Uncorrected Proof 1

Total Page:16

File Type:pdf, Size:1020Kb

Uncorrected Proof 1 Video AtlasUncorrected of Proof NEUR SURGERY Contemporary Tumor and Skull Base Surgery Alfredo Quiñones-Hinojosa Contents SECTION 1 Intra-axial Tumors 1 Awake craniotomy and speech mapping for gliomas 000 Jordina Rincon-Torroella M.D., Ignacio Jusue-Torres M.D., Eibar Ernesto Cabrera-Aldana M.D. and Alfredo Quinones-Hinojosa M.D. 2 Cortical/subcortical motor mapping for gliomas 000 Norma Arechiga, MD; Karim Refaey, MD; Jordina Rincon-Torroella, MD; Kaisorn L. Chaichana, MD; Alfredo Quiñones-Hinojosa, MD 3 Trans-sulcal versus transcortical resection of subcortical metastases 000 Kaisorn Chaichana, M.D., Jordina Rincon-Torroella, M.D., Shami Yesha Acharya, M.B.B.S. and Alfredo Quinones-Hinojosa, M.D. 4 Deep intra-axial lesions 000 Jordina Rincon-Torroella, M.D., Kaisorn L. Chaichana, M.D., Salvador Manrique-Guzman S. M.D., Alfredo Quinones-Hinojosa, M.D. 5 Brainstem tumors 000 Jordina Rincon-Torroella, MD; Kaisorn L. Chaichana, MD; Alfredo Quinones-Hinojosa, MD 6 Cerebellar tumors 000 Kaisorn L. Chaichana MD, Jordina Rincon-Torroella MD, Salvador Manrique-Guzman MD, Quinones-Hinojosa A MD. 7 Cervicomedullary tumors 000 Jordina Rincon-Torroella, MD; KarimUncorrected Refaey, MD ; Kaisorn L. Chaichana, MD; Alfredo ProofQuiñones-Hinojosa, MD 8 Supracerebellar-infratentorial approach 000 Jordina Rincon-Torroella, Arnau Benet, Alfredo Quiñones-Hinojosa 9 Intra-operative extent of resection 000 Jordina Rincon-Torroella; Eibar Ernesto Cabrera-Aldana; Alfredo Quiñones-Hinojosa SECTION 2 Extra-axial Tumors 10 Convexity and parasagittal meningiomas 000 João Paulo Almeida,MD; Jordina Rincon-Torroella, MD; Kaisorn L. Chaichana, MD; Alfredo Quiñones Hinojosa, MD 11 Falcine and falcotentorial meningiomas 000 João Paulo Almeida,MD; Jordina Rincon-Torroella, MD; Kaisorn L. Chaichana, MD; Alfredo Quiñones-Hinojosa, MD 12 Posterior fossa meningiomas 000 João Paulo Almeida,MD; Jordina Rincon-Torroella, MD; Kaisorn L. Chaichana, MD; Ignacio Jusue-Torres, MD; Alfredo Quiñones-Hinojosa, MD 4 Contents SSSECTION 3 Intraventricular Tumors 13 Transcortical approach to the lateral ventricles 000 Alejandro Ruiz-Valls, MD; Jordina Rincon-Torroella, MD; Kaisorn L. Chaichana, MD; Alfredo Quinones-Hinojosa, MD. 14 Transcallosal approach to the third and lateral ventricles 000 Jordina Rincon-Torroella, MD; and Alfredo Quinones-Hinojosa M.D. 15 Telovelar approach 000 Jordina Rincon MD, Alfredo Quinones-Hinojosa MD 16 Endoscopic approach to the ventricles 000 Jordina Rincon-Torroella, MD; Kaisorn Chaichana, MD; Alfredo Quiñones-Hinojosa, MD SECTION 4 Skull Base Approaches 17 Pterional craniotomy 000 Jordina Rincon-Torroella, MD; Alfredo Quiñones-Hinojosa, MD 18 Orbitozygomatic craniotomy 000 Jordina Rincon-Torroella, MD; Alfredo Quiñones-Hinojosa, MD 19 Supraorbital osteotomy 000 Jordina Rincon-Torroella, MD; Elizabeth Ogando, MD; and Alfredo Quinones-Hinojosa M.D. 20 Subfrontal and extended bifrontal craniotomy/transbasal approach 000 Jordina Rincon-Torroella and Alfredo Quinones-Hinojosa M.D. 21 Retrosigmoid/extended retrosigmoid approach 000 Jordina Rincon-Torroella, MD; Karim Refaey, MD; and Alfredo Quinones-Hinojosa M.D. 22 The far lateral approach 000 Arnau Benet, MD; Jordina Rincon-Torroella, MD; Tito Vivas-Buitrago, MD; Alfredo Quiñones-Hinojosa, MD SECTION 5 Endoscopic Approaches to Skull Base Tumors 23 Principles and anatomy in endoscopic endonasal surgery 000 Arnau Benet, MD; Jordina Rincon-Torroella, MD, Alfredo Quiñones-Hinojosa, MD 24 Pituitary adenomas 000 Joao Paulo Almeida, MD; Alexandra Larsen, BS; Jordina Rincon-Torroella, MD; Kaisorn L. Chaichana, MD; Alfredo Quinones-Hinojosa, MD 25 Surgical treatment of craniopharyngiomas 000 João Paulo Almeida, MD; Roberto Andrés Medina, MD; Jordina Rincon-Torroella, MD; Kaisorn L. Chaichana, MD; Alfredo Quiñones Hinojosa, MD 26 Clival chordomas 000 Jordina Rincon-Torroella, MD; OmarUncorrected Antonio Perez morales, MD; Joao Paulo Almeida, MD;Proof Alfredo Quinones-Hinojosa M.D. 27 Techniques for skull base reconstruction 000 Jordina Rincon-Torroella, MD; João Paulo Almeida, MD; Arnau Benet MD; and Alfredo Quinones-Hinojosa M.D. SECTION 6 Combined Approaches to the Skull Base 28 Combined subfrontal and endonasal approach 000 Karim Refaey, MD; Jordina Rincon-Torroella, MD and Alfredo Quinones-Hinojosa M.D. 29 Combined transconjunctival and endoscopic endonasal approach 000 Brian Hwang, Danilo Tueme, Jordina Rincon-Torroella, Alfredo Quiñones-Hinojosa M.D. 30 Combined transmaxillary and subfrontal approach 000 Eva F. Pamias-Portalatín, MD; Tito Vivas-Buitrago, MD; Jordina Rincon-Torroella, MD; Arnau Benet Cabero, MD; Alfredo Quiñones-Hinojosa, MD Contents 5 SECTION 7 Skull Base Tumors 31 Anterior midline meningiomas 000 Jordina Rincon-Torroella, João Paulo Almeida,MD and Alfredo Quinones-Hinojosa M.D. 32 Medial sphenoid wing meningiomas 000 Jordina Rincon-Torroella, MD; Kaisorn Chaichana, MD; Alfredo Quiñones-Hinojosa, MD 33 Parasellar tumors 000 Christina Jackson, MD; Jordina Rincon-Torroella, MD; and Alfredo Quinones-Hinojosa M.D. 34 Invasive pituitary adenomas 000 João Paulo Almeida,MD; Martín A. Chacón Portillo, MD; Jordina Rincon-Torroella, MD; Kaisorn L. Chaichana, MD; Alfredo Quiñones Hinojosa, MD 35 Approaches to the temporal bone: basic principles 000 Eva Pamias-Portalatín, MD; Arnau Benet, MD; Tito Vivas-Buitrago, MD; Jordina Rincon-Torroella, MD and Alfredo Quinones-Hinojosa M.D. 36 Approaches to the orbit 000 Elizabeth Ogando-Rivas, MD; Jordina Rincon-Torroella, MD; Alfredo Quiñones-Hinojosa, MD 37 Vestibular schwannomas 000 Eva F. Pamias-Portalatín, MD; Tito Vivas-Buitrago, MD; Jordina Rincon-Torroella, MD; Alfredo Quiñones-Hinojosa, MD 38 Foramen magnum meningiomas 000 Eva F. Pamias-Portalatín, MD; Tito Vivas-Buitrago, MD; Jordina Rincon-Torroella, MD; Alfredo Quiñones-Hinojosa, MD. Uncorrected Proof 1 Awake Craniotomy and Speech Mapping for Gliomas Jordina Rincon-Torroella M.D., Ignacio Jusue-Torres MD, Eibar Ernesto Cabrera-Aldana MD and Alfredo Quinones-Hinojosa MD Indications tion through the craniotomy window (e.g. antic- ipated intracranial hypertension) • Intra-axial lesions invading, or located in elo- quent areas related to language cortex, especial- ly in the dominant hemisphere. The infiltrative Pre-operative Considerations rather displacing nature of gliomas makes this • Neuropsychological and language evaluation approach very suitable for low-grade gliomas may be helpful to detect complex neurolog- (astrocytoma, oligoastrocytoma or oligodendro- ic symptoms and to determine the behavioral gliomas) and high-grade gliomas. tasks (paradigms) that will be used for the func- • The goal of intraoperative speech mapping are: tional MRI (fMRI) and intra-operative mapping. • To determine the limits of the resection and the • Neuro-imaging considerations (Figure 1a-f): best surgical corridor to approach the lesion Positron emission tomography (PET) and fMRI • To allow maximal resection while limiting func- can be used for surgical planning and to localize tional impairment of eloquent areas. the eloquent areas pre-operatively. If those tests • Increasing body of evidence supports longer indicate that the lesion is involving functional survival and better quality of life in low-grade language cortex or is adjacent to it, an awake gliomas (LGG) after gross total resection or craniotomy with intra-operative speech map- smaller residual tumor Uncorrectedvolumes. ping is usually Proof required. • Intra-operative mapping and functional imag- • fMRI is preferred because it allows a non-in- ing have transformed into resectable some brain vasive cortical mapping avoiding the use of tumors previously considered inoperable and radioisotopes. fMRI measures relative changes has considerably decreased the post-operative in oxygenated and deoxygenated hemoglobin. functional deficits. Especially in language mapping, fMRI or PET cannot distinguish in between essential and Contraindications complementary but nonessential areas. fMRI • Non-cooperative patient because of disease or can guide the surgical planning but cannot be psychosocial issues. the solely object to locate the eloquent areas and • Inability to follow commands or to reproduce to establish the resection margins. the speech tests in the pre-operative training. • With the combination of different speech para- • Anticipation of airway compromise during the digms fMRI can give an estimate of the localiza- awake portion (e.g. morbid obesity, medically tion of eloquent areas related to language cor- intractable seizures, or sleep apnea). tex and hemispheric language lateralization or • Comorbidities that could promote brain hernia- co-dominance. 8 Chapter 1 • Awake Craniotomy and Speech Mapping for Gliomas • Despite its limitations, DTI can be also useful to • Behavioral tasks (Paradigms): spontaneous assess the white matter tracks. The most import- speech, fluency, counting, object naming, spell- ant tracks related to speech are the superior lon- ing, reading, writing, comprehension, silent gitudinalis fasciculus (SLF), the arcuate fasciculus word generation, rhyme detection, semantic-de- and the inferior fronto-occipital fasciculus (IFOF). cision, repetition, word stem completion, and Those fascicles conform a dorsal pathway (phono- switching from one language to another in bi- logical processing) and a ventral pathway (seman- lingualPhiladelphia patients. Art (Figure Dept./Elsevier 2a-f) tic processing). • The functionalElsevier Author mapsISBN can # be fused Author'swith review the mor- Quinones 978-0-323-26149-4 (if needed) • Regions of interest:
Recommended publications
  • Central Neurocircuits Regulating Food Intake in Response to Gut Inputs—Preclinical Evidence
    nutrients Review Central Neurocircuits Regulating Food Intake in Response to Gut Inputs—Preclinical Evidence Kirsteen N. Browning * and Kaitlin E. Carson Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-717-531-8267 Abstract: The regulation of energy balance requires the complex integration of homeostatic and hedonic pathways, but sensory inputs from the gastrointestinal (GI) tract are increasingly recognized as playing critical roles. The stomach and small intestine relay sensory information to the central nervous system (CNS) via the sensory afferent vagus nerve. This vast volume of complex sensory information is received by neurons of the nucleus of the tractus solitarius (NTS) and is integrated with responses to circulating factors as well as descending inputs from the brainstem, midbrain, and forebrain nuclei involved in autonomic regulation. The integrated signal is relayed to the adjacent dorsal motor nucleus of the vagus (DMV), which supplies the motor output response via the efferent vagus nerve to regulate and modulate gastric motility, tone, secretion, and emptying, as well as intestinal motility and transit; the precise coordination of these responses is essential for the control of meal size, meal termination, and nutrient absorption. The interconnectivity of the NTS implies that many other CNS areas are capable of modulating vagal efferent output, emphasized by the many CNS disorders associated with dysregulated GI functions including feeding. This review will summarize the role of major CNS centers to gut-related inputs in the regulation of gastric function Citation: Browning, K.N.; Carson, with specific reference to the regulation of food intake.
    [Show full text]
  • A Concise Historical Perspective of the Area Postrema Structure and Function
    https://doi.org/10.1590/0004-282X20190118 HISTORICAL NOTE A concise historical perspective of the area postrema structure and function Uma perspectiva histórica concisa da estrutura e função da área postrema Thiago Ferreira Simões DE SOUZA1 ABSTRACT First described by Retzius at the end of the 19th century, the structure in the posterior medulla oblongata, then named area postrema, underwent an intense investigation into its function in the decades that followed. Findings, mainly in animal studies, have partially elucidated its role as an emetic center in the central nervous system. In the second half of the 20th century, this function was associated with reports of syndromes characterized by uncontrollable nausea and vomiting related to structural damage in the area postrema, mainly in the context of demyelinating diseases. At the beginning of the 21st century, the so-called area postrema syndrome has been consolidated as a diagnostic factor in diseases related to the spectrum of neuromyelitis optica, more than 100 years after its first description. Keywords: Area postrema; nausea; vomiting; history of medicine; neuromyelitis optica. RESUMO Descrita pela primeira vez por Retzius no final do século XIX, a estrutura na medula oblonga posterior, então nomeada de área postrema, passou por intensa investigação quanto à sua função nas décadas seguintes. Achados sobretudo em estudos com animais elucidaram parcialmente sua função como centro emético no sistema nervoso central. Na segunda metade do século XX, tal função foi associada a relatos de síndromes caracterizadas por náuseas e vômitos incoercíveis relacionadas a lesões estruturais na área postrema, principalmente no contexto das doenças desmielinizantes. Já no início do século XXI, a então chamada síndrome da área postrema se consolida como fator diagnóstico nas doenças relacionadas ao espectro da neuromielite óptica, mais de 100 anos sua primeira descrição.
    [Show full text]
  • 511-2018-08-29-Anatomy
    511-2018-08-29-anatomy Rick Gilmore 2018-09-03 08:32:47 Prelude https://www.youtube.com/snO68aJTOpM 2/83 Today's Topics · Wrap-up on functional methods · Gross neuroanatomy 3/83 Neuroscience Seminar "Combinatorial Strategies for the Plasticity and Regeneration of the Injured Spinal Cord" Dr. Xiao-Ming Xu Indiana University Wednesday, September 5, 2018 4:00 - 5:00 P.M. 108 Wartik Lab 4/83 Wrap-up on functional methods Stimulating the brain · Pharmacological · Electrical (Transcranial Direct Current Stimulation - tDCS) · Magnetic (Transcranial magnetic stimulation - TMS) 6/83 7/83 8/83 Stimulating the brain · Spatial/temporal resolution? · Assume stimulation mimics natural activity? 9/83 Deep brain stimulation as therapy · Depression · Epilepsy · Parkinson’s Disease 10/83 http://www.nimh.nih.gov/images/health-and-outreach/mental-health-topic-brain-stimulation- therapies/dbs_60715_3.jpg 11/83 https://youtu.be/KDjWdtDyz5I 12/83 Optogenetics 13/83 Optogenetics · Gene splicing techniques insert light-sensitive molecules into neuronal membranes · Application of light at specific wavelengths alters neuronal function · Cell-type specific and temporally precise control 14/83 https://youtu.be/FlGbznBmx8M 15/83 Simulating the brain · Computer/mathematical models of brain function · Example: neural networks · Cheap, noninvasive, can be stimulated or “lesioned” 16/83 Blue Brain project Markram, 2006 17/83 18/83 Main points · Multiple structural, functional methods · Different levels of spatial & temporal analysis · Functional tools have different strengths & weaknesses 19/83 Gross neuroanatomy https://www.pastmedicalhistory.co.uk/the-nervous-system-of-harriet- cole/ 21/83 Brain anatomy through dance 22/83 Finding our way around Anterior/Posterior Medial/Lateral Superior/Inferior Dorsal/Ventral Rostral/Caudal 23/83 Directional image https://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Blausen_0019_AnatomicalDirectionalReferences.
    [Show full text]
  • Projectile Vomitingwith a Solitary Metastasis in the Cerebellar Peduncle
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.48.11.1165 on 1 November 1985. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1985;48:1165-1168 Short report The neuroanatomy of vomiting in man: association of projectile vomiting with a solitary metastasis in the lateral tegmentum of the pons and the middle cerebellar peduncle PHILIP CH BAKER, JAMES L BERNAT From Napier Hospital, Napier, New Zealand, and Dartmouth Medical School, Hanover, USA SUMMARY Animal studies have indicated a "vomiting center" situated in the dorsal portion of the lateral reticular formation of the medulla at the level of the dorsal nucleus of the vagus. There is also a chemoreceptor trigger zone in the floor of the fourth ventricle in the area postrema which influences the vomiting center. A 63 year old man with a three year history of metastatic guest. Protected by copyright. malignant melanoma presented with nausea, projectile vomiting, gait ataxia and diplopia associ- ated with horizontal and vertical nystagmus. CT scan showed a solitary brainstem metastasis without hydrocephalus and he was treated with radiotherapy with resolution of his vomiting after four weeks. At post mortem three months later a metastasis was found in the right middle cerebellar peduncle and lateral tegmentum of the pons; there was no pathological change in the area of the vomiting center or area postrema. It is postulated that this lesion caused projectile vomiting because of involvement of either afferent or efferent projections to the vomiting center.
    [Show full text]
  • Is Composed from Spinal Cord and Brain
    doc. MUDr. Adriana Boleková, PhD. MVDr. Natália Hvizdošová, PhD. CENTRAL NERVOUS SYSTEM – is composed from spinal cord and brain SPINAL CORD cranial border: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 – L2 vertebrae medullary cone – filum terminale (S2) – cauda equina enlargements: cervical enlargement (C5 – Th1): origin of nerves for upper extremity – brachial plexus lumbosacral enlargement (L1 – S2): origin of nerves for lower extremity – lumbosacral plexus external features: anterior median fissure anterolateral sulcus – anterior roots of spinal nn. posterolateral sulcus – posterior roots of spinal nn. posterior median sulcus posterior intermediate sulcus internal features: White matter anterior funiculus (between anterior median fissure and anterolateral sulcus) lateral funiculus (between anterolateral and posterolateral sulci) posterior funiculus (between posterolateral sulcus and posterior median sulcus) fasciculus gracilis fasciculus cuneatus Gray matter anterior (ventral) horn – motor function: Rexed laminae I – VI lateral horn – serves to visceral function: Rexed lamina VII dorsal (posterior) horn – sensory information: Rexed laminae VIII – IX central grey matter – interneurons: around central canal Rexed lamina X Central canal cranially opens into IV. ventricle caudally expands into terminal ventricle vessels of spinal cord: Arteries: spinal brr. from surrounding arteries – anterior radicular aa., posterior radicular aa.: posterior spinal aa. (in posterolateral
    [Show full text]
  • Anatomy of the Opioid-Systems of the Brain Karl M
    THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES SPECIAL FEATURE Anatomy of the Opioid-Systems of the Brain Karl M. Knigge and Shirley A. Joseph This paper was presented in May 1983 at the Centennial Neurosciences Symposium of the Department of Anatomy, University of Manitoba, at which Dr. Knigge was a keynote speaker. Can. J. Neurol. Sci. 1984; 11:14-23 In 1969, Roger Guillemin and Andrew Schally independently subpopulations: a hypothalamic arcuate opiocortin system, a reported the isolation and identification of the first hypothalamic brainstem medullary opiocortin pool of neurons, and a hypo­ neuropeptide, thyrotropin releasing factor (TRF). Following thalamic alpha MSH-specific system. In the present report we this landmark event in neuroendocrinology the ensuing years will review our anatomical studies on only the opiocortin division have witnessed a cascade of isolations of new neuropeptides of the brain opioids. Unless specifically noted, our descriptions and a virtual revolution in neurobiology. The discipline of relate to the brain of the rat. neuroendocrinology has been remarkably impacted by the The arcuate opiocortin system consists of a pool or "bed nucleus" evidence that all of the "hypophysiotrophic" releasing factors of perikarya located in the arcuate and periarcuate regions of presently identified are distributed widely throughout the brain the hypothalamus (Fig. 1). In species we have examined, including with neurotransmitter or neuromodulator roles quite different rat, mouse, hamster, guinea pig, dog, horse, primate and human, from their actions of regulating the secretion of pituitary hormones. this pool of neuron cell bodies extends the entire antero-posterior The study of these neuropeptide systems in activity of the distance of the hypothalamus.
    [Show full text]
  • Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems
    International Journal of Molecular Sciences Review Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems Weixia Zhong 1, Omar Shahbaz 2, Garrett Teskey 1, Abrianna Beever 3, Nala Kachour 3, Vishwanath Venketaraman 1,3 and Nissar A. Darmani 1,* 1 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; [email protected] (W.Z.); [email protected] (G.T.); [email protected] (V.V.) 2 School of Medicine, Universidad Iberoamericana, Av. Francia 129, Santo Domingo 10203, Dominican Republic; [email protected] 3 Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; [email protected] (A.B.); [email protected] (N.K.) * Correspondence: [email protected]; Tel.: +1-909-469-5654 Abstract: Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, Citation: Zhong, W.; Shahbaz, O.; and corresponding receptors, as well as intracellular emetic signaling pathways involved in the Teskey, G.; Beever, A.; Kachour, N.; processes of nausea and vomiting in diverse animal models as well as humans.
    [Show full text]
  • The Human Area Postrema: Clear-Cut Silhouette and Variations Shown in Vivo
    CLINICAL ARTICLE J Neurosurg 122:989–995, 2015 The human area postrema: clear-cut silhouette and variations shown in vivo Pierluigi Longatti, MD,1 Andrea Porzionato, MD, PhD,2 Luca Basaldella, MD,1 Alessandro Fiorindi, MD, PhD,1 Pietro De Caro, Eng,3 and Alberto Feletti, MD, PhD1 1Department of Neurosurgery, Treviso Hospital, University of Padova; and Departments of 2Human Anatomy and 3Information Engineering, University of Padova, Italy OBJECT The human area postrema (AP) is a circumventricular organ that has only been described in cadaveric speci- mens and animals. Because of its position in the calamus scriptorius and the absence of surface markers on the floor of the fourth ventricle, the AP cannot be clearly localized during surgical procedures. METHODS The authors intravenously administered 500 mg fluorescein sodium to 25 patients during neuroendoscopic procedures; in 12 of these patients they explored the fourth ventricle. A flexible endoscope equipped with dual observa- tion modes for both white light and fluorescence was used. The intraoperative fluorescent images were reviewed and compared with anatomical specimens and 3D reconstructions. RESULTS Because the blood-brain barrier does not cover the AP, it was visualized in all cases after fluorescein sodium injection. The AP is seen as 2 coupled leaves on the floor of the fourth ventricle, diverging from the canalis centralis medullaris upward. Although the leaves normally appear short and thick, there can be different morphological patterns. Exploration using the endoscope’s fluorescent mode allowed precise localization of the AP in all cases. CONCLUSIONS Fluorescence-enhanced inspection of the fourth ventricle accurately identifies the position of the AP, which is an important landmark during surgical procedures on the brainstem.
    [Show full text]
  • The Dopaminergic Innervation of the Brain Stem and Spinal Cord
    The Dopaminergic Innervation Of The Brain Stem And Spinal Cord An Anatomical Study On The Distribution Of The Neurotransmitter Dopamine And Its D2 Receptor. This study was carried out at the Department of Anatomy of the Erasmus University of Rotterdam, The Netherlands (Head Prof. Dr. J. Voogd). Financial support by NEN-Dupont for the publication of this thesis is gratefully acknowledged. The Dopaminergic Innervation Of The Brain Stem And Spinal Cord An Anatomical Study On The Distribution Of The Neurotransmitter Dopamine And Its D2 Receptor De dopaminerge innervatie van de hersenstam en ruggenmerg Een anatomische studie naar de verdeling van de neurotransmitter dopamine en zijn D2 receptor PROEFSCHRIFf ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de Rector Magnificus Prof. Dr. P.W.c. Akkermans MA en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op donderdag 8 juni 2000 om 13.30 UUf. door Hendrik van Dijken geboren te Emmen Promotiecommissie Promotor Prof. Dr. J. Voogd Overige leden Dr. J.C. Holstege (tevens co-promotor) Prof. Dr. P.G.M. Luiten Dr.P. Voom Prof. Dr. c,r. de Zeeuw Contents Chapter I General Introduction 7 Anatomy of the spinal cord and brain stem 9 Anatomy of the spinal cord 9 Anatomy of the brain stem 14 Chemical anatomy of the central nervous system 16 Monoaminergic transmitters and their receptors 17 Scope ofthe present study 22 Chapterll The Distribution Of Dopamine Immunoreactivity In The Rat, Cat And Monkey Spinal Cord 25 Chapter ill Localization Of Dopamine D2 Receptor In Rat Spinal Cord Identified With Immunocyto­ 47 chemistry And In Situ Hybridization Chapter IV The Distribution Of Dopamine Immunoreactive Fibers And Presumptive Terminals In The 57 Rat Brain Stem.
    [Show full text]
  • R :11 , July/August 1990 733
    AJNR :11 , July/August 1990 733 Demonstration of the Area Postrema with Contrast-Enhanced MR Contrast media that distribute in the extracellular space, such as Discussion iodinated compounds used in cerebral CT and paramagnetic chelates used in MR imaging, do not enter areas of the CNS that have an The circumventricular organs are located along the midline of the intact blood-brain barrier. Studies of the barrier suggest that its brain on the surface of the ventricular system. These structures location is the capillary endothelial cells, which differ from those include the area postrema, subfornical organ, organum vasculosum outside the CNS because of the presence of zona occludens (tight of the lamina terminalis , median eminence, pineal body, and neuro­ junctions), narrow intercellular gaps, nonfenestrated endothelial base­ hypophysis [3-5]. These small structures do not have the typical ment membranes, and absence of pinocytosis [1]. Several brain sites capillary endothelial cell morphology seen in other parts of the brain. do not possess these unique capillary endothelial cells, thus permit­ The circumventricular organs are highly vascular with large perivas­ ting intravascular contrast medium to cross into the brain (i.e., en­ cular spaces into which neuronal processes extend . These structures hancement). These sites include the circumventricular organs, pos­ are central receptor sites for circulating factors in the blood [4). terior pituitary gland, infundibulum , and choroid plexus [1, 2]. In­ In rodents, the area postrema is a central structure in the dorsal creased density in both arteries and veins is seen on enhanced CT, medulla at the junction of the fourth ventricle and central canal of the whereas only areas of nonturbulent venous flow will show increased spinal cord.
    [Show full text]
  • Practical Contouring Guidelines with an MR-Based Atlas Of
    Radiotherapy and Oncology 130 (2019) 113–120 Contents lists available at ScienceDirect Radiotherapy and Oncology journal homepage: www.thegreenjournal.com Original article Practical contouring guidelines with an MR-based atlas of brainstem structures involved in radiation-induced nausea and vomiting ⇑ Arnaud Beddok a,g, , Jean-Christophe Faivre b, Alexandre Coutte a, Jennifer Le Guévelou c, Julien Welmant d, Jean-Baptiste Clavier e, Sébastien Guihard e, Guillaume Janoray f, Valentin Calugaru g, Yoann Pointreau h,i,j, Alexis Lacout k, Julia Salleron b, Michel Lefranc l, Dominique Hasboun m,n, Henri M. Duvernoy o, Juliette Thariat c,p a Department of Radiation Oncology, University Hospital of Amiens; b Lorraine Institute of Cancerology – Alexis-Vautrin Comprehensive Cancer Center, Academic Radiation Oncology & Brachytherapy Department, Vandœuvre-lès-Nancy; c Department of Radiation Oncology, Centre François Baclesse, Caen; d Department of Radiation Oncology, Montpellier Institute of Cancer; e Department of Radiation Oncology, Strasbourg Insitute of Cancerology – Paul Strauss Cancer Center, Strasbourg Cedex; f Department of Radiation Oncology, Tours Regional University Center; g Department of Radiation Oncology, Curie Institute, Paris; h Jean Bernard Radiation Oncology Center, Le Mans; i CORad Department, Henry S Kaplan – Bretonneau Regional University Hospital Center; j CNRS, UMR 7292 ‘‘Génétique, Immunothérapie, Chimie et Cancer”, Tours; k Department of Radiology, Centre médico – chirurgical – ELSAN, Aurillac; l Department of Neurosurgery,
    [Show full text]
  • Brain Atlas of the Japanese Eel: Comparison to Other Fishes
    Mem. Fac. Integrated Arts and Sci., Hiroshima Univ., Ser. IV, Vol. 29 1-25, Dec. 2003 Brain Atlas of the Japanese Eel: Comparison to Other Fishes T. Mukuda1, 2 and M. Ando1* 1 Laboratory of Integrative Physiology, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan. 2 Division of Morphological Analysis, Department of Functional, Morphological and Regulatory Sciences, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan. ABSTRACT The whole brain atlas of the eel was constructed in the first place by Klüver-Barréra’s staining. Eighty one nuclei and thirty fiber tracts were identified in the present study. Basically, the brain topology of the eel was similar to that of the rainbow trout, the goldfish, the zebrafish, and the catfish. However, some details differed from those of other teleosts. The parvocellular preoptic nucleus (PP) was not subdivided, whereas the anterior PP is distinguished from the posterior part in the zebrafish and the rainbow trout. The intermediate thalamic nucleus was not distinguished, whereas it is identified in the zebrafish, the goldfish, and the rainbow trout. The paraventricular organ (PVO) was single, while paired PVOs are observed in the zebrafish. The torus semicircularis (TS) was smaller than that in the goldfish and rainbow trout. The cell size of the nucleus of medial longitudinal fascicle (NMLF) in the tegmentum was larger than that in the glass knifefish and the zebrafish. The protrusion of the nucleus lateralis valvulae (NLV) into the mesencephalic ventricle (VMes) was larger than that in the zebrafish and the rainbow trout. The valvula cerebelli was smaller than those in the goldfish and the zebrafish.
    [Show full text]