Real Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Real Analysis Real Analysis William G. Faris May 1, 2006 ii Contents Preface xi I Sets and Functions 1 1 Logical language and mathematical proof 3 1.1 Terms, predicates and atomic formulas . 3 1.2 Formulas . 4 1.3 Restricted variables . 5 1.4 Free and bound variables . 5 1.5 Quantifier logic . 6 1.6 Natural deduction . 8 1.7 Rules for logical operations . 9 1.8 Additional rules for or and exists . 11 1.9 Strategies for natural deduction . 12 1.10 Lemmas and theorems . 14 1.11 Relaxed natural deduction . 15 1.12 Supplement: Templates . 16 1.13 Supplement: Existential hypotheses . 18 2 Sets 23 2.1 Zermelo axioms . 23 2.2 Comments on the axioms . 24 2.3 Ordered pairs and Cartesian product . 27 2.4 Relations and functions . 28 2.5 Number systems . 29 2.6 The extended real number system . 30 2.7 Supplement: Construction of number systems . 31 3 Relations, functions, dynamical Systems 35 3.1 Identity, composition, inverse, intersection . 35 3.2 Picturing relations . 36 3.3 Equivalence relations . 36 3.4 Generating relations . 36 iii iv CONTENTS 3.5 Ordered sets . 37 3.6 Functions . 37 3.7 Relations inverse to functions . 38 3.8 Dynamical systems . 38 3.9 Picturing dynamical systems . 38 3.10 Structure of dynamical systems . 39 3.11 Isomorphism of dynamical systems . 41 4 Functions, cardinal number 43 4.1 Functions . 43 4.2 Picturing functions . 44 4.3 Indexed sums and products . 44 4.4 Cartesian powers . 45 4.5 Cardinality . 45 II Order and Metric 49 5 Ordered sets and order completeness 51 5.1 Ordered sets . 51 5.2 Positivity . 52 5.3 Greatest and least; maximal and minimal . 53 5.4 Supremum and infimum; order completeness . 54 5.5 Sequences in a complete lattice . 54 5.6 Order completion . 55 5.7 The Knaster-Tarski fixed point theorem . 56 5.8 The extended real number system . 57 5.9 The Riemann integral . 57 5.10 Supplement: The Bourbaki fixed point theorem . 59 5.11 Supplement: Zorn's lemma . 61 5.12 Supplement: Ordinal numbers . 61 6 Metric spaces 65 6.1 Metric space notions . 65 6.2 Normed vector spaces . 66 6.3 Spaces of finite sequences . 66 6.4 Spaces of infinite sequences . 66 6.5 Spaces of bounded continuous functions . 68 6.6 Open and closed sets . 68 6.7 Topological spaces . 69 6.8 Continuity . 72 6.9 Uniformly equivalent metrics . 73 6.10 Sequences . 74 6.11 Supplement: Lawvere metrics and semi-continuity . 75 CONTENTS v 7 Metric spaces and metric completeness 79 7.1 Completeness . 79 7.2 Uniform equivalence of metric spaces . 81 7.3 Completion . 81 7.4 The Banach fixed point theorem . 82 7.5 Coerciveness . 83 7.6 The regulated integral . 84 8 Completely metrizable topological spaces 87 8.1 Completely metrizable spaces . 87 8.2 Closure and interior . 89 8.3 The Baire category theorem . 89 8.4 Continuous convergence . 91 8.5 Borel functions . 92 8.6 Problems . 93 9 Metric spaces and compactness 95 9.1 Total boundedness . 95 9.2 Compactness . 96 9.3 Countable product spaces . 97 9.4 The Bolzano-Weierstrass property . 97 9.5 Compactness and continuous functions . 98 9.6 The Heine-Borel property . 99 9.7 Semicontinuity . 100 9.8 Compact sets of continuous functions . 100 9.9 Embedding a Cantor space . 102 9.10 Embedding in the Hilbert cube . 102 9.11 Locally compact metrizable spaces . 103 9.12 Summary . 104 III Measure and integral 107 10 Measurable spaces 109 10.1 σ-algebras of subsets . 109 10.2 Measurable maps . 109 10.3 The Borel σ-algebra . 110 10.4 Measurable functions . 111 10.5 σ-algebras of measurable functions . 112 10.6 Borel functions . 114 10.7 Supplement: Generating sigma-algebras . 114 11 Integrals 117 11.1 Measures and integrals . 117 11.2 Image measures and image integrals . 121 vi CONTENTS 12 Elementary integrals 123 12.1 Stone vector lattices of functions . 123 12.2 Elementary integrals . 125 12.3 Dini's theorem . 126 12.4 Dini's theorem for step functions . 127 12.5 Supplement: Monotone convergence without topology . 127 13 Existence of integrals 133 13.1 The abstract Lebesgue integral: Daniell construction . 133 13.2 Stage one . 135 13.3 Stage two . 136 13.4 Extension to measurable functions . 137 13.5 Example: the Lebesgue integral . 139 13.6 Example: The expectation for coin tossing . 139 14 Uniqueness of integrals 145 14.1 The uniqueness theorem . 145 14.2 σ-finite integrals . 146 14.3 Summation . 146 14.4 Regularity . 147 14.5 Density . 148 14.6 Monotone classes . 148 14.7 Generating monotone classes . 149 14.8 Proof of the uniqueness theorem . 150 14.9 Proof of the σ-finiteness theorem . 151 14.10Supplement: Completion of an integral . 151 15 Mapping integrals 155 15.1 Comparison of integrals . 155 15.2 Probability and expectation . 155 15.3 Image integrals . 157 15.4 The Lebesgue integral . 159 15.5 The Lebesgue-Stieltjes integral . 160 15.6 The Cantor measure and the Cantor function . 162 15.7 Supplement: Direct construction of the Lebesgue-Stieltjes measure163 16 Convergence theorems 167 16.1 Convergence theorems . 167 16.2 Measure . 169 16.3 Extended real valued measurable functions . 171 16.4 Fubini's theorem for sums and integrals . 171 16.5 Fubini's theorem for sums . 172 CONTENTS vii 17 Fubini's theorem 175 17.1 Introduction . 175 17.2 Product sigma-algebras . 177 17.3 The product integral . ..
Recommended publications
  • (Terse) Introduction to Lebesgue Integration
    http://dx.doi.org/10.1090/stml/048 A (Terse) Introduction to Lebesgue Integration STUDENT MATHEMATICAL LIBRARY Volume 48 A (Terse) Introduction to Lebesgue Integration John Franks Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman Michael Starbird 2000 Mathematics Subject Classification. Primary 28A20, 28A25, 42B05. The images on the cover are representations of the ergodic transformations in Chapter 7. The figure with the implied cardioid traces iterates of the squaring map on the unit circle. The “spirograph” figures trace iterates of an irrational rotation. The arc of + signs consists of iterates of an irrational rotation. I am grateful to Edward Dunne for providing the figures. For additional information and updates on this book, visit www.ams.org/bookpages/stml-48 Library of Congress Cataloging-in-Publication Data Franks, John M., 1943– A (terse) introduction to Lebesgue integration / John Franks. p. cm. – (Student mathematical library ; v. 48) Includes bibliographical references and index. ISBN 978-0-8218-4862-3 (alk. paper) 1. Lebesgue integral. I. Title. II. Title: Introduction to Lebesgue integra- tion. QA312.F698 2009 515.43–dc22 2009005870 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Arxiv:1505.04809V5 [Math-Ph] 29 Sep 2016
    THE PERTURBATIVE APPROACH TO PATH INTEGRALS: A SUCCINCT MATHEMATICAL TREATMENT TIMOTHY NGUYEN Abstract. We study finite-dimensional integrals in a way that elucidates the mathemat- ical meaning behind the formal manipulations of path integrals occurring in quantum field theory. This involves a proper understanding of how Wick's theorem allows one to evaluate integrals perturbatively, i.e., as a series expansion in a formal parameter irrespective of convergence properties. We establish invariance properties of such a Wick expansion under coordinate changes and the action of a Lie group of symmetries, and we use this to study essential features of path integral manipulations, including coordinate changes, Ward iden- tities, Schwinger-Dyson equations, Faddeev-Popov gauge-fixing, and eliminating fields by their equation of motion. We also discuss the asymptotic nature of the Wick expansion and the implications this has for defining path integrals perturbatively and nonperturbatively. Contents Introduction 1 1. The Wick Expansion 4 1.1. The Morse-Bott case 8 2. The Wick Expansion and Gauge-Fixing 12 3. The Wick Expansion and Integral Asymptotics 19 4. Remarks on Quantum Field Theory 22 4.1. Change of variables in the path integral 23 4.2. Ward identities and Schwinger-Dyson equations 26 4.3. Gauge-fixing of Feynman amplitudes and path integrals 28 4.4. Eliminating fields by their equation of motion 30 4.5. Perturbative versus constructive QFT 32 5. Conclusion 33 References 33 arXiv:1505.04809v5 [math-ph] 29 Sep 2016 Introduction Quantum field theory often makes use of manipulations of path integrals that are without a proper mathematical definition and hence have only a formal meaning.
    [Show full text]
  • Theory of the Integral
    THEORY OF THE INTEGRAL Brian S. Thomson Simon Fraser University CLASSICALREALANALYSIS.COM This text is intended as a treatise for a rigorous course introducing the ele- ments of integration theory on the real line. All of the important features of the Riemann integral, the Lebesgue integral, and the Henstock-Kurzweil integral are covered. The text can be considered a sequel to the four chapters of the more elementary text THE CALCULUS INTEGRAL which can be downloaded from our web site. For advanced readers, however, the text is self-contained. For further information on this title and others in the series visit our website. www.classicalrealanalysis.com There are free PDF files of all of our texts available for download as well as instructions on how to order trade paperback copies. We also allow access to the content of our books on GOOGLE BOOKS and on the AMAZON Search Inside the Book feature. COVER IMAGE: This mosaic of M31 merges 330 individual images taken by the Ultravio- let/Optical Telescope aboard NASA’s Swift spacecraft. It is the highest-resolution image of the galaxy ever recorded in the ultraviolet. The image shows a region 200,000 light-years wide and 100,000 light-years high (100 arcminutes by 50 arcminutes). Credit: NASA/Swift/Stefan Immler (GSFC) and Erin Grand (UMCP) —http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html Citation: Theory of the Integral, Brian S. Thomson, ClassicalRealAnalysis.com (2013), [ISBN 1467924393 ] Date PDF file compiled: June 11, 2013 ISBN-13: 9781467924399 ISBN-10: 1467924393 CLASSICALREALANALYSIS.COM Preface The text is a self-contained account of integration theory on the real line.
    [Show full text]
  • Metric Spaces 2000, Lecture 17
    Metric Spaces Lecture 17 Homeomorphisms At the end of last lecture an example was given of a bijective continuous function f such that f −1 is not continuous. For another example, consider the sets T = [0, 2π) ⊆ R and S = { (x, y) ∈ R2 | x2 + y2 = 1 }, and let f: T → S be given by f(θ) = (cos θ, sin θ). It is trivial that f is bijective. Viewed geometrically, f wraps the interval T around the circle S, joining the ends together. We consider T as a subspace of R and S as a subspace of R2, using the usual (Euclidean) metrics on R and R2, so that the concept of continuity for functions between S and T is the familiar concept studied in calculus courses. The function f is thus clearly continuous, since its component functions, cos and sin, are differentiable and therefore continuous. Joining the ends of the interval together is thus perfectly compatible with continuity. However, the inverse function g: S → T cuts the circle open at the point (1, 0) and unwraps it. This is not a continuous operation: some points that are close together in S are mapped by g to points that are far apart in T . B A A0 B0 A00 π π 022 g S T In the diagram, A is the point (1, 0) in S, and g maps it to the point A0 in T . But points arbitrarily near to A that are below the x-axis are mapped to points in T that are near to A00 rather than A0.
    [Show full text]
  • Metric Spaces
    Chapter 1. Metric Spaces Definitions. A metric on a set M is a function d : M M R × → such that for all x, y, z M, Metric Spaces ∈ d(x, y) 0; and d(x, y)=0 if and only if x = y (d is positive) MA222 • ≥ d(x, y)=d(y, x) (d is symmetric) • d(x, z) d(x, y)+d(y, z) (d satisfies the triangle inequality) • ≤ David Preiss The pair (M, d) is called a metric space. [email protected] If there is no danger of confusion we speak about the metric space M and, if necessary, denote the distance by, for example, dM . The open ball centred at a M with radius r is the set Warwick University, Spring 2008/2009 ∈ B(a, r)= x M : d(x, a) < r { ∈ } the closed ball centred at a M with radius r is ∈ x M : d(x, a) r . { ∈ ≤ } A subset S of a metric space M is bounded if there are a M and ∈ r (0, ) so that S B(a, r). ∈ ∞ ⊂ MA222 – 2008/2009 – page 1.1 Normed linear spaces Examples Definition. A norm on a linear (vector) space V (over real or Example (Euclidean n spaces). Rn (or Cn) with the norm complex numbers) is a function : V R such that for all · → n n , x y V , x = x 2 so with metric d(x, y)= x y 2 ∈ | i | | i − i | x 0; and x = 0 if and only if x = 0(positive) i=1 i=1 • ≥ cx = c x for every c R (or c C)(homogeneous) • | | ∈ ∈ n n x + y x + y (satisfies the triangle inequality) Example (n spaces with p norm, p 1).
    [Show full text]
  • Euclidean Space Rn
    Tel Aviv University, 2014/15 Analysis-III,IV 1 1 Euclidean space Rn 1a Prerequisites . 1 n 1b Structures on R and their isomorphisms . 5 1c Metric and topology . 20 1d Linearity and continuity . 25 1e Norms of vectors and operators . 26 The n-dimensional space Rn may be treated as a Euclidean space, or just a vector space, etc. Its topology is uniquely determined by algebraic structure. 1a Prerequisites linear algebra You should know the notion of: Forgot? Then see: Vector space (=linear space) [Sh:p.26 \Vector space axioms"] Isomorphism of vector spaces: a linear bijection. Basis of a vector space [Sh:Def.2.1.2 on p.28] Dimension of a finite-dimensional vector space: the number of vectors in every basis. Two finite-dimensional vector spaces are isomorphic if and only if their di- mensions are equal. Subspace of a vector space. Linear operator (=mapping=function) between vector spaces [Sh:3.1] Inner product on a vector space: hx; yi [Sh:p.31 \Inner product properties"] A basis of a subspace, being a linearly independent system, can be extended to a basis of the whole finite-dimensional vector space. topology You should know the notion of: Forgot? Then see: A sequence of points of Rn [Sh:p.36]1 Its convergence, limit [Sh:p.42{43] 1Quote: The only obstacle . is notation . n already denotes the dimension of the Euclidean space where we are working; and furthermore, the vectors can't be denoted with subscripts since a subscript denotes a component of an individual vector. As our work with vectors becomes more intrinsic, vector entries will demand less of our attention, and Tel Aviv University, 2014/15 Analysis-III,IV 2 Mapping Rn ! Rm; continuity (at a point; on a set) [Sh:p.41{48] Subsequence; Bolzano-Weierstrass theorem [Sh:p.52{53] Subset of Rn, its limit points; closed set; bounded set [Sh:p.51] Compact set [Sh:p.54] Open set [Sh:p.191]1 Closure, boundary, interior [Sh:p.311,314] Open cover; Heine-Borel theorem [Sh:p.312] Open ball, closed ball, sphere [Sh:p.50,191{192] Open box, closed box [Sh:p.246] [Sh:Exer.
    [Show full text]
  • On the Modular Operator of Mutli-Component Regions in Chiral
    On the modular operator of mutli-component regions in chiral CFT Stefan Hollands1∗ 1Institut für Theoretische Physik,Universität Leipzig, Brüderstrasse 16, D-04103 Leipzig, Germany December 24, 2019 Abstract We introduce a new approach to find the Tomita-Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo- Martin-Schwinger (KMS) condition. These features can be used to transform the problem to a Riemann-Hilbert problem on a covering of the complex plane cut along the regions, which is equivalent to an integral equation for the matrix elements of the modular Hamiltonian. Examples are considered. 1 Introduction The reduced density matrix of a subsystem induces an intrinsic internal dynamics called the “modular flow”. The flow is non-trivial only for non-commuting observable algebras – i.e., in quantum theory – and depends on both the subsystem and the given state of the total system. It has been subject to much attention in theoretical physics in recent times because it is closely related to information theoretic concepts. As examples for some topics such as Bekenstein bounds, Quantum Focussing Conjecture, c-theorems, arXiv:1904.08201v2 [hep-th] 21 Dec 2019 holography we mention [1, 2, 3, 4, 5]. In mathematics, the modular flow has played an important role in the study of operator algebras through the work of Connes, Takesaki and others, see [6] for an encyclopedic account. It has been known almost from the beginning that the modular flow has a geometric nature in local quantum field theory when the subsystem is defined by a spacetime region of a simple shape such as an interval in chiral conformal field theory (CFT) [7, 8, 9]: it is the 1-parameter group of Möbius transformations leaving the interval fixed.
    [Show full text]
  • 1 the Topology of Metric Spaces
    Introductory Analysis I Fall 2014 Notes on Metric Spaces These notes are an alternative to the textbook, from and including "Closed Sets and Open Sets" (page 58) to and excluding Cantor Sets (page 95) 1 The topology of metric spaces Assume M is a metric space with distance function d. I will depart a bit from the book's notation; instead of using Mr(p), I will denote by B(p; r) the open ball of center p 2 M and radius r > 0; i.e, B(p; r) = fq 2 M : d(q; p) < rg: The reason is that once we get to concrete metric spaces like Rn, it may be silly n to write (R )p(r). More importantly, I like my notation better. Incidentally a notation such as "r > 0" means: "r is a positive real number." The basic definition is Definition 1 A subset U of M is said to be open iff for every p 2 U there is r > 0 such that B(p; r) ⊂ U. In other words, the set U is open if and only if for every p 2 U there is r > 0 such that if q 2 U and d(q; p) < r, then q 2 U. Examples: 1. Let M be an arbitrary metric space. Then the empty set ; and M are open. 2. Let M be an arbitrary metric space. Let p 2 M and r > 0. Then B(p; r) is open. 3. Let M be a discrete metric space; i.e., d(p; q) = 1 whenever p =6 q.
    [Show full text]
  • Arxiv:1903.05504V3 [Math.FA] 22 Apr 2020 2010 Mathematics Subject Classification
    AMALGAMATION AND RAMSEY PROPERTIES OF Lp SPACES V. FERENCZI, J. LOPEZ-ABAD, B. MBOMBO, AND S. TODORCEVIC Abstract. We study the dynamics of the group of isometries of Lp-spaces. In particular, we study the canonical actions of these groups on the space of δ-isometric embeddings of finite dimensional subspaces of Lpp0, 1q into itself, and we show that for every real number 1 ¤ p ă 8 with p ‰ 4, 6, 8,... they are ε-transitive provided that δ is small enough. We achieve this by extending the classical equimeasurability principle of Plotkin and Rudin. We define the central notion of a Fraïssé Banach space which underlies these results and of which the known separable examples are the spaces Lpp0, 1q, p ‰ 4, 6, 8,... and the n Gurarij space. We also give a proof of the Ramsey property of the classes t`p un, p ‰ 2, 8, viewing it as a multidimensional Borsuk-Ulam statement. We relate this to an arithmetic version of the Dual Ramsey Theorem of Graham and Rothschild as well as to the notion of a spreading vector of Matoušek and Rödl. Finally, we give a version of the Kechris-Pestov-Todorcevic correspondence that links the dynamics of the group of isometries of an approximately ultrahomogeneous space X with a Ramsey property of the collection of finite dimensional subspaces of X. 1. Introduction It is a classical result of A. Pełczyński and S. Rolewicz [PelRol] that the spaces Lpp0, 1q are almost transitive, in the sense that the group of linear isometric surjections IsopLpp0, 1qq acts almost transitively on the corresponding unit sphere of Lpp0, 1q.
    [Show full text]
  • Real Analysis: Part I
    Real Analysis: Part I William G. Faris February 2, 2004 ii Contents 1 Mathematical proof 1 1.1 Logical language . 1 1.2 Free and bound variables . 3 1.3 Proofs from analysis . 4 1.4 Natural deduction . 6 1.5 Natural deduction strategies . 13 1.6 Equality . 16 1.7 Lemmas and theorems . 18 1.8 More proofs from analysis . 19 2 Sets 21 2.1 Zermelo axioms . 21 2.2 Comments on the axioms . 22 2.3 Ordered pairs and Cartesian product . 25 2.4 Relations and functions . 26 2.5 Number systems . 28 3 Relations, Functions, Dynamical Systems 31 3.1 Identity, composition, inverse, intersection . 31 3.2 Picturing relations . 32 3.3 Equivalence relations . 32 3.4 Generating relations . 32 3.5 Ordered sets . 33 3.6 Functions . 33 3.7 Relations inverse to functions . 34 3.8 Dynamical systems . 34 3.9 Picturing dynamical systems . 35 3.10 Structure of dynamical systems . 35 4 Functions, Cardinal Number 39 4.1 Functions . 39 4.2 Picturing functions . 40 4.3 Indexed sums and products . 40 4.4 Cartesian powers . 41 iii iv CONTENTS 4.5 Cardinality . 41 5 Ordered sets and completeness 45 5.1 Ordered sets . 45 5.2 Order completeness . 46 5.3 Sequences in a complete lattice . 47 5.4 Order completion . 48 5.5 The Knaster-Tarski fixed point theorem . 49 5.6 The extended real number system . 49 6 Metric spaces 51 6.1 Metric space notions . 51 6.2 Normed vector spaces . 51 6.3 Spaces of finite sequences . 52 6.4 Spaces of infinite sequences .
    [Show full text]
  • Revision Checklist Analysis II 1
    Revision Checklist Analysis II 1. What is the (ε, δ)-definition of a limit of a function? What are examples and counterexamples? 2. What is the epsilon-delta definition of a continuous function? 3. When does the quotient of two continuous functions produce a continuous func- tion? What about the sum? The product? 4. What is the relation between the continuity of a function in higher dimension and the continuity of its component functions? 5. Do you know the definition of a bounded function, examples and non-examples? 6. Do you know the statements of the continuity theorems (IVT, Brouwer’s Fixed Point Theorem, EVT)? Do you know how to apply them? Do you know the idea of the proof? 7. Do you know the statements of the theorems of Fermat and Rolle as well as the Mean Value Theorem? Do you know the idea of the proof? 8. Do you know the definition of a differentiable function, examples and non-examples? 9. When is the quotient of two differentiable functions a differentiable function? What about the sum? The product? 10. Do you know the definition of the derivative in higher dimension? 11. Do you know the relation between the derivative in higher dimension and partial derivatives? Do you understand its motivation? 12. Do you know that the existence of partial derivatives of a higher dimensional func- tion does NOT imply that the function is differentiable? Can you give examples? 13. Do you know the notion of a closed set, open set, compact set? Do you know the connection between continuity of functions and open sets? Do you know the relation between compactness and convergence of (sub)sequences? 14.
    [Show full text]
  • Some Metrics on Teichm¨Uller Spaces of Surfaces Of
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 363, Number 8, August 2011, Pages 4109–4134 S 0002-9947(2011)05090-7 Article electronically published on March 23, 2011 SOME METRICS ON TEICHMULLER¨ SPACES OF SURFACES OF INFINITE TYPE LIXIN LIU AND ATHANASE PAPADOPOULOS Abstract. Unlike the case of surfaces of topologically finite type, there are several different Teichm¨uller spaces that are associated to a surface of topolog- ically infinite type. These Teichm¨uller spaces first depend (set-theoretically) on whether we work in the hyperbolic category or in the conformal category. They also depend, given the choice of a point of view (hyperbolic or confor- mal), on the choice of a distance function on Teichm¨uller space. Examples of distance functions that appear naturally in the hyperbolic setting are the length spectrum distance and the bi-Lipschitz distance, and there are other useful distance functions. The Teichm¨uller spaces also depend on the choice of a basepoint. The aim of this paper is to present some examples, results and questions on the Teichm¨uller theory of surfaces of infinite topological type that do not appear in the setting of the Teichm¨uller theory of surfaces of finite type. In particular, we point out relations and differences between the various Teichm¨uller spaces associated to a given surface of topologically infinite type. 1. Introduction Let X be a connected oriented surface of infinite topological type. Unlike the case of a surface of finite type, there are several Teichm¨uller spaces associated to X. Such a Teichm¨uller space can be defined as a space of equivalence classes of marked hyperbolic surfaces homeomorphic to X, the marking being a homeomorphism be- tween a base hyperbolic structure on X and a hyperbolic surface homeomorphic to X.
    [Show full text]