Bacillus Kwashiorkori Sp Nov., a New Bacterial Species Isolated from A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms. -
Characterisation of Bacteria Isolated from the Stingless Bee, Heterotrigona Itama, Honey, Bee Bread and Propolis
Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis Mohamad Syazwan Ngalimat1,2,*, Raja Noor Zaliha Raja Abd. Rahman1,2, Mohd Termizi Yusof2, Amir Syahir1,3 and Suriana Sabri1,2,* 1 Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 2 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 3 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia * These authors contributed equally to this work. ABSTRACT Bacteria are present in stingless bee nest products. However, detailed information on their characteristics is scarce. Thus, this study aims to investigate the characteristics of bacterial species isolated from Malaysian stingless bee, Heterotrigona itama, nest products. Honey, bee bread and propolis were collected aseptically from four geographical localities of Malaysia. Total plate count (TPC), bacterial identification, phenotypic profile and enzymatic and antibacterial activities were studied. The results indicated that the number of TPC varies from one location to another. A total of 41 different bacterial isolates from the phyla Firmicutes, Proteobacteria and Actinobacteria were identified. Bacillus species were the major bacteria found. Therein, Bacillus cereus was the most frequently isolated species followed by -
A Broadly Distributed Toxin Family Mediates Contact-Dependent Antagonism Between Gram-Positive Bacteria
1 A Broadly Distributed Toxin Family Mediates Contact-Dependent 2 Antagonism Between Gram-positive Bacteria 3 John C. Whitney1,†, S. Brook Peterson1, Jungyun Kim1, Manuel Pazos2, Adrian J. 4 Verster3, Matthew C. Radey1, Hemantha D. Kulasekara1, Mary Q. Ching1, Nathan P. 5 Bullen4,5, Diane Bryant6, Young Ah Goo7, Michael G. Surette4,5,8, Elhanan 6 Borenstein3,9,10, Waldemar Vollmer2 and Joseph D. Mougous1,11,* 7 1Department of Microbiology, School of Medicine, University of Washington, Seattle, 8 WA 98195, USA 9 2Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, 10 Newcastle University, Newcastle upon Tyne, NE2 4AX, UK 11 3Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA 12 4Michael DeGroote Institute for Infectious Disease Research, McMaster University, 13 Hamilton, ON, L8S 4K1, Canada 14 5Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, 15 ON, L8S 4K1, Canada 16 6Experimental Systems Group, Advanced Light Source, Berkeley, CA 94720, USA 17 7Northwestern Proteomics Core Facility, Northwestern University, Chicago, IL 60611, 18 USA 19 8Department of Medicine, Farncombe Family Digestive Health Research Institute, 20 McMaster University, Hamilton, ON, L8S 4K1, Canada 21 9Department of Computer Science and Engineering, University of Washington, Seattle, 22 WA 98195, USA 23 10Santa Fe Institute, Santa Fe, NM 87501, USA 24 11Howard Hughes Medical Institute, School of Medicine, University of Washington, 25 Seattle, WA 98195, USA 26 † Present address: Department of Biochemistry and Biomedical Sciences, McMaster 27 University, Hamilton, ON, L8S 4K1, Canada 28 * To whom correspondence should be addressed: J.D.M. 29 Email – [email protected] 30 Telephone – (+1) 206-685-7742 1 31 Abstract 32 The Firmicutes are a phylum of bacteria that dominate numerous polymicrobial 33 habitats of importance to human health and industry. -
Common Commensals
Common Commensals Actinobacterium meyeri Aerococcus urinaeequi Arthrobacter nicotinovorans Actinomyces Aerococcus urinaehominis Arthrobacter nitroguajacolicus Actinomyces bernardiae Aerococcus viridans Arthrobacter oryzae Actinomyces bovis Alpha‐hemolytic Streptococcus, not S pneumoniae Arthrobacter oxydans Actinomyces cardiffensis Arachnia propionica Arthrobacter pascens Actinomyces dentalis Arcanobacterium Arthrobacter polychromogenes Actinomyces dentocariosus Arcanobacterium bernardiae Arthrobacter protophormiae Actinomyces DO8 Arcanobacterium haemolyticum Arthrobacter psychrolactophilus Actinomyces europaeus Arcanobacterium pluranimalium Arthrobacter psychrophenolicus Actinomyces funkei Arcanobacterium pyogenes Arthrobacter ramosus Actinomyces georgiae Arthrobacter Arthrobacter rhombi Actinomyces gerencseriae Arthrobacter agilis Arthrobacter roseus Actinomyces gerenseriae Arthrobacter albus Arthrobacter russicus Actinomyces graevenitzii Arthrobacter arilaitensis Arthrobacter scleromae Actinomyces hongkongensis Arthrobacter astrocyaneus Arthrobacter sulfonivorans Actinomyces israelii Arthrobacter atrocyaneus Arthrobacter sulfureus Actinomyces israelii serotype II Arthrobacter aurescens Arthrobacter uratoxydans Actinomyces meyeri Arthrobacter bergerei Arthrobacter ureafaciens Actinomyces naeslundii Arthrobacter chlorophenolicus Arthrobacter variabilis Actinomyces nasicola Arthrobacter citreus Arthrobacter viscosus Actinomyces neuii Arthrobacter creatinolyticus Arthrobacter woluwensis Actinomyces odontolyticus Arthrobacter crystallopoietes -
Bismis-2016 Abstract Book
BISMiS-2016 Abstract Book Third Meeting of Bergey's International Society for Microbial Systematics on Microbial Systematics and Metagenomics September 12-15, 2016 | Pune, INDIA PUNE UNIT Abstracts - Opening Address - Keynotes Abstract Book | BISMiS-2016 | Pune, India Opening Address TAXONOMY OF PROKARYOTES - NEW CHALLENGES IN A GLOBAL WORLD Peter Kämpfer* Justus-Liebig-University Giessen, HESSEN, Germany Email: [email protected] Systematics can be considered as a comprehensive science, because in science it is an essential aspect in comparing any two or more elements, whether they are genes or genomes, proteins or proteomes, biochemical pathways or metabolomes (just to list a few examples), or whole organisms. The development of high throughput sequencing techniques has led to an enormous amount of data (genomic and other “omic” data) and has also revealed an extensive diversity behind these data. These data are more and more used also in systematics and there is a strong trend to classify and name the taxonomic units in prokaryotic systematics preferably on the basis of sequence data. Unfortunately, the knowledge of the meaning behind the sequence data does not keep up with the tremendous increase of generated sequences. The extent of the accessory genome in any given cell, and perhaps the infinite extent of the pan-genome (as an aggregate of all the accessory genomes) is fascinating but it is an open question if and how these data should be used in systematics. Traditionally the polyphasic approach in bacterial systematics considers methods including both phenotype and genotype. And it is the phenotype that is (also) playing an essential role in driving the evolution. -
Ep 2434019 A1
(19) & (11) EP 2 434 019 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 28.03.2012 Bulletin 2012/13 C12N 15/82 (2006.01) C07K 14/395 (2006.01) C12N 5/10 (2006.01) G01N 33/50 (2006.01) (2006.01) (2006.01) (21) Application number: 11160902.0 C07K 16/14 A01H 5/00 C07K 14/39 (2006.01) (22) Date of filing: 21.07.2004 (84) Designated Contracting States: • Kamlage, Beate AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 12161, Berlin (DE) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Taman-Chardonnens, Agnes A. 1611, DS Bovenkarspel (NL) (30) Priority: 01.08.2003 EP 03016672 • Shirley, Amber 15.04.2004 PCT/US2004/011887 Durham, NC 27703 (US) • Wang, Xi-Qing (62) Document number(s) of the earlier application(s) in Chapel Hill, NC 27516 (US) accordance with Art. 76 EPC: • Sarria-Millan, Rodrigo 04741185.5 / 1 654 368 West Lafayette, IN 47906 (US) • McKersie, Bryan D (27) Previously filed application: Cary, NC 27519 (US) 21.07.2004 PCT/EP2004/008136 • Chen, Ruoying Duluth, GA 30096 (US) (71) Applicant: BASF Plant Science GmbH 67056 Ludwigshafen (DE) (74) Representative: Heistracher, Elisabeth BASF SE (72) Inventors: Global Intellectual Property • Plesch, Gunnar GVX - C 6 14482, Potsdam (DE) Carl-Bosch-Strasse 38 • Puzio, Piotr 67056 Ludwigshafen (DE) 9030, Mariakerke (Gent) (BE) • Blau, Astrid Remarks: 14532, Stahnsdorf (DE) This application was filed on 01-04-2011 as a • Looser, Ralf divisional application to the application mentioned 13158, Berlin (DE) under INID code 62. -
International Journal of Food Microbiology Occurrence Of
International Journal of Food Microbiology 305 (2019) 108251 Contents lists available at ScienceDirect International Journal of Food Microbiology journal homepage: www.elsevier.com/locate/ijfoodmicro Occurrence of bacteria and endotoxins in fermented foods and beverages T from Nigeria and South Africa ⁎ Ifeoluwa Adekoyaa, , Adewale Obadinab, Momodu Olorunfemic, Olamide Akanded, Sofie Landschoote, Sarah De Saegerf, Patrick Njobeha a Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa b Department of Food Science and Technology, Federal University of Agriculture, Abeokuta, Nigeria. c Department of Botany, University of Ibadan, Ibadan, Nigeria d Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria e Department of Applied Bioscience Engineering, Ghent University, B-9000, Belgium f Centre of Excellence in Mycotoxicology and Public Health, Ghent University, B-9000, Belgium ARTICLE INFO ABSTRACT Keywords: In Africa, fermented foods and beverages play significant roles in contributing to food security. Endotoxins are Fermented foods ubiquitous heat stable lipopolysaccharide (LPS) complexes situated in the outer cell membranes of Gram-ne- Gram-negative bacteria gative bacteria. This study evaluated the microbiological quality of fermented foods (ogiri, ugba, iru, ogi and ogi Endotoxins baba) and beverages (mahewu and umqombothi) from selected Nigerian and South African markets. The bacterial Safety diversity of the fermented foods was also investigated and the identity of the isolates confirmed by biochemical Nigeria and molecular methods. Isolate grouping was established through hierarchal clustering and the samples were South Africa further investigated for endotoxin production with the chromogenic Limulus Amoebocyte Lysate assay. The total aerobic count of the samples ranged from 5.7 to 10.8 Log CFU/g. -
Corynebacterium Kroppenstedtii Subsp. Demodicis Is the Endobacterium of Demodex Folliculorum
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Access LMU DOI: 10.1111/jdv.16069 JEADV ORIGINAL ARTICLE Corynebacterium kroppenstedtii subsp. demodicis is the endobacterium of Demodex folliculorum B.M. Clanner-Engelshofen, L.E. French , M. Reinholz* Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany *Correspondence: M. Reinholz. E-mail: [email protected] Abstract Background Demodex spp. mites are the most complex member of the human skin microbiome. Mostly they are com- mensals, although their pathophysiological role in inflammatory dermatoses is recognized. Demodex mites cannot be cultivated in vitro, so only little is known about their life cycle, biology and physiology. Different bacterial species have been suggested to be the endobacterium of Demodex mites, including Bacillus oleronius, B. simplex, B. cereus and B. pumilus. Objectives Our aim was to find the true endobacterium of human Demodex mites. Methods The distinct genetic and phenotypic differences and similarities between the type strain and native isolates are described by DNA sequencing, PCR, MALDI-TOF, DNA-DNA hybridization, fatty and mycolic acid analyses, and antibiotic resistance testing. Results We report the true endobacterium of Demodex folliculorum, independent of the sampling source of mites or life stage: Corynebacterium kroppenstedtii subsp. demodicis. Conclusions We anticipate our finding to be a starting point for more in-depth understanding of the tripartite microbe– host interaction between Demodex mites, its bacterial endosymbiont and the human host. Received: 10 August 2019; Accepted: 17 October 2019 Conflict of interest The authors declare no conflicts of interest. -
Concurrence of Ocular Infection with Demodex Folliculorum
Concurrence of ocular infection with Demodex folliculorum Danuta Izabela Kosik-Bogacka ( [email protected] ) Pomorski Uniwersytet Medyczny w Szczecinie https://orcid.org/0000-0002-3796-5493 Joanna Pyzia Pomorski Uniwersytet Medyczny w Szczecinie Katarzyna Galant Pomorski Uniwersytet Medyczny w Szczecinie Maciej Czepita Pomorski Uniwersytet Medyczny w Szczecinie Karolina Kot Pomorski Uniwersytet Medyczny w Szczecinie Natalia Lanocha-Arendarczyk Pomorski Uniwersytet Medyczny w Szczecinie Damian Czepita Pomorski Uniwersytet Medyczny w Szczecinie Research article Keywords: Acinetobacter baumannii, Bacillus spp., Corynebacteriaceae, Demodex folliculorum, Staphylococcus aureus, Streptococcus pneumoniae Posted Date: February 10th, 2020 DOI: https://doi.org/10.21203/rs.2.14745/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Background: The ectoparasite Demodex spp. is the most common human parasite detected in skin lesions such as rosacea, lichen, and keratosis. It is also an etiological factor in blepharitis. As Demodex spp. is involved in the transmission of pathogens that can play a key role in the pathogenesis of demodecosis, the aim was to assess the concurrence of Demodex folliculorum and bacterial infections. Methods: The study involved 232 patients, including 128 patients infected with Demodex folliculorum and 104 non-infected patients. The ophthalmological examination consisted of examining the vision of the patient with and without ocular correction, tonus in both eyes) and a careful examination of the anterior segment of both eyes with special emphasis on the appearance of the eyelid edges and the structure and appearance of eyelashes from both eyelids of both eyes. The samples for microbiological examination were obtained from the conjunctival sac. -
Deciphering the Diversity of Culturable Thermotolerant Bacteria from Manikaran Hot Springs
Ann Microbiol (2014) 64:741–751 DOI 10.1007/s13213-013-0709-7 ORIGINAL ARTICLE Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs Murugan Kumar & Ajar Nath Yadav & Rameshwar Tiwari & Radha Prasanna & Anil Kumar Saxena Received: 25 February 2013 /Accepted: 1 August 2013 /Published online: 24 August 2013 # Springer-Verlag Berlin Heidelberg and the University of Milan 2013 Abstract The aim of this study was to analyze and charac- Introduction terize the diversity of culturable thermotolerant bacteria in Manikaran hot springs. A total of 235 isolates were obtained Exotic niches, such as thermal springs, harbor populations of employing different media, and screened for temperature tol- microorganisms that can be a source of commercially impor- erance (40 °C–70 °C). A set of 85 isolates tolerant to 45 °C or tant products like enzymes, sugars, compatible solutes and above were placed in 42 phylogenetic clusters after amplified antibiotics (Satyanarayana et al. 2005). Thermal springs are a ribosomal DNA restriction analysis (16S rRNA-ARDRA). manifestation of geological activity and represent aquatic Sequencing of the 16S rRNA gene of 42 representative iso- microcosms that are produced by the emergence of geother- lates followed by BLAST search revealed that the majority of mally heated groundwater from the Earth’s crust. Prokaryotes isolates belonged to Firmicutes, followed by equal represen- are the major component of most ecosystems, being ubiqui- tation of Actinobacteria and Proteobacteria. Screening of rep- tous in nature because of their small size, easy dispersal, resentative isolates (42 ARDRA phylotypes) for amylase metabolic versatility, ability to utilize a broad range of nutri- activity revealed that 26 % of the isolates were positive, while ents, and tolerance to unfavorable and extreme conditions. -
The Root Microbiome of Salicornia Ramosissima As a Seedbank for Plant-Growth Promoting Halotolerant Bacteria
applied sciences Article The Root Microbiome of Salicornia ramosissima as a Seedbank for Plant-Growth Promoting Halotolerant Bacteria Maria J. Ferreira 1 , Angela Cunha 1 , Sandro Figueiredo 1, Pedro Faustino 1, Carla Patinha 2 , Helena Silva 1 and Isabel N. Sierra-Garcia 1,* 1 Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; [email protected] (M.J.F.); [email protected] (A.C.); sandrofi[email protected] (S.F.); [email protected] (P.F.); [email protected] (H.S.) 2 Department of Geosciences and Geobiotec, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; [email protected] * Correspondence: [email protected] Featured Application: This research provides knowledge into the taxonomic and functional di- versity of cultivable bacteria associated with the halophyte Salicornia ramosissima in different types of soil, which need to be considered for the development of rhizosphere engineering tech- nology for the salt tolerant sustainable crops in different environments. Abstract: Root−associated microbial communities play important roles in the process of adaptation of plant hosts to environment stressors, and in this perspective, the microbiome of halophytes repre- sents a valuable model for understanding the contribution of microorganisms to plant tolerance to salt. Although considered as the most promising halophyte candidate to crop cultivation, Salicornia Citation: Ferreira, M.J.; Cunha, A.; ramosissima is one of the least-studied species in terms of microbiome composition and the effect Figueiredo, S.; Faustino, P.; Patinha, of sediment properties on the diversity of plant-growth promoting bacteria associated with the C.; Silva, H.; Sierra-Garcia, I.N. -
Bhargavaea Cecembensis Gen. Nov., Sp. Nov., Isolated from the Chagos–Laccadive Ridge System in the Indian Ocean
International Journal of Systematic and Evolutionary Microbiology (2009), 59, 2618–2623 DOI 10.1099/ijs.0.002691-0 Bhargavaea cecembensis gen. nov., sp. nov., isolated from the Chagos–Laccadive ridge system in the Indian Ocean 3 3 R. Manorama, P. K. Pindi, G. S. N. Reddy and S. Shivaji Correspondence Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India S. Shivaji [email protected] A novel Gram-positive, rod-shaped, non-motile, non-spore-forming bacterium, strain DSE10T, was isolated from a deep-sea sediment sample collected at a depth of 5904 m from the Chagos– Laccadive ridge system in the Indian Ocean. Cells of strain DSE10T were positive for catalase, oxidase, urease and lipase activities and contained iso-C14 : 0, iso-C15 : 0, iso-C16 : 0 and anteiso- C15 : 0 as the major fatty acids. The major respiratory quinones were MK-6 and MK-8 and the major lipids were phosphatidylglycerol and diphosphatidylglycerol. The cell-wall peptidoglycan contained diaminopimelic acid as the diagnostic diamino acid. A BLAST sequence similarity search based on 16S rRNA gene sequences indicated that the genera Planococcus, Planomicrobium, Bacillus and Geobacillus were the nearest phylogenetic neighbours to the novel isolate with gene sequence similarities ranging from 94.9 to 95.2 %. Phylogenetic analyses using neighbour- joining, minimum-evolution and maximum-parsimony methods indicated that strain DSE10T formed a deeply rooted lineage distinct from the clades represented by the genera Planococcus, Planomicrobium, Bacillus and Geobacillus. Further, strain DSE10T could be distinguished from the above-mentioned genera based on the presence of signature nucleotides G, A, C, T, C, A, G, C and T at positions 182, 444, 480, 492, 563, 931, 1253, 1300 and 1391, respectively, in the 16S rRNA gene sequence.