Quantisation and Prediction

Total Page:16

File Type:pdf, Size:1020Kb

Quantisation and Prediction Quantisation and Prediction Another look at the aim and structure of quantum theory Jean-Michel Del hotel London School of Economics and Political Science Department of Philosophy, Logic and Scientific Method Thesis submitted for the Degree of Doctor of Philosophy University of London 2004 UMI Number: U615622 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U615622 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 OF poLrrtCAL ^ AMD \ 1 H f c S £ S F ZZ 7 Z < 7 7 Our present quantum mechanical formalism is a peculiar mixture describing in part laws of Nature, in part incomplete human information about Nature - all scrambled up together by Bohr into an omelette that nobody has seen how to unscramble. Yet we think the unscrambling is a prerequisite for any further advance in basic physical theory... E.T. Jaynes - Erwin with his psi can do Calculations quite a few. But one thing has not been seen Just what psi really mean. Felix Bloch There exists a body of exact mathematical laws, but these cannot be interpreted as expressing simple relationships between objects existing in space and time. Werner Heisenberg ...if quantum theory were not successful pragmatically, we would have no interest in its interpretation. It is precisely because of the enormous success of the QM mathematical formalism that it becomes crucially important to learn what that mathematics means. To find a rational physical interpretation of the QM formalism ought to be considered the top priority research problem of theoretical physics; until this is accomplished, all other theoretical results can only be provisional and temporary. E.T. Jaynes ABSTRACT It is argued (Part A) that quantum mechanics can be derived as a principle-based dynamical framework, the basic equation of which is an alternative form of the Hamilton-Jacobi equation. Schrodinger’s equation obtains as a result of linearising that equation, and so-called wave functions can be given no straightforward physical interpretation. It is suggested, partly in relation to a theorem by Gromov, that a finite action quantum would make it practically inevitable, for purposes of prediction, to resort to a probabilistic formulation. The structure of the space of square-integrable solutions of the Schrodinger equation happens to lend itself to the introduction of the appropriate kind of predictive scheme. Investigating the nature and scope of such a scheme is the subject of Part B. It is shown that basic features of the formalism of quantum theory, like composition rules for ‘amplitudes’ or the ‘Born’ probability rule, can be derived independently of any physical assumptions. A generalisation of the basic formalism using tensor product composition appears to be required if all correlations are to be extracted from locally accessed data. A detailed discussion of quantum teleportation leads to the conclusion that a ‘one-shot’ account leads to a distorted picture of what is actually achieved. An analogy with classical cryptography is made and the statistical significance of the ‘transfer’, which does not require introducing any novel form of ‘quantum information’, is emphasised. Results obtained over the last decade using the extended formalism of positive operator-valued measures are reviewed and discussed. These lend further support to the idea that the set of basic ‘quantum’ rules functions as a general kind of probabilistic scheme for prediction, the structural features of which are not constrained in any direct way by the underlying physics. On the other hand, the very existence of such a predictive framework hinges on selecting a particular class of solutions of the Schrodinger equation, which selection has been incorrectly interpreted as reflecting a physical necessity. Contents Introduction 1 Part A 1 The emergence of quantum mechanics - a historical outline 6 2 On 'states’ and physical quantities in quantum mechanics 34 2.1 Quantum mechanics without 'states’? 34 2.2 The representation of physical quantities 45 3 Quantum mechanics as a principle theory 52 3.1 The Special Theory of Relativity: a prime instance of a principle theory.. 3.2 Some steps toward a principle-based account of quantum mechanics 57 3.3 Quantum mechanics from a single principle 67 Part B 4 Quantum rules and objectification 80 4.1 Quantum theory, systems and preparations.......80 4.2 Basic rules of quantum theory 82 4.3 The SAQM is incompatible with a simple-minded ensemble view 87 4.4 Objectification and quantum theory 88 5 Deriving rules for amplitudes and 'quantum’ probabilities 92 5.1 The composition rules for amplitudes 92 5.2 From amplitudes to probabilities 97 5.3 Destouches’ derivation of the ‘quantum’ probability rule .......99 6 Quantum theory as a linear scheme for prediction 110 6.1 Basic features 110 6.2 Angular and statistical distance in quantum theory 117 6.3 Evolving, measuring and predicting 125 7 Hilbert space composition and quantum theory 130 7.1 n-ary preparations 130 7.2 Correlations and entanglement 134 7.3 Binary case objectification 140 8 Quantum teleportation - a case study 143 8.1 ‘Teleporting a quantum state’ 143 8.2 The fastest way from A to B? 150 8.3 From classical cryptography to quantum teleportation 159 8.4 Dense coding, entanglement swapping 165 9 Further developments 169 9.1 Gleason’s theorem and positive operator-valued measures 169 9.2 ‘Quantum’ Bayesian update, complex numbers and 0-composition. 9.3 A simple axiom set for quantum theory 175 9.4 Can information-theoretical concepts and methods illuminate the foundations of quantum theory?... 184 * 10 Finale 196 Bibliography 208 Introduction Three quarters of a century have now gone by since Bohr’s Como lecture (1927). All the same, there is as yet no consensus regarding how the most basic features of the quantum-mechanical formalism should properly be understood. Half seriously, one could say that quantum physics has been a tremendously successful answer to a question that we have yet to ask and formulate clearly. Up to the present day, the dominant trend has consisted in defending one’s favourite interpretation against other major competitors or in the face of a number of ‘no go’ theorems. The feeling is also widespread that the most counterintuitive aspects of quantum theory point to an inherent weirdness of the physical world, involving uncontrollable influences at a distance, a blurring of the distinction between being and non-being or some inscrutable variety of holism. Indeed, the popularity of baffling interpretations like Many Worlds and its variants testifies to the fact that (too) many physicists or philosophers readily surrender to the idea of a sweeping ‘non-classicality’ of quantum mechanics. By contrast, comparatively rare attempts to ground the theory on a small set of well motivated, and perhaps more mundane principles having clear physical significance, tend to be considered futile or regressive (‘hidden variables’). Whilst ‘no go’ proofs can be technically impressive, they all boil down to the acknowledgment of two well-known and related basic features of the quantum-mechanical formalism: a metric vector space structure and a non- commutative algebra of linear operators. These underlie both the ‘non- classicality’ and the efficiency of the algorithm whereby expectation values and probabilities are routinely calculated in the laboratory. The rise of Quantum Information Technology (QIT) has recently prompted a revival of interest in the logico-algebraic structure of quantum theory, which had once been the rather exclusive concern of a small band of quantum logicians and philosophers. New ‘hard’ results, admittedly of unequal conceptual importance, have been obtained over the last ten years. Technical breakthroughs like Shor’s algorithm for factoring large numbers into primes or technological prospects like that of manufacturing a quantum computing network in the not-too-distant future have bred optimism. Almost inevitably, this has led some to hope that a change of focus toward information- theoretical concepts and methods might hold a (the?) key to a final, if belated understanding of the aim and structure of quantum theory. In all fairness, nothing in what has been achieved in QIT so far, or what can be reasonably 1 foreseen, really leads one to suspect that any such revelation (revolution?) is under way. On the other hand, the rejuvenation of old concerns, the fresh outlook of new participants in the debate and - last but not least - the sharpening and more extensive use of some relatively new tools like positive operator-valued measures might all contribute in a beneficial way to our understanding of quantum theory. Thus, Chapter 9 of this thesis is devoted to some recent and outstanding contributions by theorists who all participate to some degree in the QIT enterprise. The upshot is a re-evaluation of the nature and purpose of the basic formalism of quantum theory: this is seen to function as a linear probabilistic scheme for prediction, the mathematical structure of which is essentially independent of any assumption regarding the nature or behaviour of physical objects. It is one of the aims of this dissertation to convince the reader that the whole of quantum physics can justifiably be established as following from the satisfaction of a fundamental structural principle, in a similar sense as the refoundation of mechanics prompted by the Special Theory of Relativity (STR) can be shown to follow from assuming the universal validity of a single1 relativity principle.
Recommended publications
  • (Terse) Introduction to Lebesgue Integration
    http://dx.doi.org/10.1090/stml/048 A (Terse) Introduction to Lebesgue Integration STUDENT MATHEMATICAL LIBRARY Volume 48 A (Terse) Introduction to Lebesgue Integration John Franks Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman Michael Starbird 2000 Mathematics Subject Classification. Primary 28A20, 28A25, 42B05. The images on the cover are representations of the ergodic transformations in Chapter 7. The figure with the implied cardioid traces iterates of the squaring map on the unit circle. The “spirograph” figures trace iterates of an irrational rotation. The arc of + signs consists of iterates of an irrational rotation. I am grateful to Edward Dunne for providing the figures. For additional information and updates on this book, visit www.ams.org/bookpages/stml-48 Library of Congress Cataloging-in-Publication Data Franks, John M., 1943– A (terse) introduction to Lebesgue integration / John Franks. p. cm. – (Student mathematical library ; v. 48) Includes bibliographical references and index. ISBN 978-0-8218-4862-3 (alk. paper) 1. Lebesgue integral. I. Title. II. Title: Introduction to Lebesgue integra- tion. QA312.F698 2009 515.43–dc22 2009005870 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Arxiv:1505.04809V5 [Math-Ph] 29 Sep 2016
    THE PERTURBATIVE APPROACH TO PATH INTEGRALS: A SUCCINCT MATHEMATICAL TREATMENT TIMOTHY NGUYEN Abstract. We study finite-dimensional integrals in a way that elucidates the mathemat- ical meaning behind the formal manipulations of path integrals occurring in quantum field theory. This involves a proper understanding of how Wick's theorem allows one to evaluate integrals perturbatively, i.e., as a series expansion in a formal parameter irrespective of convergence properties. We establish invariance properties of such a Wick expansion under coordinate changes and the action of a Lie group of symmetries, and we use this to study essential features of path integral manipulations, including coordinate changes, Ward iden- tities, Schwinger-Dyson equations, Faddeev-Popov gauge-fixing, and eliminating fields by their equation of motion. We also discuss the asymptotic nature of the Wick expansion and the implications this has for defining path integrals perturbatively and nonperturbatively. Contents Introduction 1 1. The Wick Expansion 4 1.1. The Morse-Bott case 8 2. The Wick Expansion and Gauge-Fixing 12 3. The Wick Expansion and Integral Asymptotics 19 4. Remarks on Quantum Field Theory 22 4.1. Change of variables in the path integral 23 4.2. Ward identities and Schwinger-Dyson equations 26 4.3. Gauge-fixing of Feynman amplitudes and path integrals 28 4.4. Eliminating fields by their equation of motion 30 4.5. Perturbative versus constructive QFT 32 5. Conclusion 33 References 33 arXiv:1505.04809v5 [math-ph] 29 Sep 2016 Introduction Quantum field theory often makes use of manipulations of path integrals that are without a proper mathematical definition and hence have only a formal meaning.
    [Show full text]
  • Theory of the Integral
    THEORY OF THE INTEGRAL Brian S. Thomson Simon Fraser University CLASSICALREALANALYSIS.COM This text is intended as a treatise for a rigorous course introducing the ele- ments of integration theory on the real line. All of the important features of the Riemann integral, the Lebesgue integral, and the Henstock-Kurzweil integral are covered. The text can be considered a sequel to the four chapters of the more elementary text THE CALCULUS INTEGRAL which can be downloaded from our web site. For advanced readers, however, the text is self-contained. For further information on this title and others in the series visit our website. www.classicalrealanalysis.com There are free PDF files of all of our texts available for download as well as instructions on how to order trade paperback copies. We also allow access to the content of our books on GOOGLE BOOKS and on the AMAZON Search Inside the Book feature. COVER IMAGE: This mosaic of M31 merges 330 individual images taken by the Ultravio- let/Optical Telescope aboard NASA’s Swift spacecraft. It is the highest-resolution image of the galaxy ever recorded in the ultraviolet. The image shows a region 200,000 light-years wide and 100,000 light-years high (100 arcminutes by 50 arcminutes). Credit: NASA/Swift/Stefan Immler (GSFC) and Erin Grand (UMCP) —http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html Citation: Theory of the Integral, Brian S. Thomson, ClassicalRealAnalysis.com (2013), [ISBN 1467924393 ] Date PDF file compiled: June 11, 2013 ISBN-13: 9781467924399 ISBN-10: 1467924393 CLASSICALREALANALYSIS.COM Preface The text is a self-contained account of integration theory on the real line.
    [Show full text]
  • Real Analysis
    Real Analysis William G. Faris May 1, 2006 ii Contents Preface xi I Sets and Functions 1 1 Logical language and mathematical proof 3 1.1 Terms, predicates and atomic formulas . 3 1.2 Formulas . 4 1.3 Restricted variables . 5 1.4 Free and bound variables . 5 1.5 Quantifier logic . 6 1.6 Natural deduction . 8 1.7 Rules for logical operations . 9 1.8 Additional rules for or and exists . 11 1.9 Strategies for natural deduction . 12 1.10 Lemmas and theorems . 14 1.11 Relaxed natural deduction . 15 1.12 Supplement: Templates . 16 1.13 Supplement: Existential hypotheses . 18 2 Sets 23 2.1 Zermelo axioms . 23 2.2 Comments on the axioms . 24 2.3 Ordered pairs and Cartesian product . 27 2.4 Relations and functions . 28 2.5 Number systems . 29 2.6 The extended real number system . 30 2.7 Supplement: Construction of number systems . 31 3 Relations, functions, dynamical Systems 35 3.1 Identity, composition, inverse, intersection . 35 3.2 Picturing relations . 36 3.3 Equivalence relations . 36 3.4 Generating relations . 36 iii iv CONTENTS 3.5 Ordered sets . 37 3.6 Functions . 37 3.7 Relations inverse to functions . 38 3.8 Dynamical systems . 38 3.9 Picturing dynamical systems . 38 3.10 Structure of dynamical systems . 39 3.11 Isomorphism of dynamical systems . 41 4 Functions, cardinal number 43 4.1 Functions . 43 4.2 Picturing functions . 44 4.3 Indexed sums and products . 44 4.4 Cartesian powers . 45 4.5 Cardinality . 45 II Order and Metric 49 5 Ordered sets and order completeness 51 5.1 Ordered sets .
    [Show full text]
  • On the Modular Operator of Mutli-Component Regions in Chiral
    On the modular operator of mutli-component regions in chiral CFT Stefan Hollands1∗ 1Institut für Theoretische Physik,Universität Leipzig, Brüderstrasse 16, D-04103 Leipzig, Germany December 24, 2019 Abstract We introduce a new approach to find the Tomita-Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo- Martin-Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann-Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered. 1 Introduction The reduced density matrix of a subsystem induces an intrinsic internal dynamics called the “modular flow”. The flow is non-trivial only for non-commuting observable algebras – i.e., in quantum theory – and depends on both the subsystem and the given state of the total system. It has been subject to much attention in theoretical physics in recent times because it is closely related to information theoretic concepts. As examples for some topics such as Bekenstein bounds, Quantum Focussing Conjecture, c-theorems, arXiv:1904.08201v2 [hep-th] 21 Dec 2019 holography we mention [1, 2, 3, 4, 5]. In mathematics, the modular flow has played an important role in the study of operator algebras through the work of Connes, Takesaki and others, see [6] for an encyclopedic account. It has been known almost from the beginning that the modular flow has a geometric nature in local quantum field theory when the subsystem is defined by a spacetime region of a simple shape such as an interval in chiral conformal field theory (CFT) [7, 8, 9]: it is the 1-parameter group of Möbius transformations leaving the interval fixed.
    [Show full text]
  • Real Analysis: Part I
    Real Analysis: Part I William G. Faris February 2, 2004 ii Contents 1 Mathematical proof 1 1.1 Logical language . 1 1.2 Free and bound variables . 3 1.3 Proofs from analysis . 4 1.4 Natural deduction . 6 1.5 Natural deduction strategies . 13 1.6 Equality . 16 1.7 Lemmas and theorems . 18 1.8 More proofs from analysis . 19 2 Sets 21 2.1 Zermelo axioms . 21 2.2 Comments on the axioms . 22 2.3 Ordered pairs and Cartesian product . 25 2.4 Relations and functions . 26 2.5 Number systems . 28 3 Relations, Functions, Dynamical Systems 31 3.1 Identity, composition, inverse, intersection . 31 3.2 Picturing relations . 32 3.3 Equivalence relations . 32 3.4 Generating relations . 32 3.5 Ordered sets . 33 3.6 Functions . 33 3.7 Relations inverse to functions . 34 3.8 Dynamical systems . 34 3.9 Picturing dynamical systems . 35 3.10 Structure of dynamical systems . 35 4 Functions, Cardinal Number 39 4.1 Functions . 39 4.2 Picturing functions . 40 4.3 Indexed sums and products . 40 4.4 Cartesian powers . 41 iii iv CONTENTS 4.5 Cardinality . 41 5 Ordered sets and completeness 45 5.1 Ordered sets . 45 5.2 Order completeness . 46 5.3 Sequences in a complete lattice . 47 5.4 Order completion . 48 5.5 The Knaster-Tarski fixed point theorem . 49 5.6 The extended real number system . 49 6 Metric spaces 51 6.1 Metric space notions . 51 6.2 Normed vector spaces . 51 6.3 Spaces of finite sequences . 52 6.4 Spaces of infinite sequences .
    [Show full text]
  • Revision Checklist Analysis II 1
    Revision Checklist Analysis II 1. What is the (ε, δ)-definition of a limit of a function? What are examples and counterexamples? 2. What is the epsilon-delta definition of a continuous function? 3. When does the quotient of two continuous functions produce a continuous func- tion? What about the sum? The product? 4. What is the relation between the continuity of a function in higher dimension and the continuity of its component functions? 5. Do you know the definition of a bounded function, examples and non-examples? 6. Do you know the statements of the continuity theorems (IVT, Brouwer’s Fixed Point Theorem, EVT)? Do you know how to apply them? Do you know the idea of the proof? 7. Do you know the statements of the theorems of Fermat and Rolle as well as the Mean Value Theorem? Do you know the idea of the proof? 8. Do you know the definition of a differentiable function, examples and non-examples? 9. When is the quotient of two differentiable functions a differentiable function? What about the sum? The product? 10. Do you know the definition of the derivative in higher dimension? 11. Do you know the relation between the derivative in higher dimension and partial derivatives? Do you understand its motivation? 12. Do you know that the existence of partial derivatives of a higher dimensional func- tion does NOT imply that the function is differentiable? Can you give examples? 13. Do you know the notion of a closed set, open set, compact set? Do you know the connection between continuity of functions and open sets? Do you know the relation between compactness and convergence of (sub)sequences? 14.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Erik Talvila Mathematics and Statistics [email protected] University of the Fraser Valley 604-504-7441 (office) Abbotsford, British Columbia V2S 7M8 Canada Place of birth: Toronto, Canada. My Erd¨osnumber is 3. Education • Ph.D. University of Waterloo, Applied Mathematics. January, 1997. Supervisor: D. Siegel. Thesis title: Growth estimates and Phragm´en-Lindel¨ofprinciples for half space problems. • M.Sc. University of Western Ontario, Applied Mathematics. September, 1991. Supervisor: D. Naylor. Thesis title: A finite Bessel transform. • B.Sc. University of Toronto, Mathematics and Physics. May, 1988. Employment history • 2014 to present, Associate Professor; 2005-2014, University College Professor; 2003- 2005, Probationary Faculty; Mathematics and Statistics, University of the Fraser Valley. • July 2000 to July 2003, Visiting Assistant Professor, Mathematical and Statistical Sciences, University of Alberta. • August 1998 to July 2000, NSERC Postdoctoral Fellow, Mathematics, University of Illinois at Urbana{Champaign. • September 1997 to July 1998, Lecturer, Applied Mathematics, University of Western Ontario. • January 1997 to September 1997, Assistant Professor, Applied Mathematics, Uni- versity of Waterloo. • January 1993 to December 1997, Part time lecturer: University of Waterloo, Wilfrid Laurier University, Wichita State University. Publications in refereed journals UFV student authors in bold face. 29. Erik Talvila, The continuous primitive integral in the plane, Real Analysis Exchange, 20(2020), 283{326. Curriculum Vitae - Erik Talvila 2 28. Erik Talvila, Fourier transform inversion using an elementary differential equation and a contour integral, American Mathematical Monthly, 126(2019), 717{727. 27. Cameron Grant and Erik Talvila, Elementary numerical methods for double inte- grals, Minnesota Journal of Undergraduate Mathematics, 4(2018-2019), 1{19.
    [Show full text]
  • On the Modular Operator of Mutli-Component Regions in Chiral CFT
    Commun. Math. Phys. 384, 785–828 (2021) Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04054-6 Mathematical Physics On the Modular Operator of Mutli-component Regions in Chiral CFT Stefan Hollands Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, 04103 Leipzig, Germany. E-mail: [email protected] Received: 5 January 2020 / Accepted: 26 February 2021 Published online: 29 April 2021 – © The Author(s) 2021 Abstract: We introduce a new approach to find the Tomita–Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo–Martin– Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann–Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered. 1. Introduction The reduced density matrix of a subsystem induces an intrinsic internal dynamics called the “modular flow”. The flow is non-trivial only for non-commuting observable algebras—i.e., in quantum theory—and depends on both the subsystem and the given state of the total system. It has been subject to much attention in theoretical physics in recent times because it is closely related to information theoretic concepts. As examples for some topics such as Bekenstein bounds, Quantum Focussing Conjecture, c-theorems, holography we mention [1–5]. In mathematics, the modular flow has played an important role in the study of operator algebras through the work of Connes, Takesaki and others, see [6] for an encyclopedic account.
    [Show full text]
  • Math 346 Lecture #12 8.1 Multivariable Integration 8.1.1
    Math 346 Lecture #12 8.1 Multivariable Integration We extend the construction of the regulated integral for functions of a single variable to functions of several variables by defining the integral for step functions and then applying the continuous linear extension theorem. 8.1.1 Multivariable Step Functions n Definition 8.1.1. For a = (a1; : : : ; an) and b = (b1; : : : ; bn) in R with ai ≤ bi for all i = 1; : : : ; n, the closed n-interval [a; b] is defined to be n [a1; b1] × · · · × [an; bn] ⊂ R : The closed n-interval [a; b] is a compact box or parallelepiped in Rn. Definition 8.1.2. A subdivision P of a closed n-interval [a; b] consists, for each i = 1; : : : ; n, of a subdivsion (0) (1) (ki−1) (ki) Pi = fti = ai < ti < ··· < ti < ti = big of the closed interval [ai; bi] for some ki 2 N. Definition 8.1.3. A subdivision of an n-interval [a; b] gives a decomposition of [a; b] into a disjoint union of an partially open subinterval and closed subinterval as follows. (j) Each ti with 0 < j < ki defines a hyperplane (j) n (j) Hi = fx 2 R : xi = ti g in Rn which divides [a; b] into two regions; a partially open subinterval (j) [a1; b1] × · · · × [ai−1; bi−1] × [ai; ti ) × [ai+1; bi+1] × · · · × [an; bn]; and a closed subinterval (j) [a1; b1] × · · · × [ai−1; bi−1] × [ti ; bi] × [ai+1; bi+1] × · · · × [an; bn]: (Sketch the picture in R2.) Repeating this process for each resulting subinterval (either partially open or closed) and for each hyperplane, we get a decomposition of [a; b] into a pairwise disjoint union of subintervals.
    [Show full text]
  • Math 346 Lecture #5 6.5 Mean Value Theorem and FTC
    Math 346 Lecture #5 6.5 Mean Value Theorem and FTC Throughout let (X; k · kX ) and (Y; k · kY ) be Banach spaces over the same field F, and U an open set in X. 6.5.1 The Mean Value Theorem Recall the Mean Value Theorem from Calculus I: if f :[a; b] ! R is continuous on [a; b] and differentiable on (a; b), then there exists c 2 (a; b) such that f(b) − f(a) = f 0(c)(b − a): We show how to extend this to the general Banach space setting. Theorem 6.5.1 (The Mean Value Theorem). Let f : U ! R be differentiable on U. If, for points a; b 2 U, the entire line segment `(a; b) = f(1 − t)a + tb : t 2 [0; 1]g lies in U, then there exists c 2 `(a; b) such that f(b) − f(a) = Df(c)(b − a): Proof. Let h : [0; 1] ! R be defined by h(t) = f((1 − t)a + tb). Since `(a; b) lies entirely in U, the function h is continuous on [0; 1] and differentiable on (0; 1). By the Calculus I Mean Value Theorem, there exists t0 2 (0; 1) such that h(1) − h(0) = 0 0 h (t0)(1 − 0) = h (t0). 0 By the Chain Rule we have h (t0) = Df(h(t0))(b − a). 0 Setting c = h(t0) gives f(b) − f(a) = h(1) − h(0) = h (t0) = Df(c)(b − a). Remark 6.5.2. A subset U of X is said to be convex if for any a; b 2 U the line segment `(a; b) lies entirely in U.
    [Show full text]
  • The Solution Cosmological Constant Problem
    Journal of Modern Physics, 2019, 10, *-* http://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 The Solution Cosmological Constant Problem Jaykov Foukzon1, Elena Men’kova2, Alexander Potapov3 1Department of Mathematics, Israel Institute of Technology, Haifa, Israel 2All-Russian Research Institute for Optical and Physical Measurement, Moscow, Russia 3Kotel’nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow, Russia Email: [email protected], [email protected], [email protected] How to cite this paper: Author 1, Author Abstract 2 and Author 3 (2019) Paper Title. Journal of Modern Physics, 10, *-*. The cosmological constant problem arises because the magnitude of vacuum https://doi.org/10.4236/***.2019.***** energy density predicted by the Quantum Field Theory is about 120 orders of magnitude larger then the value implied by cosmological observations of ac- Received: **** **, *** Accepted: **** **, *** celerating cosmic expansion. We pointed out that the fractal nature of the Published: **** **, *** quantum space-time with negative Hausdorff-Colombeau dimensions can resolve this tension. The canonical Quantum Field Theory is widely believed Copyright © 2019 by author(s) and to break down at some fundamental high-energy cutoff Λ∗ and therefore Scientific Research Publishing Inc. This work is licensed under the Creative the quantum fluctuations in the vacuum can be treated classically seriously Commons Attribution International only up to this high-energy cutoff. In this paper we argue that the Quantum License (CC BY 4.0). Field Theory in fractal space-time with negative Hausdorff-Colombeau di- http://creativecommons.org/licenses/by/4.0/ mensions gives high-energy cutoff on natural way.
    [Show full text]