashgate.com British Library Cataloguing in Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask 1. Philosophy, Ancient 2. Philosophers – Greece 3. Greece – Intellectual life – To 146 B.C. I. O’Grady, Patricia F. 180 Library of Congress Cataloging-in-Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask / Patricia F. -
Apollonius of Pergaconics. Books One - Seven
APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].