Lecture Notes, Construct Examples and Counterexamples, Draw Pictures

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes, Construct Examples and Counterexamples, Draw Pictures Analysis II Limits, continuity, differentiability, integrability Christian P. Jäh February 12, 2019 Foreword These note have been written primarily for you, the student. I have tried to make it easy to read and easy to follow. I do not wish to imply, however, that you will be able to read this text as it were a novel. If you wish to derive any benefit from it, read each page slowly and carefully. Youmust have a pencil and plenty of paper beside you so that you yourself can reproduce each step and equation in an argument. When I say verify a statement, make a substitution, etc. pp., you yourself must actually perform these operations. If you carry out the ex- plicit and detailed instructions I have given you in remarks, the text, and proofs, I can almost guarantee that you will, with relative ease, reach the conclusions. One final suggestion. As you come across formulas, record them and their equations/page numbers on a separate sheet of paper for easy reference. You may also find it advan- tageous to do the same for Definitions and Theorems. These wise words are borrowed from Morris Tenenbaum and Harry Pollard from the be- ginning of their book Ordinary differential equations. I could not have said it better and it certainly applies to this course. i Figure 0.1: Don’t just read it; fight it. – Paul Halmos (The comic is abstrusegoose.com) Contents How to study for Analysis II i Polya’s algorithm for solving problems iv List of symbols v List of (named) theorems viii List of important definitions x Glossary xii 1 Sequences and series in Rd 1 1.1 Some notational remarks ....................... 1 2 1.2 Convergence of sequences (an) ⊆ R ................ 2 1.3 Length and distance in Rd ....................... 8 1.3.1 The notion of a norm ...................... 8 1.3.2 The notion of a metric ..................... 17 1.4 Conclusions .............................. 21 1.5 The Bolzano–Weierstrass theorem ................... 29 2 Open, closed, and compact 30 2.1 Open balls in Rd ............................ 30 2.2 Open sets ................................ 32 CONTENTS i 2.3 Closed sets ............................... 36 2.4 Compactness ............................. 51 2.4.1 Properties of compact sets ................... 56 3 Limits of functions 61 3.1 Some priming ............................. 63 3.1.1 An abstract point of view .................... 64 3.2 Limits of Rm-valued functions .................... 65 3.3 Examples ................................ 67 3.4 Characterization of limits via sequences . 72 3.5 Arithmetic rules for limits ....................... 76 3.6 One sided limits of functions on R ................... 77 4 Continuity 79 4.1 We start by thinking about non-continuous functions ......... 79 4.2 Definition of continuity ......................... 82 4.3 Examples ................................ 89 4.4 Discontinuity .............................. 95 4.4.1 Classification of discontinuities . 98 4.4.2 Further counterexamples in continuity . 98 4.5 Continuity and component-wise continuity . 100 4.6 Operations with continuous functions . 102 4.7 Continuous functions f :[a; b] ! R . 107 4.7.1 Two important properties of continuous functions . 108 4.7.2 The Intermediate Value Theorem (IVT) . 112 4.7.3 Applications of the IVT . 115 4.7.4 Weierstrass’ Extremal Value Theorem . 118 4.8 Continuity of linear maps . 123 5 Differentiability and derivative on R1 125 5.1 Historical comments on Differential Calculus . 125 5.2 Some thinking ............................. 127 CONTENTS ii 5.3 Definition ................................ 128 5.3.1 Examples of derivatives . 132 5.3.2 Differentiability ) Continuity . 137 5.3.3 Are derivatives continuous? . 138 5.4 Operations with differentiable functions . 142 5.5 Properties of differentiable functions . 149 5.6 Derivatives of higher order . 155 5.7 Function spaces ............................ 155 6 Function sequences 160 6.1 Notions of convergence . 160 6.2 Examples & counterexamples . 168 6.3 (Real) Power series . 169 7 Integration on R1 172 7.1 Step functions and their integrals . 172 7.1.1 Properties of the step function integral I(f) . 183 7.2 Regulated functions and their integrals . 186 7.2.1 Higher dimensions . 199 7.3 The Riemann-Integral . 200 7.3.1 Properties of the Riemann Integral . 208 7.4 The fundamental theorem of calculus and primitives . 209 7.5 Some Rules for Integration . 214 7.6 Uniform convergence and integration . 219 8 Improper Integrals on on R1 225 8.1 Appendix : The closure of sets . 231 9 Differentiability and derivative on Rd 232 9.1 Definition ................................ 232 9.1.1 Directional Derivative . 238 9.1.2 Partial Derivatives . 239 9.2 Meaning of Differentiability in Rd . 243 CONTENTS iii A Prerequisites 246 A.1 Some notation used in this notes . 246 A.1.1 Operations on sets . 249 A.1.2 Some properties of sets . 251 A.2 Some Linear Algebra (of real vector spaces) . 253 A.2.1 Basis and dimension . 258 A.2.2 Linear maps . 260 A.3 Sequences ............................... 261 A.4 Series ................................. 268 A.5 Elementary properties of functions of one variable . 271 A.5.1 Restrictions of functions .................... 272 A.5.2 Monotonic functions ...................... 273 A.5.3 Odd and even functions .................... 273 A.5.4 Convex and concave functions ................. 274 A.6 Elementary inequalities ........................ 276 A.7 Cauchy–Schwarz, Minkowski, and Hölder ................ 278 Bibliography 282 How to study for Analysis II • Read carefully and deliberately. As you know, the way one should read in math- ematics is quite different from how you may read a history book or a magazine or newspaper. In mathematics you must read slowly, absorbing each phrase. In the first semester, you should all have received a self-explanation training book- let which you should not forget. If you have lost your copy or have never received one, you can contact me and I will bring some to the lecture. • Think with pencil and scratch paper. Working on mathematics you should al- ways have a pencil and some sheets of paper ready and use them. Test out what is written in the lecture notes, construct examples and counterexamples, draw pictures. This will help to clinch the ideas and procedures in your mind before starting the exercises. After you have read and reread a problem carefully, if you still do not see what to do, do not just sit and look at it. Get your pencil going on scratch paper and try to dig it out. Try this ”algorithm”: 1. Write down what you want to show. 2. Write down what you know. 3. What can you immediately deduce from the known? Apply some known simple inequalities and identities and see what you can get from it. 4. Think of a strategy. And try to implement it. iv CONTENTS v 5. Have you used all information? Do you have numbers, vectors or functions. Have you used their specific properties? Another good reason for getting things down is that it is much more easy to help you. Maybe you just overlooked something and with a small hint from me or tu- tors, you have a light-bulb experience. You should not rob yourself of that by ask- ing to much of the solutions at once. • Be independent. To be clear, being independent does not mean that you should ask no questions at all but to have good judgement over what to ask and when. Sometimes little things will cause considerable confusion or you do not know where even to begin with your studies. Then you should ask for help. Do not be afraid that your question may sound dumb. The only dumb action is to fail to ask about a topic that you have really tried to grasp and still do not understand. Some people seek help too soon and some wait too long. You will have to use good common sense in this matter. • Persevere. Do not become frustrated if a topic or problem may completely baf- fle you at first. Stick with it! An extremely interesting characteristic of learning mathematics is that at one moment the learner may feel totally at a loss, and then suddenly have a burst of insight that enables her to understand the situation per- fectly. If you don’t seem to be making any progress after working on a problem for some time, put it aside and attack it again later. Many times you will then see the solution immediately even though you have not been consciously thinking about the problem in the meantime. There is a tremendous sense of satisfaction in having been persistent enough and creative enough to independently solve a problem that had given you a great deal of trouble. • Take time to reflect To learn mathematics well you must take time to do some reflective thinking about the material covered during the last few days orweeks. It takes time for some ideas in mathematics to soak in. You may have to live with them a while and do reflective thinking about them before they become a partof you. CONTENTS vi • Concentrate on fundamentals. Do not try to learn mathematics by memorizing illustrative examples.1 You will soon become overwhelmed by this approach, and the further you go the less successful you will be. All mathematics is based on a few fundamental principles and definitions. Some of these must be memorized. But if you concentrate on these fundamentals and try to see how each new topic is just a reapplication of them, very little additional memorization will be neces- sary.2 • Use Heuristics.3 If you work on a problem that you can not solve immediately try to consider a problem that is similar but somewhat easier. It is not always easy to find such problems but it will come to you with practice.
Recommended publications
  • (Terse) Introduction to Lebesgue Integration
    http://dx.doi.org/10.1090/stml/048 A (Terse) Introduction to Lebesgue Integration STUDENT MATHEMATICAL LIBRARY Volume 48 A (Terse) Introduction to Lebesgue Integration John Franks Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman Michael Starbird 2000 Mathematics Subject Classification. Primary 28A20, 28A25, 42B05. The images on the cover are representations of the ergodic transformations in Chapter 7. The figure with the implied cardioid traces iterates of the squaring map on the unit circle. The “spirograph” figures trace iterates of an irrational rotation. The arc of + signs consists of iterates of an irrational rotation. I am grateful to Edward Dunne for providing the figures. For additional information and updates on this book, visit www.ams.org/bookpages/stml-48 Library of Congress Cataloging-in-Publication Data Franks, John M., 1943– A (terse) introduction to Lebesgue integration / John Franks. p. cm. – (Student mathematical library ; v. 48) Includes bibliographical references and index. ISBN 978-0-8218-4862-3 (alk. paper) 1. Lebesgue integral. I. Title. II. Title: Introduction to Lebesgue integra- tion. QA312.F698 2009 515.43–dc22 2009005870 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Arxiv:1505.04809V5 [Math-Ph] 29 Sep 2016
    THE PERTURBATIVE APPROACH TO PATH INTEGRALS: A SUCCINCT MATHEMATICAL TREATMENT TIMOTHY NGUYEN Abstract. We study finite-dimensional integrals in a way that elucidates the mathemat- ical meaning behind the formal manipulations of path integrals occurring in quantum field theory. This involves a proper understanding of how Wick's theorem allows one to evaluate integrals perturbatively, i.e., as a series expansion in a formal parameter irrespective of convergence properties. We establish invariance properties of such a Wick expansion under coordinate changes and the action of a Lie group of symmetries, and we use this to study essential features of path integral manipulations, including coordinate changes, Ward iden- tities, Schwinger-Dyson equations, Faddeev-Popov gauge-fixing, and eliminating fields by their equation of motion. We also discuss the asymptotic nature of the Wick expansion and the implications this has for defining path integrals perturbatively and nonperturbatively. Contents Introduction 1 1. The Wick Expansion 4 1.1. The Morse-Bott case 8 2. The Wick Expansion and Gauge-Fixing 12 3. The Wick Expansion and Integral Asymptotics 19 4. Remarks on Quantum Field Theory 22 4.1. Change of variables in the path integral 23 4.2. Ward identities and Schwinger-Dyson equations 26 4.3. Gauge-fixing of Feynman amplitudes and path integrals 28 4.4. Eliminating fields by their equation of motion 30 4.5. Perturbative versus constructive QFT 32 5. Conclusion 33 References 33 arXiv:1505.04809v5 [math-ph] 29 Sep 2016 Introduction Quantum field theory often makes use of manipulations of path integrals that are without a proper mathematical definition and hence have only a formal meaning.
    [Show full text]
  • Theory of the Integral
    THEORY OF THE INTEGRAL Brian S. Thomson Simon Fraser University CLASSICALREALANALYSIS.COM This text is intended as a treatise for a rigorous course introducing the ele- ments of integration theory on the real line. All of the important features of the Riemann integral, the Lebesgue integral, and the Henstock-Kurzweil integral are covered. The text can be considered a sequel to the four chapters of the more elementary text THE CALCULUS INTEGRAL which can be downloaded from our web site. For advanced readers, however, the text is self-contained. For further information on this title and others in the series visit our website. www.classicalrealanalysis.com There are free PDF files of all of our texts available for download as well as instructions on how to order trade paperback copies. We also allow access to the content of our books on GOOGLE BOOKS and on the AMAZON Search Inside the Book feature. COVER IMAGE: This mosaic of M31 merges 330 individual images taken by the Ultravio- let/Optical Telescope aboard NASA’s Swift spacecraft. It is the highest-resolution image of the galaxy ever recorded in the ultraviolet. The image shows a region 200,000 light-years wide and 100,000 light-years high (100 arcminutes by 50 arcminutes). Credit: NASA/Swift/Stefan Immler (GSFC) and Erin Grand (UMCP) —http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html Citation: Theory of the Integral, Brian S. Thomson, ClassicalRealAnalysis.com (2013), [ISBN 1467924393 ] Date PDF file compiled: June 11, 2013 ISBN-13: 9781467924399 ISBN-10: 1467924393 CLASSICALREALANALYSIS.COM Preface The text is a self-contained account of integration theory on the real line.
    [Show full text]
  • Real Analysis
    Real Analysis William G. Faris May 1, 2006 ii Contents Preface xi I Sets and Functions 1 1 Logical language and mathematical proof 3 1.1 Terms, predicates and atomic formulas . 3 1.2 Formulas . 4 1.3 Restricted variables . 5 1.4 Free and bound variables . 5 1.5 Quantifier logic . 6 1.6 Natural deduction . 8 1.7 Rules for logical operations . 9 1.8 Additional rules for or and exists . 11 1.9 Strategies for natural deduction . 12 1.10 Lemmas and theorems . 14 1.11 Relaxed natural deduction . 15 1.12 Supplement: Templates . 16 1.13 Supplement: Existential hypotheses . 18 2 Sets 23 2.1 Zermelo axioms . 23 2.2 Comments on the axioms . 24 2.3 Ordered pairs and Cartesian product . 27 2.4 Relations and functions . 28 2.5 Number systems . 29 2.6 The extended real number system . 30 2.7 Supplement: Construction of number systems . 31 3 Relations, functions, dynamical Systems 35 3.1 Identity, composition, inverse, intersection . 35 3.2 Picturing relations . 36 3.3 Equivalence relations . 36 3.4 Generating relations . 36 iii iv CONTENTS 3.5 Ordered sets . 37 3.6 Functions . 37 3.7 Relations inverse to functions . 38 3.8 Dynamical systems . 38 3.9 Picturing dynamical systems . 38 3.10 Structure of dynamical systems . 39 3.11 Isomorphism of dynamical systems . 41 4 Functions, cardinal number 43 4.1 Functions . 43 4.2 Picturing functions . 44 4.3 Indexed sums and products . 44 4.4 Cartesian powers . 45 4.5 Cardinality . 45 II Order and Metric 49 5 Ordered sets and order completeness 51 5.1 Ordered sets .
    [Show full text]
  • On the Modular Operator of Mutli-Component Regions in Chiral
    On the modular operator of mutli-component regions in chiral CFT Stefan Hollands1∗ 1Institut für Theoretische Physik,Universität Leipzig, Brüderstrasse 16, D-04103 Leipzig, Germany December 24, 2019 Abstract We introduce a new approach to find the Tomita-Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo- Martin-Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann-Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered. 1 Introduction The reduced density matrix of a subsystem induces an intrinsic internal dynamics called the “modular flow”. The flow is non-trivial only for non-commuting observable algebras – i.e., in quantum theory – and depends on both the subsystem and the given state of the total system. It has been subject to much attention in theoretical physics in recent times because it is closely related to information theoretic concepts. As examples for some topics such as Bekenstein bounds, Quantum Focussing Conjecture, c-theorems, arXiv:1904.08201v2 [hep-th] 21 Dec 2019 holography we mention [1, 2, 3, 4, 5]. In mathematics, the modular flow has played an important role in the study of operator algebras through the work of Connes, Takesaki and others, see [6] for an encyclopedic account. It has been known almost from the beginning that the modular flow has a geometric nature in local quantum field theory when the subsystem is defined by a spacetime region of a simple shape such as an interval in chiral conformal field theory (CFT) [7, 8, 9]: it is the 1-parameter group of Möbius transformations leaving the interval fixed.
    [Show full text]
  • Real Analysis: Part I
    Real Analysis: Part I William G. Faris February 2, 2004 ii Contents 1 Mathematical proof 1 1.1 Logical language . 1 1.2 Free and bound variables . 3 1.3 Proofs from analysis . 4 1.4 Natural deduction . 6 1.5 Natural deduction strategies . 13 1.6 Equality . 16 1.7 Lemmas and theorems . 18 1.8 More proofs from analysis . 19 2 Sets 21 2.1 Zermelo axioms . 21 2.2 Comments on the axioms . 22 2.3 Ordered pairs and Cartesian product . 25 2.4 Relations and functions . 26 2.5 Number systems . 28 3 Relations, Functions, Dynamical Systems 31 3.1 Identity, composition, inverse, intersection . 31 3.2 Picturing relations . 32 3.3 Equivalence relations . 32 3.4 Generating relations . 32 3.5 Ordered sets . 33 3.6 Functions . 33 3.7 Relations inverse to functions . 34 3.8 Dynamical systems . 34 3.9 Picturing dynamical systems . 35 3.10 Structure of dynamical systems . 35 4 Functions, Cardinal Number 39 4.1 Functions . 39 4.2 Picturing functions . 40 4.3 Indexed sums and products . 40 4.4 Cartesian powers . 41 iii iv CONTENTS 4.5 Cardinality . 41 5 Ordered sets and completeness 45 5.1 Ordered sets . 45 5.2 Order completeness . 46 5.3 Sequences in a complete lattice . 47 5.4 Order completion . 48 5.5 The Knaster-Tarski fixed point theorem . 49 5.6 The extended real number system . 49 6 Metric spaces 51 6.1 Metric space notions . 51 6.2 Normed vector spaces . 51 6.3 Spaces of finite sequences . 52 6.4 Spaces of infinite sequences .
    [Show full text]
  • Revision Checklist Analysis II 1
    Revision Checklist Analysis II 1. What is the (ε, δ)-definition of a limit of a function? What are examples and counterexamples? 2. What is the epsilon-delta definition of a continuous function? 3. When does the quotient of two continuous functions produce a continuous func- tion? What about the sum? The product? 4. What is the relation between the continuity of a function in higher dimension and the continuity of its component functions? 5. Do you know the definition of a bounded function, examples and non-examples? 6. Do you know the statements of the continuity theorems (IVT, Brouwer’s Fixed Point Theorem, EVT)? Do you know how to apply them? Do you know the idea of the proof? 7. Do you know the statements of the theorems of Fermat and Rolle as well as the Mean Value Theorem? Do you know the idea of the proof? 8. Do you know the definition of a differentiable function, examples and non-examples? 9. When is the quotient of two differentiable functions a differentiable function? What about the sum? The product? 10. Do you know the definition of the derivative in higher dimension? 11. Do you know the relation between the derivative in higher dimension and partial derivatives? Do you understand its motivation? 12. Do you know that the existence of partial derivatives of a higher dimensional func- tion does NOT imply that the function is differentiable? Can you give examples? 13. Do you know the notion of a closed set, open set, compact set? Do you know the connection between continuity of functions and open sets? Do you know the relation between compactness and convergence of (sub)sequences? 14.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Erik Talvila Mathematics and Statistics [email protected] University of the Fraser Valley 604-504-7441 (office) Abbotsford, British Columbia V2S 7M8 Canada Place of birth: Toronto, Canada. My Erd¨osnumber is 3. Education • Ph.D. University of Waterloo, Applied Mathematics. January, 1997. Supervisor: D. Siegel. Thesis title: Growth estimates and Phragm´en-Lindel¨ofprinciples for half space problems. • M.Sc. University of Western Ontario, Applied Mathematics. September, 1991. Supervisor: D. Naylor. Thesis title: A finite Bessel transform. • B.Sc. University of Toronto, Mathematics and Physics. May, 1988. Employment history • 2014 to present, Associate Professor; 2005-2014, University College Professor; 2003- 2005, Probationary Faculty; Mathematics and Statistics, University of the Fraser Valley. • July 2000 to July 2003, Visiting Assistant Professor, Mathematical and Statistical Sciences, University of Alberta. • August 1998 to July 2000, NSERC Postdoctoral Fellow, Mathematics, University of Illinois at Urbana{Champaign. • September 1997 to July 1998, Lecturer, Applied Mathematics, University of Western Ontario. • January 1997 to September 1997, Assistant Professor, Applied Mathematics, Uni- versity of Waterloo. • January 1993 to December 1997, Part time lecturer: University of Waterloo, Wilfrid Laurier University, Wichita State University. Publications in refereed journals UFV student authors in bold face. 29. Erik Talvila, The continuous primitive integral in the plane, Real Analysis Exchange, 20(2020), 283{326. Curriculum Vitae - Erik Talvila 2 28. Erik Talvila, Fourier transform inversion using an elementary differential equation and a contour integral, American Mathematical Monthly, 126(2019), 717{727. 27. Cameron Grant and Erik Talvila, Elementary numerical methods for double inte- grals, Minnesota Journal of Undergraduate Mathematics, 4(2018-2019), 1{19.
    [Show full text]
  • On the Modular Operator of Mutli-Component Regions in Chiral CFT
    Commun. Math. Phys. 384, 785–828 (2021) Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04054-6 Mathematical Physics On the Modular Operator of Mutli-component Regions in Chiral CFT Stefan Hollands Institut für Theoretische Physik, Universität Leipzig, Brüderstrasse 16, 04103 Leipzig, Germany. E-mail: [email protected] Received: 5 January 2020 / Accepted: 26 February 2021 Published online: 29 April 2021 – © The Author(s) 2021 Abstract: We introduce a new approach to find the Tomita–Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo–Martin– Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann–Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered. 1. Introduction The reduced density matrix of a subsystem induces an intrinsic internal dynamics called the “modular flow”. The flow is non-trivial only for non-commuting observable algebras—i.e., in quantum theory—and depends on both the subsystem and the given state of the total system. It has been subject to much attention in theoretical physics in recent times because it is closely related to information theoretic concepts. As examples for some topics such as Bekenstein bounds, Quantum Focussing Conjecture, c-theorems, holography we mention [1–5]. In mathematics, the modular flow has played an important role in the study of operator algebras through the work of Connes, Takesaki and others, see [6] for an encyclopedic account.
    [Show full text]
  • Math 346 Lecture #12 8.1 Multivariable Integration 8.1.1
    Math 346 Lecture #12 8.1 Multivariable Integration We extend the construction of the regulated integral for functions of a single variable to functions of several variables by defining the integral for step functions and then applying the continuous linear extension theorem. 8.1.1 Multivariable Step Functions n Definition 8.1.1. For a = (a1; : : : ; an) and b = (b1; : : : ; bn) in R with ai ≤ bi for all i = 1; : : : ; n, the closed n-interval [a; b] is defined to be n [a1; b1] × · · · × [an; bn] ⊂ R : The closed n-interval [a; b] is a compact box or parallelepiped in Rn. Definition 8.1.2. A subdivision P of a closed n-interval [a; b] consists, for each i = 1; : : : ; n, of a subdivsion (0) (1) (ki−1) (ki) Pi = fti = ai < ti < ··· < ti < ti = big of the closed interval [ai; bi] for some ki 2 N. Definition 8.1.3. A subdivision of an n-interval [a; b] gives a decomposition of [a; b] into a disjoint union of an partially open subinterval and closed subinterval as follows. (j) Each ti with 0 < j < ki defines a hyperplane (j) n (j) Hi = fx 2 R : xi = ti g in Rn which divides [a; b] into two regions; a partially open subinterval (j) [a1; b1] × · · · × [ai−1; bi−1] × [ai; ti ) × [ai+1; bi+1] × · · · × [an; bn]; and a closed subinterval (j) [a1; b1] × · · · × [ai−1; bi−1] × [ti ; bi] × [ai+1; bi+1] × · · · × [an; bn]: (Sketch the picture in R2.) Repeating this process for each resulting subinterval (either partially open or closed) and for each hyperplane, we get a decomposition of [a; b] into a pairwise disjoint union of subintervals.
    [Show full text]
  • Math 346 Lecture #5 6.5 Mean Value Theorem and FTC
    Math 346 Lecture #5 6.5 Mean Value Theorem and FTC Throughout let (X; k · kX ) and (Y; k · kY ) be Banach spaces over the same field F, and U an open set in X. 6.5.1 The Mean Value Theorem Recall the Mean Value Theorem from Calculus I: if f :[a; b] ! R is continuous on [a; b] and differentiable on (a; b), then there exists c 2 (a; b) such that f(b) − f(a) = f 0(c)(b − a): We show how to extend this to the general Banach space setting. Theorem 6.5.1 (The Mean Value Theorem). Let f : U ! R be differentiable on U. If, for points a; b 2 U, the entire line segment `(a; b) = f(1 − t)a + tb : t 2 [0; 1]g lies in U, then there exists c 2 `(a; b) such that f(b) − f(a) = Df(c)(b − a): Proof. Let h : [0; 1] ! R be defined by h(t) = f((1 − t)a + tb). Since `(a; b) lies entirely in U, the function h is continuous on [0; 1] and differentiable on (0; 1). By the Calculus I Mean Value Theorem, there exists t0 2 (0; 1) such that h(1) − h(0) = 0 0 h (t0)(1 − 0) = h (t0). 0 By the Chain Rule we have h (t0) = Df(h(t0))(b − a). 0 Setting c = h(t0) gives f(b) − f(a) = h(1) − h(0) = h (t0) = Df(c)(b − a). Remark 6.5.2. A subset U of X is said to be convex if for any a; b 2 U the line segment `(a; b) lies entirely in U.
    [Show full text]
  • The Solution Cosmological Constant Problem
    Journal of Modern Physics, 2019, 10, *-* http://www.scirp.org/journal/jmp ISSN Online: 2153-120X ISSN Print: 2153-1196 The Solution Cosmological Constant Problem Jaykov Foukzon1, Elena Men’kova2, Alexander Potapov3 1Department of Mathematics, Israel Institute of Technology, Haifa, Israel 2All-Russian Research Institute for Optical and Physical Measurement, Moscow, Russia 3Kotel’nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow, Russia Email: [email protected], [email protected], [email protected] How to cite this paper: Author 1, Author Abstract 2 and Author 3 (2019) Paper Title. Journal of Modern Physics, 10, *-*. The cosmological constant problem arises because the magnitude of vacuum https://doi.org/10.4236/***.2019.***** energy density predicted by the Quantum Field Theory is about 120 orders of magnitude larger then the value implied by cosmological observations of ac- Received: **** **, *** Accepted: **** **, *** celerating cosmic expansion. We pointed out that the fractal nature of the Published: **** **, *** quantum space-time with negative Hausdorff-Colombeau dimensions can resolve this tension. The canonical Quantum Field Theory is widely believed Copyright © 2019 by author(s) and to break down at some fundamental high-energy cutoff Λ∗ and therefore Scientific Research Publishing Inc. This work is licensed under the Creative the quantum fluctuations in the vacuum can be treated classically seriously Commons Attribution International only up to this high-energy cutoff. In this paper we argue that the Quantum License (CC BY 4.0). Field Theory in fractal space-time with negative Hausdorff-Colombeau di- http://creativecommons.org/licenses/by/4.0/ mensions gives high-energy cutoff on natural way.
    [Show full text]