IAEA TECDOC SERIES Limited Scope Sustainability Assessment of Planned Nuclear Systems Based on BN-1200 Fast Energy Reactors

Total Page:16

File Type:pdf, Size:1020Kb

IAEA TECDOC SERIES Limited Scope Sustainability Assessment of Planned Nuclear Systems Based on BN-1200 Fast Energy Reactors IAEA-TECDOC-1959 IAEA-TECDOC-1959 IAEA TECDOC SERIES Limited Scope Sustainability Assessment of Planned Nuclear Energy Systems Based on BN-1200 Fast Reactors Energy Systems Based on BN-1200 Fast Assessment of Planned Nuclear Limited Scope Sustainability IAEA-TECDOC-1959 Limited Scope Sustainability Assessment of Planned Nuclear Energy Systems Based on BN-1200 Fast Reactors International Atomic Energy Agency Vienna @ LIMITED SCOPE SUSTAINABILITY ASSESSMENT OF PLANNED NUCLEAR ENERGY SYSTEMS BASED ON BN-1200 FAST REACTORS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GRENADA PAPUA NEW GUINEA ARGENTINA GUATEMALA PARAGUAY ARMENIA GUYANA PERU AUSTRALIA HAITI PHILIPPINES AUSTRIA HOLY SEE POLAND AZERBAIJAN HONDURAS PORTUGAL BAHAMAS HUNGARY QATAR BAHRAIN ICELAND REPUBLIC OF MOLDOVA BANGLADESH INDIA ROMANIA BARBADOS INDONESIA RUSSIAN FEDERATION BELARUS IRAN, ISLAMIC REPUBLIC OF RWANDA BELGIUM IRAQ SAINT LUCIA BELIZE IRELAND BENIN ISRAEL SAINT VINCENT AND BOLIVIA, PLURINATIONAL ITALY THE GRENADINES STATE OF JAMAICA SAN MARINO BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BRUNEI DARUSSALAM KENYA SEYCHELLES BULGARIA KOREA, REPUBLIC OF SIERRA LEONE BURKINA FASO KUWAIT SINGAPORE BURUNDI KYRGYZSTAN SLOVAKIA CAMBODIA LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMEROON REPUBLIC SOUTH AFRICA CANADA LATVIA SPAIN CENTRAL AFRICAN LEBANON SRI LANKA REPUBLIC LESOTHO SUDAN CHAD LIBERIA SWEDEN CHILE LIBYA SWITZERLAND CHINA LIECHTENSTEIN SYRIAN ARAB REPUBLIC COLOMBIA LITHUANIA TAJIKISTAN COMOROS LUXEMBOURG THAILAND CONGO MADAGASCAR TOGO COSTA RICA MALAWI TRINIDAD AND TOBAGO CÔTE D’IVOIRE MALAYSIA TUNISIA CROATIA MALI TURKEY CUBA MALTA TURKMENISTAN CYPRUS MARSHALL ISLANDS UGANDA CZECH REPUBLIC MAURITANIA UKRAINE DEMOCRATIC REPUBLIC MAURITIUS UNITED ARAB EMIRATES OF THE CONGO MEXICO UNITED KINGDOM OF DENMARK MONACO DJIBOUTI MONGOLIA GREAT BRITAIN AND DOMINICA MONTENEGRO NORTHERN IRELAND DOMINICAN REPUBLIC MOROCCO UNITED REPUBLIC ECUADOR MOZAMBIQUE OF TANZANIA EGYPT MYANMAR UNITED STATES OF AMERICA EL SALVADOR NAMIBIA URUGUAY ERITREA NEPAL UZBEKISTAN ESTONIA NETHERLANDS VANUATU ESWATINI NEW ZEALAND VENEZUELA, BOLIVARIAN ETHIOPIA NICARAGUA REPUBLIC OF FIJI NIGER VIET NAM FINLAND NIGERIA YEMEN FRANCE NORTH MACEDONIA ZAMBIA GABON NORWAY ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA-TECDOC-1959 LIMITED SCOPE SUSTAINABILITY ASSESSMENT OF PLANNED NUCLEAR ENERGY SYSTEMS BASED ON BN-1200 FAST REACTORS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2021 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 26007 22529 tel.: +43 1 2600 22417 email: [email protected] www.iaea.org/publications For further information on this publication, please contact: INPRO Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Email: [email protected] © IAEA, 2021 Printed by the IAEA in Austria May 2021 IAEA Library Cataloguing in Publication Data Names: International Atomic Energy Agency. Title: Limited scope sustainability assessment of planned nuclear energy systems based on BN-1200 fast reactors / International Atomic Energy Agency. Description: Vienna : International Atomic Energy Agency, 2021. | Series: IAEA TECDOC series, ISSN 1011–4289 ; no. 1959 | Includes bibliographical references. Identifiers: IAEAL 21-01414 | ISBN 978-92-0-109121-5 (paperback : alk. paper) | ISBN 978-92-0-109021-8 (pdf) Subjects: LCSH: Nuclear energy. | Sustainability — Evaluation. | Nuclear reactors — Technological innovations. | Fast reactors. FOREWORD The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in 2000 in response to resolution GC(44)/RES/21 of the IAEA General Conference. One of the INPRO objectives is to help to ensure that nuclear energy is available in the 21st century in a sustainable manner. To meet this objective, INPRO developed a methodology for assessing the sustainability of a national or international nuclear energy system. This entailed establishing a set of INPRO basic principles pertaining to system sustainability, a set of INPRO user requirements in support of each INPRO basic principle and a set of criteria for meeting each INPRO user requirement. The basic principles, user requirements and associated criteria contained in the INPRO methodology are for use for INPRO assessments of system sustainability only. The INPRO methodology does not establish any safety requirements or criteria, or provide guidance on safety; IAEA safety requirements and guidance are issued only in the IAEA Safety Standards Series. The INPRO methodology was published in 2008 as nine manuals providing an overview and covering the areas of economics, infrastructure, waste management, proliferation resistance, physical protection, environment, safety of nuclear reactors and safety of nuclear fuel cycle facilities. Since its initial publication, the INPRO methodology has been updated to take into account the experience of Member States that have performed national and international nuclear energy system sustainability assessments using the INPRO methodology as well as recommendations developed by the INPRO steering committee and IAEA experts. All the proposals were evaluated by internal and external experts at several IAEA meetings, including five technical meetings in 2013, 2014, 2016 (2) and 2017. At the 20th INPRO Steering Committee meeting, in 2013, several Member States expressed interest in performing limited scope INPRO assessments of liquid metal cooled fast reactor designs. At the 21st INPRO Steering Committee meeting, in 2014, a new activity was endorsed and included in the INPRO action plan. Three consultancy meetings were organized in 2015 and 2017 to perform the assessment and review the results. The final draft report on the assessment of BN-1200 reactors, compiled by experts from the Russian Federation and submitted to the IAEA in 2019, served as the basis of the case study presented in the present publication. The case study applied the INPRO methodology areas of economics and reactor safety to an innovative fast reactor design at the full criteria level. The information in this publication is not to be used for formal or authoritative safety assessment or safety analysis to address compliance with the IAEA safety standards or for any national regulatory purpose associated with the licensing or certifications of nuclear power plants. The IAEA officer responsible for this publication was A. Korinny of the Division of Nuclear Power. EDITORIAL NOTE This publication has been prepared from the original material as submitted by the contributors and has not been edited by the editorial staff of the IAEA. The views expressed remain the responsibility of the contributors and do not necessarily represent the views of the IAEA or its Member States. Neither the IAEA nor its Member States assume any responsibility for consequences which may arise from the use of this publication. This publication does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this publication and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate. CONTENTS 1. INTRODUCTION............................................................................................................... 1 1.1. BACKGROUND ..................................................................................................... 1 1.2. OBJECTIVE ...........................................................................................................
Recommended publications
  • Russia's Nuclear Security Policy
    Innovative approaches to peace and security from the Stanley Foundation POLICYANALYSISBRIEF THE STANLEY FOUNDATION | MAY 2015 Russia’s Nuclear Security Policy: Priorities and Potential Areas for Cooperation The crisis over Ukraine has led to a drastic reduction in regular official Russian-US contacts in most areas, including those where it is in the two countries’ mutual national security interests to work together. Bilateral cooperation on nuclear nonproliferation and nuclear security has been among the affected areas. The United States has suspended contacts with Russia in the framework of the G-8 and in the Russian-US Bilateral Presidential Commission’s Nuclear Energy and Nuclear Security Working Group. Implementation of the September 2013 agreement on Cooperation in Nuclear- and Energy- Related Scientific Research and Development (R&D Agreement), which Anton Khlopkov prioritizes joint efforts on nuclear nonproliferation and nuclear security, has also been put on hold, and exchanges between nuclear scientists of the two Author countries have been frozen. In turn, Russia has decided not to take part in Anton Khlopkov1 is director of the preparations for the 2016 Nuclear Security Summit. Moscow also notified Moscow-based Center for Energy and Washington that most of the joint nuclear security projects in Russia would Security Studies and editor in chief of the not be extended beyond December 31, 2014. journal Nuclear Club. He is a member of the Advisory Board under the Security This trend is a serious cause for concern, given that Russia and the United Council of the Russian Federation and States, which are depositaries of the Treaty on the Non-Proliferation of chairman of the Moscow Nonproliferation Nuclear Weapons (NPT), bear special responsibility for maintaining the Conference.
    [Show full text]
  • From Gen I to Gen III
    From Gen I to Gen III Gabriel Farkas Slovak University of Technology in Bratislava Ilkovicova 3, 81219 Bratislava [email protected] 14. 9. 2010 1 Evolution of Nuclear Reactors Generation I - demonstration reactors Generation II - working in the present Generation III - under construction 14. 9. 2010 2 Generation IV - R&D 14. 9. 2010 3 Expected development in nuclear technologies Prolongation of lifetieme of existing nuclear reactors Construction of new reactors in frame of Gen. III and IV . Figure 1 Replacement staggered over a 30-year period (2020 - 2050) Rate of construction : 2,000 MW/year 70000 60000 Lifetime 50000 prolongation 40000 Generation IV 30000 Actual reactors 20000 Generation III+ 10000 0 197519801985199019952000200520102015202020252030203520402045205020552060 14. 9. 2010 Average plant life : 48 years 4 Nuclear in Europe (Nuclear ~ 32% of total EU electricity production) SE, 7.3% UK, 7.9% SP, 5.8% BE,4.8% CZ, 2.5% GE, 16.3% FI, 2.4% BU, 1.8% Other 12.4% SK, 1.7% HU, 1.4% LT, 1.1% FR, 45.5% SI, 0.6% NL, RO, 0.5% 0.4% Source PRIS 14. 9. 2010 5 Central & Eastern Europe - Nuclear Landscape Russia Lithuania Ukraine 6 VVER440 Poland 1 RBMK 1300 2 VVER440 8 VVER1000 Min. of Energy 13 VVER1000 NNEGC State owned 11 RBMK 1 BN600 4 Graph Mod BWR Czech Republic Rosenergoatom State 4 VVER440 owned 2 VVER1000 CEZ/ 67% State Romania owned 2 Candu PHW Nuclearelectrica State owned Slovak Republic 4/6 VVER440 Bulgaria ENEL 67% owned 2/4 VVER1000 NEC State owned Hungary Armenia 4 VVER 440 1 VVER440 MVM State owned Armatomenergo, State owned 14.
    [Show full text]
  • Vver and Rbmk Cross Section Libraries for Origen-Arp
    VVER AND RBMK CROSS SECTION LIBRARIES FOR ORIGEN-ARP Germina Ilas, Brian D. Murphy, and Ian C. Gauld, Oak Ridge National Laboratory, USA Introduction An accurate treatment of neutron transport and depletion in modern fuel assemblies characterized by heterogeneous, complex designs, such as the VVER or RBMK assembly configurations, requires the use of advanced computational tools capable of simulating multi-dimensional geometries. The depletion module TRITON [1], which is part of the SCALE code system [2] that was developed and is maintained at the Oak Ridge National Laboratory (ORNL), allows the depletion simulation of two- or three-dimensional assembly configurations and the generation of burnup-dependent cross section libraries. These libraries can be saved for subsequent use with the ORIGEN-ARP module in SCALE. This later module is a faster alternative to TRITON for fuel depletion, decay, and source term analyses at an accuracy level comparable to that of a direct TRITON simulation. This paper summarizes the methodology used to generate cross section libraries for VVER and RBMK assembly configurations that can be employed in ORIGEN-ARP depletion and decay simulations. It briefly describes the computational tools and provides details of the steps involved. Results of validation studies for some of the libraries, which were performed using isotopic assay measurement data for spent fuel, are provided and discussed. Cross section libraries for ORIGEN-ARP Methodology The TRITON capability to perform depletion simulations for two-dimensional (2-D) configurations was implemented by coupling of the 2-D transport code NEWT with the point depletion and decay code ORIGEN-S. NEWT solves the transport equation on a 2-D arbitrary geometry grid by using an SN approach, with a treatment of the spatial variable that is based on an extended step characteristic method [3].
    [Show full text]
  • Vver.1200 Vver.1000 Vver.Toi (V-320)
    Engineering & Construction Division State Atomic Energy Corporation ROSATOM New VVERs in Russia and Abroad Sergey Svetlov , Dr.Sc. (Tech.) Chief Expert for Design ASE Group (ROSATOM Corporation) 4th MDEP Conference on New Reactor Design Activities , 12.09– 13.09.17, London, UK DEVELOPMENT OF VVER DESIGN Kudankulam Bushehr-2 NPP NV-2 NPP NPP NPP in Jordan Rooppur NPP Akkuy VVER.1000 (AES-92) VVER.1200 VVER.1000 VVER.TOI (V-320) VVER.1000 (AES-91) VVER.1200 Kursk-2 NPP VVER.640 MIR-1200 Hanhikivi NPP, LNPP–2, Bel NPP Paks-II NPP Tianwan NPP Baltic NPP El-Dabaa NPP The content of this presentation is for discussion purposes only, shall not be considered as an offer and doesn’t lead to any obligations to ASE group and its affiliated companies. ASE disclaims all responsibility for any and all mistakes, quality and completeness of the information. 2 VVER.1200 Design VVER.1200 is an export name of the Russian design of the nuclear power plant known as AES-2006. It is an evolving NPP design developed on the basis of a Russian design VVER.1000. The VVER.1200 design belongs to Generation III+ . It meets all up-to-date Russian, European and international requirements for new NPP. The first units of this design are the unit #1 of Leningrad NPP-2 (LNPP-2) and the unit #1 of Novovoronezh NPP-2 in Russia. The unit #1 of Novovoronezh NPP-2 with the reactor VVER-1200 was put into operation in 2016. It is the first unit of Generation III+ under operation in the World.
    [Show full text]
  • Rosatom, Transnational Nuclear Nightmare
    RULES FOR BUSINESS RIGHTS FOR PEOPLE ASIA DEMANDS BINDING RULES ON BUSINESS October 2018 Syeda Rizwana Hasan from BELA/FoE Bangladesh at IGWG 2nd session 2016 @Victor Barro/FoEI BUILDING A STRONG ‘stop robbing peoples’ land: protest in Sri Lanka @Janaka Withanage/CEJ AND BINDING TREATY VOTING CHART Summary of Asian countries’ positions with respect to the UN Binding Treaty on Transnational Traditionally, international human rights law focuses on the role and responsibilities of states. Corporations and other business enterprises with respect to human rights Human rights abuses arising from the cross-border activities of corporations is the largest gap in international law. In our globalised world, companies operate between different national jurisdic- Voted for UN Presence at UNHRC Engagement with civil tions and often escape accountability. Country Binding treaty IGWG binding mandate society on UN Binding Treaty in 20145,6 treaty sessions until7 Transnational corporations (TNCs) and other companies are often implicated in human rights abuses across Asia. A destructive coal mine in Bangladesh threatens to destroy one of the world’s Not a member largest mangrove ecosystems. Hundreds of people risk being displaced from a mega-sugar plan- AUSTRALIA at the time 2016 2020 NO tation in Sri Lanka. Yet many of these crimes go on unpunished, due to corruption in local legal systems and the fact that many corporations are richer and more powerful than the states that Not a member 2015 / 2016 / seek to regulate them. BANGLAGESH at the time 2017 2017 NO In 2014, a people’s victory was celebrated at the United Nations Human Rights Council: Resolu- Proactive: meetings with tion 26/9 was adopted, establishing a new Intergovernmental Working Group (IGWG)1, which has 2015 / 2016 / foreign ministry, human rights INDONESIA YES 2017 2017 a mandate to elaborate an international legally binding instrument to regulate TNCs and other commission and ambassador.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • India: Protests Against Koodankulam Nuclear
    FEBRUARY 8, 2007 | No. 652 INDIA: PROTESTS AGAINST KOODANKULAM NUCLEAR PROJECT INDIA: PROTESTS AGAINST KOODANKULAM NUCLEAR Our most decent, most democratic and most lameduck Prime PROJECT 1 Minister Manmohan Singh signed a deal for four additional USA: NRC MUST REVIEW nuclear plants at Koodankulam with the Russian President Putin N-TERRORISM IN CALIFORNIA on January 27, 2007 even before the public hearing process was LICENSING 2 held for the same. The first hearing was held on October 6. Some SWEDEN: LEAKED REPORT 700 to 800 people unexpectedly turned up and the group REVEALS SAFETY BREACHES AT included many rural women who were not reluctant to speak FORSMARK 3 their minds. The meeting prematurely ended in chaos. The SWEDEN: NUCLEAR CHALLENGE second hearing was scheduled for January 31. TO ENVIRONMENTAL CODE (652.5782) SACCER - Alarmed by the Koodankulam authorities cunningly FAILS 4 plan of the Koodankulam authorities to ducked and conveniently claimed that NUCLEAR POWER POLICY IN take water from the Pechiparai irrigation they were setting up desalination plants EUROPE 5 dam in Kanyakumari district, several with Israeli technology and hence they farmers' organizations and fisherpeople's were not going to take Pechiparai dam ENERGY (R)EVOLUTION: A associations started organizing against water. When we pointed out their claim SUSTAINABLE WORLD ENERGY that dangerous move. This dam water in the official EIA report and in a recent OUTLOOK 6 plan was recorded in the official EIA journal article written by a senior nuclear IN BRIEF 8 (Environmental Impact Assessment) official, they claimed that they were all report that the Koodankulam authorities mistakes.
    [Show full text]
  • Last Version1.Cdr
    United Nations “To build such future and not to go astray , we must have a clear vision of what we actually want. When speaking about a long-term period , I , as the Head of State suggest the following as the mission of our country: !· to build an independent , prosperous and politically stable Kazakhstan with its inherent national unity , social justice and economic well-being of the entire population !· prosperity , security and raising the living standards of all the Kazakhstanis Such are key words to characterize Kazakhstan we all want to build. In process of our advancement into the 21st century they must remain our guides.” Nursultan Nazarbaev President of the Republic of Kazakhstan “Kazakhstan-2030,” 1997 “The United Nations Millennium Declaration embodies a large number of specific commitments aimed at improving the lot of humanity in the new century.” “(The implementation of the commitments) will require hard decisions and courageous reforms in all States and all areas of policy , ranging from cuts in energy consumption and carbon emissions ,… to more transparent and accountable governance and the reallocation of public resources towards projects that benefit the neediest groups in society , as opposed to the most influential.” Kofi Annan UN Secretary - General “Road Map Towards Implementation of the UN Millennium Declaration,” 2001 MILLENNIUM DEVELOPMENT GOALS IN KAZAKHSTAN “To build such future and not to go astray , we must have a clear vision of what we actually want. When speaking about a long-term period , I , as the Head of State suggest the following as the mission of our country: !· to build an independent , prosperous and politically stable Kazakhstan with its inherent national unity , social justice and economic well-being of the entire population !· prosperity , security and raising the living standards of all the Kazakhstanis Such are key words to characterize Kazakhstan we all want to build.
    [Show full text]
  • Kazakhstan 2004 Showed That Number of Prizes at International Contests
    The Expert club “Strategic vision” and Association “Education for all in Kazakhstan” were commissioned by the United Nations Development Program for production of the National Human Development Report for 2004 UNDP is the UN’s global development network, advocating for change and connecting countries to knowledge, experience and resources to help people build a better life. We are on the ground in 166 countries, working with them on their own solutions to global and national development challenges. As they develop local capacity, they draw on the people of UNDP and our wide range of partners. Report materials could be reproduced in other publications, without prior permission of UNDP, provided proper reference is made to this publication The views expressed in this report are those of the authors and do not necessarily represent the views of UNDP Education for all: the key goal for a new millennium TABLE OF CONTENTS ABBREVIATIONS ...............................................................................................................................................................5 EXECUTIVE SUMMARY .....................................................................................................................................................6 FOREWORD BY DANIAL AKHMETOV THE PRIME MINISTER OF THE REPUBLIC OF KAZAKHSTAN ........................9 FOREWORD BY YURIKO SHOJI UN RESIDENT COORDINATOR/ UNDP RESIDENT REPRESENTATIVE ...............10 MESSAGE FROM THE AUTHORS ...................................................................................................................................11
    [Show full text]
  • Russia's Akademik Lomonosov – the First Modern Floating Nuclear
    Russia’s Akademik Lomonosov – The First Modern Floating Nuclear Power Plant (FNPP) Peter Lobner, 15 May 2021 1. Introduction Designated Project 20870, construction of Akademik Lomonosov started on 15 April 2007, when the keel was laid at the Sevmash shipyard in Severodvinsk, which also is Russia’s premier submarine building shipyard. Originally, Akademik Lomonosov was expected to supply power to the Sevmash shipyard itself and the town of Severodvinsk, in Northwest Russia. Cutaway drawing showing the general arrangement of the Akademik Lomonosov. Source: Rosatom In August 2008, the hull of Akademik Lomonosov was transferred to the Baltic Shipyard in St. Petersburg, where a second “keel laying” was held in May 2009. Plans for deploying the FNPP were reconsidered, leading to the final selection of Pevek, a remote Arctic coastal city in Russia’s Far East. The FNPP was launched on 30 June 2010 and outfitting continued with the vessel secured dockside at the Baltic Shipyard. Two un-fueled OKBM Afrikantov KLT-40S modular pressurized water reactors (PWRs) were installed in October 2013. 1 After work on the vessel and reactor systems was completed in April 2018, Akademik Lomonosov was towed 4,000 km (2,485 miles) around Norway to Murmansk, where the reactors were fuelled and tested at Rosatomflot facilities, which also support their nuclear- powered icebreaker fleet. In June 2019, the Russian nuclear regulatory agency Rostekhnadzor issued a 10-year license to Rosenergoatom to operate Akademik Lomonosov until 2029. After successfully completing testing, Akademik Lomonosov departed Murmansk on 23 August 2019 and was towed 4,770 km (2,964 miles) along the Northern Sea Route, arriving at its final destination on 9 September 2019 at a new protected pier at Pevek, which is about 980 km (609 miles) west of the Bering Strait.
    [Show full text]
  • Future EQ Perspectives for Russian Global New-Build Projects
    Future EQ Perspectives for Russian Global New-Build Projects Natalia Amosova Principal Consultant Lean Six Sigma Black Belt [email protected] +41 79 458 77 13 Prepared for 2020 Curtiss-Wright EQ Technical Meeting November 2020 November, 2020 Curtiss-Wright EQ Technical Meeting 2020 - [email protected] 1 The Water-Water Energy Reactor “VVER” Development and generations + Total number of 106 VVER‘s build since 1960 + Three generations in operation: + VVER-440 + VVER-1000 + VVER-1200 (AES-2006) + Generation III+ under construction: + VVER-1300 (TOI) + New designs developed for future projects: + MIR-1200 + VVER-1500 + VVER-1700 + VVER-600 November, 2020 Curtiss-Wright EQ Technical Meeting 2020 - [email protected] 2 Rosatom Group + Russian government owned corporation, responsible for all nuclear applications + Consists of over 350 specialized companies throughout the whole fuel cycle, of which relevant for us: + Rosatom Overseas (RAOS) - vendor for VVER outside of Russia + AtomEnergoProm (AEP) - designer of the plant + AtomStroyExport (ASE) – main contractor for the international NPP construction + Titan-2 - main contractor for the international NPP construction + AtomEnergoMash (AEM) – Main equipment manufacturer + World leader in todays‘ newbuild portfolio + 28 VVERs under construction (international and domestic) + Total new-build portfolio >130 B. USD November, 2020 Curtiss-Wright EQ Technical Meeting 2020 - [email protected] 3 The Overseas New-Build Projects Overview Rosatom Overseas (RAOS) Plant name Country Unit number
    [Show full text]
  • Advanced Sodium Fast Reactor Power Unit Concept
    International Conference on Fast Reactors and Related Fuel Cycles: Challenges and Opportunities (FR 09 ) Advanced Sodium Fast Reactor Power Unit Concept a a a V.M. Poplavsky , A.M. Tsybulya , Yu.E. Bagdasarov , b b b b B.A. Vasilyev , Yu.L. Kamanin , S.L. Osipov , N.G.Kuzavkov , c c V.N. Yershov , M.R. Ashirmetov a FSUE “SSC RF-IPPE”, Obninsk, Russia b JSC “Afrikantov OKBM”, Nizhny Novgorod, Russia c JSC “SPb AEP”, St. Petersburg, Russia KYOTO, JAPAN 7-11 December 2009 Russian Experience in Development and Implementation of BN Sodium Fast Reactors for NPPs Reactor Development Construction Operation BN-350 1960 - 1965 1965 - 1973 1973 -1998 BN-600 1963 - 1972 1972 - 1980 1980 - in operation 1975 - 1983 BN-800 Under construction Planned for 2014 2002 - 2004 BN-1600 1980's - - BN-1800 2002 - 2005 - - BN-1200 From 2006 - Planned for 2020 Main Tasks and Goals of BN-1200 Development Provide competitiveness against advanced power units with other reactor plants and fossil power plants. Enhance safety to eliminate the need for population protection measures beyond the NPP site in case of any feasible accidents. Ensure the breeding ratio of 1.2 (Stage 1), 1.3-1.35 (Stage 2) for the mixed uranium-plutonium oxide fuel and 1.45, for the nitride fuel. Prepare putting into operation of the reactor series within 2-3 years after the pilot power unit start-up. Approaches to BN-1200 Development Use largely approved BN-600 technical solutions and solutions implemented in the BN-800 as a basis for reactor plant reliable operation.
    [Show full text]