Summary of Projective Varieties Definition of Projective Algebraic

Total Page:16

File Type:pdf, Size:1020Kb

Summary of Projective Varieties Definition of Projective Algebraic Definition of projective algebraic varieties Definition An ideal I / K [X0; X1;:::; Xn] is called homogeneous if and only if it can Summary of Projective Varieties be generated by homogeneous elements. This does not mean that all the elements of I are homogeneous. Dr Gabor´ Megyesi Definition School of Mathematics Let I / K [X0; X1;:::; Xn] be a homogeneous ideal. The projective The University of Manchester algebraic variety defined by I is the set n 22 March, 2019 V(I) = f(X0 : X1 : ::: : Xn) 2 P j F(X0; X1;:::; Xn) = 0; 8F 2 I; F homogeneousg: G. Megyesi Projective Varieties 1 / 12 G. Megyesi Projective Varieties 2 / 12 Another characterisation of homogeneous ideals Constructing projective varieties Definition Proposition 4.2 Let F 2 K [X0; X1;:::; Xn] be a polynomial. The degree i homogeneous (Cf. Proposition 1.3) part of F, denoted by F[i], is the sum of all the terms of degree i in F. If (i) Let V1 = V(I1),V2 = V(I2),...,Vk = V(Ik ) be projective algebraic n i < 0 or i > deg F, F[i] is defined to be 0. varieties in P . Then Lemma 4.1 V1 [ V2 [ ::: [ Vk = V(I1 \ I2 \ ::: \ Ik ) = V(I1I2 ::: Ik ) The ideal I / K [X0; X1;:::; Xn] is homogeneous if and only if for any is also a projective algebraic variety. 2 n F I, all the homogeneous parts of F are also elements of I. (ii) Let Vα = V(Iα), α 2 A, be projective algebraic varieties in P . Then \ X Vα = V Iα α2A α2A is also a projective algebraic variety. There is no direct analogue of Proposition 1.3 (iii) for projective + varieties because Pm × Pn is very different from Pm n. G. Megyesi Projective Varieties 3 / 12 G. Megyesi Projective Varieties 4 / 12 Nullstellensatz Irreducibility Definition Definition The homogeneous ideal of a set Z ⊆ Pn is the ideal A projective algebraic variety V is reducible if and only if it can be I(Z ) / K [X0; X1;:::; Xn] generated by the set written as V = V1 [ V2, where V1, V2 are also projective algebraic varieties, V1 6= V 6= V2. If V is not reducible, it is called irreducible. fF 2 K [X0; X1;:::; Xn] j F homogeneous, F(X0;:::; Xn) = 0 8(X0 : ::: : Xn) 2 Zg: Proposition 4.4 (Cf. Theorem 1.8) Theorem 4.3 Every projective algebraic variety V can be decomposed into a union (Projective Nullstellensatz, cf. Theorem 1.7) V = V1 [ V2 [ ::: [ Vk such that every Vi , 1 ≤ i ≤ k, is an irreducible Let K be an algebraically closed field and let J / K [X0; X1;:::; Xn]. projective algebraic variety and Vi 6⊆ Vj for i 6= j. The decomposition is p(i) V(J) = ; if and only if J = K [X0; X1;:::; Xn] or unique up to the ordering of the components. The Vi , 1 ≤ i ≤ k, are J = hX0; X1;:::;p Xni. p called the irreducible components of V . (ii) I(V(J)) = J unless J = hX0; X1;:::; Xni. G. Megyesi Projective Varieties 5 / 12 G. Megyesi Projective Varieties 6 / 12 Characterisation of irreducibility Tangent spaces, dimension, singularity Proposition 4.5 Given a point a P of a projective variety V , there exists an affine piece Vi containing P. The tangent space TP V can be defined as the A homogeneous ideal I / K [X0; X1;:::; Xn] is prime if and only if for any projective closure of TP Vi , and then it can be used to define dim V and homogeneous polynomials F, G 2 K [X0; X1;:::; Xn], FG 2 I implies Sing V . F 2 I or G 2 I. dim V and Sing V can be calculated by using the Jacobian similarly to the affine case without having to consider affine pieces. Proposition 4.6 (Cf. Proposition 1.9) A projective algebraic variety V is irreducible if and only if I(V ) is prime. G. Megyesi Projective Varieties 7 / 12 G. Megyesi Projective Varieties 8 / 12 Homogeneous co-ordinate rings and function fields Rational maps and morphism Definition Definition The homogeneous co-ordinate ring of a projective variety V ⊆ Pn is Let V ⊆ Pm(K ) and W ⊆ Pn(K ) be projective algebraic varieties and K [V ] = K [X0; X1;:::; Xn]=I(V ). If V is irreducible, the function field of let V be irreducible. A rational map Φ: V 99K W is a partial function V , K (V ), is the set of equivalence classes of fractions F=G, where F, defined by an equivalence class of (n + 1)-tuples of homogeneous G 2 K [V ], G 6= 0, F, G are homogeneous of the same degree, and two elements of K [V ] of the same degree, fractions F1=G1, F2=G2 are equivalent if and only if F1G2 = F2G1 in (Φ0 :Φ1 : ::: :Φn) ∼ (Ψ0 :Ψ1 : ::: :Ψn) if and only if Φi Ψj = Φj Ψi for K [V ]. every i, j, 0 ≤ i; j ≤ n. Φ: V 99K W is defined at P 2 V if and only if Φ can be represented by Unlike in the affine case, the elements of K [V ] are not functions on V , (Φ0 :Φ1 : ::: :Φn) such that Φi (P) 6= 0 for some i, 0 ≤ i ≤ n, in this they cannot be evaluated at points of V . case we require that Φ(P) = (Φ0(P):Φ1(P): ::: :Φn(P)) 2 W . The elements of K (V ) are partial functions on V , just like in the affine case. Definition A rational map Φ: V 99K W is a morphism, denoted by Φ: V ! W , if and only if it is defined at every point of V . G. Megyesi Projective Varieties 9 / 12 G. Megyesi Projective Varieties 10 / 12 Theorem 4.7 Corollary 4.8 m n (Cf. Theorem 2.4) Let V ⊆ P (K ) and W ⊆ P (K ) be irreducible (Cf. Corollary 2.5) Φ: V 99K W is a birational equvalence if and only if ∗ projective algebraic varieties. Let (Y0 : Y1 : Y2 : ::: : Yn) homogeneous Φ : K (W ) ! K (V ) is an isomorphism of fields. co-ordinates on Pn and assume that W does not lie in the hyperplane V and W are birationally equivalent if and only if K (V ) and K (W ) are Y0 = 0. There exists a bijection between dominant rational maps isomorphic as extensions of K . ∼ φ : V 99K W and field homomorphisms α : K (W ) ! K (V ) preserving A variety V is rational if and only if K (V ) = K (t1; t2;:::; tk ) for some k. K given by the following constructions: for a rational map Φ: V 99K W, define Φ∗ : K (W ) ! K (V ), Φ∗(f ) = f ◦ Φ, and for a homomorphism There is no analogue of Theorem 2.1 and Corollary 2.2 for projective α : K (W ) ! K (V ) preserving K , define the corresponding rational varieties, there is no correspondence between morphisms of projective map by (1 : α(Y1=Y0); α(Y2=Y0); : : : ; α(Yn=Y0)). varieties and ring homomorphisms between the homogeneous co-ordinate rings. G. Megyesi Projective Varieties 11 / 12 G. Megyesi Projective Varieties 12 / 12.
Recommended publications
  • Chapter 2 Affine Algebraic Geometry
    Chapter 2 Affine Algebraic Geometry 2.1 The Algebraic-Geometric Dictionary The correspondence between algebra and geometry is closest in affine algebraic geom- etry, where the basic objects are solutions to systems of polynomial equations. For many applications, it suffices to work over the real R, or the complex numbers C. Since important applications such as coding theory or symbolic computation require finite fields, Fq , or the rational numbers, Q, we shall develop algebraic geometry over an arbitrary field, F, and keep in mind the important cases of R and C. For algebraically closed fields, there is an exact and easily motivated correspondence be- tween algebraic and geometric concepts. When the field is not algebraically closed, this correspondence weakens considerably. When that occurs, we will use the case of algebraically closed fields as our guide and base our definitions on algebra. Similarly, the strongest and most elegant results in algebraic geometry hold only for algebraically closed fields. We will invoke the hypothesis that F is algebraically closed to obtain these results, and then discuss what holds for arbitrary fields, par- ticularly the real numbers. Since many important varieties have structures which are independent of the field of definition, we feel this approach is justified—and it keeps our presentation elementary and motivated. Lastly, for the most part it will suffice to let F be R or C; not only are these the most important cases, but they are also the sources of our geometric intuitions. n Let A denote affine n-space over F. This is the set of all n-tuples (t1,...,tn) of elements of F.
    [Show full text]
  • Math 632: Algebraic Geometry Ii Cohomology on Algebraic Varieties
    MATH 632: ALGEBRAIC GEOMETRY II COHOMOLOGY ON ALGEBRAIC VARIETIES LECTURES BY PROF. MIRCEA MUSTA¸TA;˘ NOTES BY ALEKSANDER HORAWA These are notes from Math 632: Algebraic geometry II taught by Professor Mircea Musta¸t˘a in Winter 2018, LATEX'ed by Aleksander Horawa (who is the only person responsible for any mistakes that may be found in them). This version is from May 24, 2018. Check for the latest version of these notes at http://www-personal.umich.edu/~ahorawa/index.html If you find any typos or mistakes, please let me know at [email protected]. The problem sets, homeworks, and official notes can be found on the course website: http://www-personal.umich.edu/~mmustata/632-2018.html This course is a continuation of Math 631: Algebraic Geometry I. We will assume the material of that course and use the results without specific references. For notes from the classes (similar to these), see: http://www-personal.umich.edu/~ahorawa/math_631.pdf and for the official lecture notes, see: http://www-personal.umich.edu/~mmustata/ag-1213-2017.pdf The focus of the previous part of the course was on algebraic varieties and it will continue this course. Algebraic varieties are closer to geometric intuition than schemes and understanding them well should make learning schemes later easy. The focus will be placed on sheaves, technical tools such as cohomology, and their applications. Date: May 24, 2018. 1 2 MIRCEA MUSTA¸TA˘ Contents 1. Sheaves3 1.1. Quasicoherent and coherent sheaves on algebraic varieties3 1.2. Locally free sheaves8 1.3.
    [Show full text]
  • The Concept of a Simple Point of an Abstract Algebraic Variety
    THE CONCEPT OF A SIMPLE POINT OF AN ABSTRACT ALGEBRAIC VARIETY BY OSCAR ZARISKI Contents Introduction. 2 Part I. The local theory 1. Notation and terminology. 5 2. The local vector space?á{W/V). 6 2.1. The mapping m—»m/tri2. 6 2.2. Reduction to dimension zero. 7 2.3. The linear transformation 'M(W/V)->'M(W/V'). 8 3. Simple points. 9 3.1. Definition of simple loci. 9 3.2. Geometric aspects of the definition. 10 3.3. Local ideal bases at a simple point. 12 3.4. Simple zeros of ideals. 14 4. Simple subvarieties. 15 4.1. Generalization of the preceding results. 15 4.2. Singular subvarieties and singular points. 16 4.3. Proof of Theorem 3. 17 4.4. Continuation of the proof. 17 4.5. The case of a reducible variety. 19 5. Simple loci and regular rings. 19 5.1. The identity of the two concepts. 19 5.2. Unique local factorization at simple loci. 22 5.3. The abstract analogue of Theorem 3 and an example of F. K. Schmidt.... 23 Part II. Jacobian criteria for simple loci 6. The vector spaceD(W0 of local differentials. 25 6.1. The local ^-differentials in S„. 25 6.2. The linear transformationM(W/S„)-+<D(W). 25 7. Jacobian criterion for simple points: the separable case. 26 7.1. Criterion for uniformizing parameters. 26 7.2. Criterion for simple points. 28 8. Continuation of the separable case: generalization to higher varieties in Sn. 28 8.1. Extension of the preceding results.
    [Show full text]
  • Linear Algebraic Groups
    Clay Mathematics Proceedings Volume 4, 2005 Linear Algebraic Groups Fiona Murnaghan Abstract. We give a summary, without proofs, of basic properties of linear algebraic groups, with particular emphasis on reductive algebraic groups. 1. Algebraic groups Let K be an algebraically closed field. An algebraic K-group G is an algebraic variety over K, and a group, such that the maps µ : G × G → G, µ(x, y) = xy, and ι : G → G, ι(x)= x−1, are morphisms of algebraic varieties. For convenience, in these notes, we will fix K and refer to an algebraic K-group as an algebraic group. If the variety G is affine, that is, G is an algebraic set (a Zariski-closed set) in Kn for some natural number n, we say that G is a linear algebraic group. If G and G′ are algebraic groups, a map ϕ : G → G′ is a homomorphism of algebraic groups if ϕ is a morphism of varieties and a group homomorphism. Similarly, ϕ is an isomorphism of algebraic groups if ϕ is an isomorphism of varieties and a group isomorphism. A closed subgroup of an algebraic group is an algebraic group. If H is a closed subgroup of a linear algebraic group G, then G/H can be made into a quasi- projective variety (a variety which is a locally closed subset of some projective space). If H is normal in G, then G/H (with the usual group structure) is a linear algebraic group. Let ϕ : G → G′ be a homomorphism of algebraic groups. Then the kernel of ϕ is a closed subgroup of G and the image of ϕ is a closed subgroup of G.
    [Show full text]
  • Lecture 7 Product of Varieties, Separateness
    18.725 Algebraic Geometry I Lecture 7 Lecture 7: Product of Varieties, Separatedness ∼ Here are some additions to last time. Recall that if R(X) = R(Y ), then there are open subsets U ⊆ X, V ⊆ Y which are isomorphic. To see this, replace X; Y with U; V such that we have morphisms f : U ! V 0 0 ∼ 0 0 and g : V ! U (where V ⊆ V ) which are induced by the isomorphism R(X) = R(Y ). Then fg : V ! V 0 −1 0 is the identity (induced by R(Y ) ! R(X) ! R(Y ) which is the identity). Then g : V ! f (V ), and set 0 −1 0 0 0 0 0 U = f (V ). Then gf : U ! U is the identity for similar reasons. Hence U ' V . In the proof of a lemma from last time (that the set of unramified points is open), we used that if SpecA ! Spec(C = B[t]=P ) ! SpecB (where everything has dimension n), then C ⊆ A; that is, C ! A is an injection. If not, then the kernel is nontrivial, and consequently Spec(image) has dimension less than n, and hence dim SpecA < n. Products Let C be any category and X; Y 2 Ob(C). Then X × Y is an object Z 2 Ob(C) together with maps πX : Z ! X, πY : Z ! Y such that for any other T 2 Ob(C), there is an isomorphism ∼ Hom(T;Z) −! Hom(T;X) × Hom(T;Y ) given by f 7! (πX ◦ f; πY ◦ f). Equivalently, X × Y is the object corresponding to the functor T 7! Hom(T;X) × Hom(T;Y ), if it exists.
    [Show full text]
  • Introduction to Projective Varieties by Enrique Arrondo(*)
    Introduction to projective varieties by Enrique Arrondo(*) Version of November 26, 2017 This is still probably far from being a final version, especially since I had no time yet to complete the second part (which is so far not well connected with the first one). Anyway, any kind of comments are very welcome, in particular those concerning the general structure, or suggestions for shorter and/or correct proofs. 0. Algebraic background 1. Projective sets and their ideals; Weak Nullstellensatz 2. Irreducible components 3. Hilbert polynomial. Nullstellensatz 4. Graded modules; resolutions and primary decomposition 5. Dimension, degree and arithmetic genus 6. Product of varieties 7. Regular maps 8. Properties of morphisms 9. Resolutions and dimension 10. Ruled varieties 11. Tangent spaces and cones; smoothness 12. Transversality 13. Parameter spaces 14. Affine varieties vs projective varieties; sheaves 15. The local ring at a point 16. Introduction to affine and projective schemes 17. Vector bundles 18. Coherent sheaves 19. Schemes (*) Departamento de Algebra,´ Facultad de Ciencias Matem´aticas, Universidad Com- plutense de Madrid, 28040 Madrid, Spain, Enrique [email protected] 1 The scope of these notes is to present a soft and practical introduction to algebraic geometry, i.e. with very few algebraic requirements but arriving soon to deep results and concrete examples that can be obtained \by hand". The notes are based on some basic PhD courses (Milan 1998 and Florence 2000) and a summer course (Perugia 1998) that I taught. I decided to produce these notes while preparing new similar courses (Milan and Perugia 2001). My approach consists of avoiding all the algebraic preliminaries that a standard al- gebraic geometry course uses for affine varieties and thus start directly with projective varieties (which are the varieties that have good properties).
    [Show full text]
  • The Grassmannian of Affine Subspaces 3
    THE GRASSMANNIAN OF AFFINE SUBSPACES LEK-HENG LIM, KEN SZE-WAI WONG, AND KE YE Abstract. The Grassmannian of affine subspaces is a natural generalization of both the Euclidean space, points being 0-dimensional affine subspaces, and the usual Grassmannian, linear subspaces being special cases of affine subspaces. We show that, like the Grassmannian, the affine Grass- mannian has rich geometrical and topological properties: It has the structure of a homogeneous space, a differential manifold, an algebraic variety, a vector bundle, a classifying space, among many more structures; furthermore; it affords an analogue of Schubert calculus and its (co)homology and homotopy groups may be readily determined. On the other hand, like the Euclidean space, the affine Grassmannian serves as a concrete computational platform on which various distances, met- rics, probability densities may be explicitly defined and computed via numerical linear algebra. Moreover, many standard problems in machine learning and statistics — linear regression, errors- in-variables regression, principal components analysis, support vector machines, or more generally any problem that seeks linear relations among variables that either best represent them or separate them into components — may be naturally formulated as problems on the affine Grassmannian. 1. Introduction The Grassmannian of affine subspaces, denoted Graff(k,n), is an analogue of the usual Grass- mannian Gr(k,n). Just as Gr(k,n) parameterizes k-dimensional linear subspaces in Rn, Graff(k,n) parameterizes k-dimensional affine subspaces in Rn, i.e., A + b where the k-dimensional linear sub- space A ⊆ Rn is translated by a displacement vector b ∈ Rn. To the best of our knowledge, the Grassmannian of affine subspaces was first described in an elegant little volume [20] based on Gian-Carlo Rota’s 1986 ‘Lezioni Lincee’ lectures at the Scuola Normale Superiore.
    [Show full text]
  • §8 Algebraic Manifolds 97
    §8 Algebraic manifolds Everywhere in §8 we assume on default that the ground field 한 is algebraically closed. 8.1 Definitions and examples. The definition of an algebraic manifold follows the same template as the definitions of manifold in topology and differential geometry. It can be outlined asfollows. A manifold is a topological space such that every point ∈ possesses an open neighborhood ∋ , called a local chart, which is equipped with the homeomorphism ∶ ⥲ identifying some standard local model with , and any two local charts ∶ ⥲ , ∶ ⥲ − are compatible, meaning that the homeomorphism between open subsets ( ∩ ) ⊂ and − − ( ∩ ) ⊂ provided by the composition ∘ is a regular isomorphism. In topology and differential geometry, the local model = ℝ does not depend on , and the regularity of the transition homeomorphism − − − ≝ ∘ | − ∶ ( ∩ ) ⥲ ( ∩ ), (8-1) (∩) means that it will be a diffeomorphism of open subsets in ℝ in the differential geometry, and means nothing besides to be a homeomorphism in the topology. In algebraic geometry, the local model is an arbitrary algebraic variety that may depend on ⊂ and an a affine algebraic variety. Thus, an algebraic manifold may look locally, say, as a union of a line and a plane in 픸 , crossing or parallel, and this picture may vary from chart to chart. The regularity of homeomorphism (8-1), − in algebraic geometry, means that the maps , = are described in affine coordinates − − by some rational functions, which are regular within both open sets ( ∩ ), ( ∩ ). This provides every algebraic manifold with a well defined sheaf 풪 of regular rational functions with values in the ground field 한, in the same manner as the smooth functions on a manifold are introduced in differential geometry.
    [Show full text]
  • The Resolution of Singular Algebraic Varieties
    Clay Mathematics Proceedings Volume 20 The Resolution of Singular Algebraic Varieties Clay Mathematics Institute Summer School 2012 The Resolution of Singular Algebraic Varieties Obergurgl Tyrolean Alps, Austria June 3–30, 2012 David Ellwood Herwig Hauser Shigefumi Mori Josef Schicho Editors American Mathematical Society Clay Mathematics Institute The Resolution of Singular Algebraic Varieties Clay Mathematics Proceedings Volume 20 The Resolution of Singular Algebraic Varieties Clay Mathematics Institute Summer School 2012 The Resolution of Singular Algebraic Varieties Obergurgl Tyrolean Alps, Austria, June 3–30, 2012 David Ellwood Herwig Hauser Shigefumi Mori Josef Schicho Editors American Mathematical Society Clay Mathematics Institute 2010 Mathematics Subject Classification. Primary 14-01, 14-06, 14Bxx, 14Exx, 13-01, 13-06, 13Hxx, 32Bxx, 32Sxx, 58Kxx. Cover photo of Obergurgl, Austria is by Alexander Zainzinger. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute Summer School (2012 : Obergurgl Center) The resolution of singular algebraic varieties: Clay Mathematics Institute Summer School, the resolution of singular algebraic varieties, June 3–30, 2012, Obergurgl Center, Tyrolean Alps, Austria / David Ellwood, Herwig Hauser, Shigefumi Mori, Josef Schicho, editors. pages cm. — (Clay mathematics proceedings ; volume 20) Includes bibliographical references and index. ISBN 978-0-8218-8982-4 (alk. paper) 1. Algebraic varieties—Congresses. 2. Commutative algebra—Congresses. I. Ellwood, David, 1966– II. Hauser, H. (Herwig), 1956– III. Mori, Shigefumi. IV. Schicho, Josef, 1964– V. Ti- tle. QA564.C583 2012 516.35—dc23 2014031965 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research.
    [Show full text]
  • Linear Algebraic Groups
    Linear algebraic groups N. Perrin November 9, 2015 2 Contents 1 First definitions and properties 7 1.1 Algebraic groups . .7 1.1.1 Definitions . .7 1.1.2 Chevalley's Theorem . .7 1.1.3 Hopf algebras . .8 1.1.4 Examples . .8 1.2 First properties . 10 1.2.1 Connected components . 10 1.2.2 Image of a group homomorphism . 10 1.2.3 Subgroup generated by subvarieties . 11 1.3 Action on a variety . 12 1.3.1 Definition . 12 1.3.2 First properties . 12 1.3.3 Affine algebraic groups are linear . 14 2 Tangent spaces and Lie algebras 15 2.1 Derivations and tangent spaces . 15 2.1.1 Derivations . 15 2.1.2 Tangent spaces . 16 2.1.3 Distributions . 18 2.2 Lie algebra of an algebraic group . 18 2.2.1 Lie algebra . 18 2.2.2 Invariant derivations . 19 2.2.3 The distribution algebra . 20 2.2.4 Envelopping algebra . 22 2.2.5 Examples . 22 2.3 Derived action on a representation . 23 2.3.1 Derived action . 23 2.3.2 Stabilisor of the ideal of a closed subgroup . 24 2.3.3 Adjoint actions . 25 3 Semisimple and unipotent elements 29 3.1 Jordan decomposition . 29 3.1.1 Jordan decomposition in GL(V ).......................... 29 3.1.2 Jordan decomposition in G ............................. 30 3.2 Semisimple, unipotent and nilpotent elements . 31 3.3 Commutative groups . 32 3.3.1 Diagonalisable groups . 32 3 4 CONTENTS 3.3.2 Structure of commutative groups . 33 4 Diagonalisable groups and Tori 35 4.1 Structure theorem for diagonalisable groups .
    [Show full text]
  • (Linear) Algebraic Groups 1 Basic Definitions and Main Examples
    Study Group: (Linear) Algebraic Groups 1 Basic Denitions and Main Examples (Matt) Denition 1.1. Let (where is some eld) then n is an ane algebraic I C K[x] K VI = fP 2 A : f(P ) = 08f 2 Ig set. If I is prime, then VI is an ane algebraic variety. Denition 1.2. A linear algebraic group, G, is a variety V=K with a group structure such that the group operations are morphisms and V is ane. K-rational point e 2 G and K-morphisms µ : G × G ! G (µ(x; y) = xy) and i : G ! G (i(x) = x−1) K[G] is the K algebra of regular functions in V . ∆ : K[G] ! K[G] ⊗K K[G] the comultiplication, ι : K[G] ! K[G] is the coinverse We get the following axioms: (∆ ⊗ 1) ◦ ∆ = (1 ⊗ ∆) ◦ ∆ Example. : where , 1. , ∼ . n2 ∼ . Ga µ(x; y) = x+y a; y 2 A K[x] ∆ : x 7! x⊗1+1⊗y 2 K[x]⊗K[y] = K[x; y] Ga = Mn(K) : ∗ 2 dened by . Then . So Gm K ! V = (x; y) 2 A jxy = 1 t 7! (t; 1=t) (x1; y1) · (x2; y2) = (x1x2; y1y2) ∆ : x 7! x ⊗ x; y 7! y ⊗ y. Note that =∼ GL (K) p p Gm p 1 p p p Let , , −1 x1−y1 2 . Let K = Q( 2)=Q (x1 + y1 2)(x2 + y2 2) = (x1x2 + 2y1y2) + (x1y2 + x2y1) 2 (x1 + y1 2) = 2 2 x1−2y1 2 2, then we can use . , . g = x1−2y1 V (g 6= 0) ∆ : x1 7! x1⊗x2+2y1⊗y2 y1 7! x1⊗y2+x2⊗y1 ι : x1 7! x1=g; y1 7! −y1=g n .
    [Show full text]
  • Notes on Basic Algebraic Geometry
    Notes on basic algebraic geometry June 16, 2008 These are my notes for an introductory course in algebraic geometry. I have trodden lightly through the theory and concentrated more on examples. Some examples are handled on the computer using Macaulay2, although I use this as only a tool and won’t really dwell on the computational issues. Of course, any serious student of the subject should go on to learn about schemes and cohomology, and (at least from my point of view) some of the analytic theory as well. Hartshorne [Ht] has become the canonical introduction to the first topic, and Griffiths-Harris [GH] the second. 1 Contents 1 Affine Geometry 3 1.1 Algebraic sets ............................. 3 1.2 Weak Nullstellensatz ......................... 5 1.3 Zariski topology ........................... 7 1.4 The Cayley-Hamilton theorem ................... 9 1.5 Affine Varieties ............................ 10 1.6 Hilbert’s Nullstellensatz ....................... 11 1.7 Nilpotent matrices .......................... 12 2 Projective Geometry 15 2.1 Projective space ........................... 15 2.2 Projective varieties .......................... 16 2.3 Projective closure ........................... 17 2.4 Miscellaneous examples ....................... 18 2.5 Grassmanians ............................. 19 2.6 Elimination theory .......................... 22 2.7 Simultaneous eigenvectors ...................... 23 3 The category of varieties 26 3.1 Rational functions .......................... 26 3.2 Quasi-projective varieties ...................... 27 3.3
    [Show full text]