Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems International Journal of Molecular Sciences Review Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems Weixia Zhong 1, Omar Shahbaz 2, Garrett Teskey 1, Abrianna Beever 3, Nala Kachour 3, Vishwanath Venketaraman 1,3 and Nissar A. Darmani 1,* 1 Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 East Second Street, Pomona, CA 91766, USA; [email protected] (W.Z.); [email protected] (G.T.); [email protected] (V.V.) 2 School of Medicine, Universidad Iberoamericana, Av. Francia 129, Santo Domingo 10203, Dominican Republic; [email protected] 3 Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; [email protected] (A.B.); [email protected] (N.K.) * Correspondence: [email protected]; Tel.: +1-909-469-5654 Abstract: Nausea and vomiting are common gastrointestinal complaints that can be triggered by diverse emetic stimuli through central and/or peripheral nervous systems. Both nausea and vomiting are considered as defense mechanisms when threatening toxins/drugs/bacteria/viruses/fungi enter the body either via the enteral (e.g., the gastrointestinal tract) or parenteral routes, including the blood, skin, and respiratory systems. While vomiting is the act of forceful removal of gastrointestinal contents, nausea is believed to be a subjective sensation that is more difficult to study in nonhuman species. In this review, the authors discuss the anatomical structures, neurotransmitters/mediators, Citation: Zhong, W.; Shahbaz, O.; and corresponding receptors, as well as intracellular emetic signaling pathways involved in the Teskey, G.; Beever, A.; Kachour, N.; processes of nausea and vomiting in diverse animal models as well as humans. While blockade Venketaraman, V.; Darmani, N.A. of emetic receptors in the prevention of vomiting is fairly well understood, the potential of new Mechanisms of Nausea and Vomiting: classes of antiemetics altering postreceptor signal transduction mechanisms is currently evolving, Current Knowledge and Recent which is also reviewed. Finally, future directions within the field will be discussed in terms of Advances in Intracellular Emetic Signaling Systems. Int. J. Mol. Sci. important questions that remain to be resolved and advances in technology that may help provide 2021, 22, 5797. https://doi.org/ potential answers. 10.3390/ijms22115797 Keywords: nausea; vomiting; emesis; G-protein coupled receptors; signaling pathway; Ca2+; brain- Academic Editor: Henrique Girao stem; the gastrointestinal tract Received: 6 April 2021 Accepted: 21 May 2021 Published: 28 May 2021 1. Introduction Nausea and vomiting are essential protective defense processes by which humans as Publisher’s Note: MDPI stays neutral well as vomit-competent animals tend to avoid ingestion and/or digestion of potentially with regard to jurisdictional claims in toxic substances. Nausea is the unpleasant sensation of having the urge to vomit, whereas published maps and institutional affil- vomiting (emesis) is a physical event and is the forceful expulsion of intestinal and gastric iations. contents through the mouth [1]. Vomiting is often preceded by retching, where the content of gastrointestinal tract is forced into the esophagus, without expulsion of the vomitus [1]. Oftentimes, nausea and vomiting occur on a temporal continuum, but this is not always the case. Sometimes, severe nausea can be present without emesis, and, less frequently, Copyright: © 2021 by the authors. vomiting may be present without nausea. Thus, nausea is no longer considered only a Licensee MDPI, Basel, Switzerland. penultimate step of vomiting [2]. This article is an open access article Nausea and vomiting can be triggered by several mechanisms, as depicted in Figure1 , distributed under the terms and including: (i) toxins/drugs/bacteria/viruses/fungi that enter the lumen of the gastroin- conditions of the Creative Commons testinal and, subsequently, indirectly stimulate the brainstem emetic nuclei located in the Attribution (CC BY) license (https:// dorsal vagal complex via release of local emetic neurotransmitters in the upper gastroin- creativecommons.org/licenses/by/ 4.0/). testinal tract and subsequent activation of corresponding receptors present on vagus nerves Int. J. Mol. Sci. 2021, 22, 5797. https://doi.org/10.3390/ijms22115797 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 34 Int. J. Mol. Sci. 2021, 22, 5797 2 of 33 dorsal vagal complex via release of local emetic neurotransmitters in the upper gastroin- testinal tract and subsequent activation of corresponding receptors present on vagus and/ornerves splanchnic and/or splanchnic nerves; nerves; (ii) toxic (ii) toxic agents/drugs agents/drugs or or infectious infectious organisms organisms that enter enter the bodythe body systemically systemically and and that that may may act act directly directly on on the the dorsal dorsal vagalvagal complex emetic emetic nuclei nuclei in thein brainstem; the brainstem; (iii) (iii) pathologies pathologies in in the the gastrointestinal gastrointestinal tract, tract, whichwhich stimulate vagal vagal affer- afferents orents other or visceral other visceral organs organs (e.g., cardiac), (e.g., cardiac), which which stimulate stimulate visceral visceral afferents; afferents; (iv)emotional (iv) emo- and cognitivetional and stimuli cognitive within stimuli the centralwithin the nervous central system nervous (CNS), system including (CNS), including cerebral cerebral cortex and thecortex limbic and system; the limbic and system; (v) disturbances and (v) disturbanc of the vestibulares of the vestibular nuclei and nuclei cerebellum and cerebellum in motion sicknessin motion [3– 8sickness]. The processes [3–8]. The ofprocesses nausea andof nausea vomiting and vomiting result from result continuous from continuous interactions interactions between the gastrointestinal tract, including its enteric nervous system, the between the gastrointestinal tract, including its enteric nervous system, the CNS, and the CNS, and the autonomic nervous system [9,10]. autonomic nervous system [9,10]. Figure 1. Central and peripheral anatomical sites involved in nausea and vomiting induced by various stimuli. Nausea and vomitingFigure 1. Central can be and generated peripheral by diverseanatomical stimuli sites involved and are mediatedin nausea and by thevomiting bidirectional induced interactionby various stimuli. between Nausea brain and and vomiting can be generated by diverse stimuli and are mediated by the bidirectional interaction between brain and gut. In brief: (1) The brainstem area postrema in the floor of the fourth ventricle lacks blood brain barrier and thus serves gut. In brief: (1) The brainstem area postrema in the floor of the fourth ventricle lacks blood brain barrier and thus serves as directas direct central central receptor receptor sites sites for for circulating circulating and and systemic systemic emeticemetic stimuli stimuli in in the the cerebrospinal cerebrospinal fluid fluid and and the blood the blood [11]. [(2)11 ]. (2) SystemicallySystemically administered administered drugs drugs can can activate activate corresponding corresponding receptors present present on on vagal vagal afferents, afferents, which which project project sensory sensory signalssignals to the to nucleusthe nucleus of theof the solitary solitary tract tract [11 [11,12].,12]. (3) (3) PeripheralPeripheral stimuli stimuli such such as as toxic toxic drugs drugs and and microbials microbials (e.g., (e.g., bacteria bacteria,, viruses,viruses, fungi) fungi) that enterthat enter the lumenthe lumen of the of gastrointestinalthe gastrointestinal tract tract (GIT) (GIT) and and pathologies pathologies in thein the GIT GIT cause cause release release of of local local emetic emetic neurotransmitters/modulators, which subsequently act on the corresponding receptors present on vagal afferents neurotransmitters/modulators, which subsequently act on the corresponding receptors present on vagal afferents and/or and/or stimulate the brainstem area postrema via circulating blood [9,10]. Besides the area postrema and the sensory vagal stimulateafferents, the brainstem the nucleus area of the postrema solitary tract via circulating is also the recipient blood [9 of:,10 (i)]. Besidesdirect neural the area inputs postrema from the and splanchnic the sensory nerves vagal carrying afferents, the nucleus of the solitary tract is also the recipient of: (i) direct neural inputs from the splanchnic nerves carrying sensation caused by diseases of visceral organs (e.g., cardiac, kidney); (ii) brainstem vestibular nuclei collecting signals from vestibular apparatus in inner ear and/or cerebellum, caused by stimuli related to motion sickness and opioid analgesics [13,14]; and (iii) the cerebral cortex and limbic system, which accept and process emotional and cognitive stimuli [3–8]. The nucleus of the solitary tract has output pathways to the dorsal motor nucleus of the vagus, which further project to the upper gastrointestinal tract to produce the vomiting reflex [11]. In addition, the nucleus of the solitary tract has projections to the mid- and forebrain for the perception of nausea [15]. Int. J. Mol. Sci. 2021, 22, 5797 3 of 33 In this article, we will initially describe the underlying neuroanatomical, neurochemi- cal, and receptor basis of diverse causes of nausea
Recommended publications
  • Pathophysiology and Management of Diabetic Gastroenteropathy
    Pathophysiology and management of diabetic gastroenteropathy Meldgaard, Theresa; Keller, Jutta; Olesen, Anne Estrup; Olesen, Søren Schou; Krogh, Klaus; Borre, Mette; Farmer, Adam; Brock, Birgitte; Brock, Christina; Drewes, Asbjørn Mohr Published in: Therapeutic Advances in Gastroenterology DOI: 10.1177/1756284819852047 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC Citation for published version (APA): Meldgaard, T., Keller, J., Olesen, A. E., Olesen, S. S., Krogh, K., Borre, M., Farmer, A., Brock, B., Brock, C., & Drewes, A. M. (2019). Pathophysiology and management of diabetic gastroenteropathy. Therapeutic Advances in Gastroenterology, 12, 1-17. https://doi.org/10.1177/1756284819852047 Download date: 01. Oct. 2021 TAG0010.1177/1756284819852047Therapeutic Advances in GastroenterologyT Meldgaard, J Keller 852047review-article20192019 Therapeutic Advances in Gastroenterology Review Ther Adv Gastroenterol Pathophysiology and management of 2019, Vol. 12: 1–17 DOI:https://doi.org/10.1177/1756284819852047 10.1177/ diabetic gastroenteropathy 1756284819852047https://doi.org/10.1177/1756284819852047 © The Author(s), 2019. Article reuse guidelines: Theresa Meldgaard, Jutta Keller, Anne Estrup Olesen, Søren Schou Olesen, Klaus Krogh, sagepub.com/journals- Mette Borre, Adam Farmer, Birgitte Brock, Christina Brock and Asbjørn Mohr Drewes permissions Abstract: Polyneuropathy is a common complication to diabetes. Neuropathies within the Correspondence to: Theresa Meldgaard enteric nervous system are associated with gastroenteropathy and marked symptoms that Mech-Sense, Department of Gastroenterology and severely reduce quality of life. Symptoms are pleomorphic but include nausea, vomiting, Hepatology, Aalborg dysphagia, dyspepsia, pain, bloating, diarrhoea, constipation and faecal incontinence. The University Hospital, aims of this review are fourfold. First, to provide a summary of the pathophysiology underlying Denmark Department of Clinical diabetic gastroenteropathy.
    [Show full text]
  • MASCC/ESMO ANTIEMETIC GUIDELINE 2016 with Updates in 2019
    1 ANTIEMETIC GUIDELINES: MASCC/ESMO MASCC/ESMO ANTIEMETIC GUIDELINE 2016 With Updates in 2019 Organizing and Overall Meeting Chairs: Matti Aapro, MD Richard J. Gralla, MD Jørn Herrstedt, MD, DMSci Alex Molassiotis, RN, PhD Fausto Roila, MD © Multinational Association of Supportive Care in CancerTM All rights reserved worldwide. 2 ANTIEMETIC GUIDELINES: MASCC/ESMO These slides are provided to all by the Multinational Association of Supportive Care in Cancer and can be used freely, provided no changes are made and the MASCC and ESMO logos, as well as date of the information are retained. For questions please contact: Matti Aapro at [email protected] Chair, MASCC Antiemetic Study Group or Alex Molassiotis at [email protected] Past Chair, MASCC Antiemetic Study Group 3 ANTIEMETIC GUIDELINES: MASCC/ESMO Consensus A few comments on this guideline set: • This set of guideline slides represents the latest edition of the guideline process. • This set of slides has been endorsed by the MASCC Antiemetic Guideline Committee and ESMO Guideline Committee. • The guidelines are based on the votes of the panel at the Copenhagen Consensus Conference on Antiemetic Therapy, June 2015. • Latest version: March 2016, with updates in 2019. 4 ANTIEMETIC GUIDELINES: MASCC/ESMO Changes: The Steering Committee has clarified some points: 2016: • A footnote clarified that aprepitant 165 mg is approved by regulatory authorities in some parts of the world ( although no randomised clinical trial has investigated this dose ). Thus use of aprepitant 80 mg in the delayed phase is only for those cases where aprepitant 125 mg is used on day 1. • A probable modification in pediatric guidelines based on the recent Cochrane meta-analysis is indicated.
    [Show full text]
  • Clinical Practice Guideline for Emergency Department Ketamine Dissociative Sedation: 2011 Update
    PAIN MANAGEMENT/CONCEPTS Clinical Practice Guideline for Emergency Department Ketamine Dissociative Sedation: 2011 Update Steven M. Green, MD, Mark G. Roback, MD, Robert M. Kennedy, MD, Baruch Krauss, MD, EdM From the Department of Emergency Medicine, Loma Linda University Medical Center and Children’s Hospital, Loma Linda, CA (Green); the Department of Pediatrics, University of Minnesota, Minneapolis, MN (Roback); the Division of Emergency Medicine, St. Louis Children’s Hospital, Washington University, St. Louis, MO (Kennedy); and the Division of Emergency Medicine, Children’s Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, MA (Krauss). We update an evidence-based clinical practice guideline for the administration of the dissociative agent ketamine for emergency department procedural sedation and analgesia. Substantial new research warrants revision of the widely disseminated 2004 guideline, particularly with respect to contraindications, age recommendations, potential neurotoxicity, and the role of coadministered anticholinergics and benzodiazepines. We critically discuss indications, contraindications, personnel requirements, monitoring, dosing, coadministered medications, recovery issues, and future research questions for ketamine dissociative sedation. [Ann Emerg Med. 2011;xx:xxx.] 0196-0644/$-see front matter Copyright © 2011 by the American College of Emergency Physicians. doi:10.1016/j.annemergmed.2010.11.030 INTRODUCTION thalamocortical and limbic systems, effectively dissociating the The dissociative
    [Show full text]
  • Mycotoxins: a Review of Dairy Concerns
    Mycotoxins: A Review of Dairy Concerns L. W. Whitlow, Department of Animal Science and W. M. Hagler, Jr., Department of Poultry Science North Carolina State University, Raleigh, NC 27695 Introduction mycotoxins such as the ergots are known to affect cattle and may be prevalent at times in certain feedstuffs. Molds are filamentous (fuzzy or dusty looking) fungi that occur in many feedstuffs including roughages and There are hundreds of different mycotoxins, which are concentrates. Molds can infect dairy cattle, especially diverse in their chemistry and effects on animals. It is during stressful periods when they are immune likely that contaminated feeds will contain more than one suppressed, causing a disease referred to as mycosis. mycotoxin. This paper is directed toward those Molds also produce poisons called mycotoxins that affect mycotoxins thought to occur most frequently at animals when they consume mycotoxin contaminated concentrations toxic to dairy cattle. A more extensive feeds. This disorder is called mycotoxicosis. Mycotoxins review is available in the popular press (Whitlow and are produced by a wide range of different molds and are Hagler, 2004). classified as secondary metabolites, meaning that their function is not essential to the mold’s existence. The Major toxigenic fungi and mycotoxins thought to be U.N.’s Food and Agriculture Organization (FAO) has the most prevalent and potentially toxic to dairy cattle. estimated that worldwide, about 25% of crops are affected annually with mycotoxins (Jelinek, 1987). Such surveys Fungal genera Mycotoxins reveal sufficiently high occurrences and concentrations of Aspergillus Aflatoxin, Ochratoxin, mycotoxins to suggest that mycotoxins are a constant Sterigmatocystin, Fumitremorgens, concern.
    [Show full text]
  • Antiemetics/Antivertigo Agents
    Antiemetic Agents Therapeutic Class Review (TCR) May 1, 2019 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected]. May 2019 Proprietary Information. Restricted Access – Do not disseminate or copy without approval. © 2004-2019 Magellan Rx Management. All Rights Reserved. 3 FDA-APPROVED INDICATIONS Drug Manufacturer Indication(s) NK1 receptor antagonists aprepitant capsules generic, Merck In combination with other antiemetic agents for: (Emend®)1 .
    [Show full text]
  • Revised Use-Function Classification (2007)
    INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY IPCS INTOX Data Management System (INTOX DMS) Revised Use-Function Classification (2007) The Use-Function Classification is used in two places in the INTOX Data Management System: the Communication Record and the Agent/Product Record. The two records are linked: if there is an agent record for a Centre Agent that is the subject of a call, the appropriate Intended Use-Function can be selected automatically in the Communication Record. The Use-Function Classification is used when generating reports, both standard and customized, and for searching the case and agent databases. In particular, INTOX standard reports use the top level headings of the Intended Use-Functions that were selected for Centre Agents in the Communication Record (e.g. if an agent was classified as an Analgesic for Human Use in the Communication Record, it would be logged as a Pharmaceutical for Human Use in the report). The Use-Function classification is very important for ensuring harmonized data collection. In version 4.4 of the software, 5 new additions were made to the top levels of the classification provided with the system for the classification of organisms (items XIV to XVIII). This is a 'convenience' classification to facilitate searching of the Communications database. A taxonomic classification for organisms is provided within the INTOX DMS Agent Explorer. In May/June 2006 INTOX users were surveyed to find out whether they had made any changes to the Use-Function Classification. These changes were then discussed at the 4th and 5th Meetings of INTOX Users. Version 4.5 of the INTOX DMS includes the revised pesticides classification (shown in full below).
    [Show full text]
  • Mol.116.105981.Full.Pdf
    Molecular Pharmacology Fast Forward. Published on September 13, 2016 as DOI: 10.1124/mol.116.105981 This article has not been copyedited and formatted. The final version may differ from this version. MOL #105981 CURRENT KNOWLEDGE AND PERSPECTIVES FOR HISTAMINE H1 AND H2 RECEPTOR PHARMACOLOGY. FUNCTIONAL SELECTIVITY, RECEPTOR CROSSTALK AND REPOSITIONING OF CLASSIC HISTAMINERGIC LIGANDS. Downloaded from Federico Monczor and Natalia Fernandez. Instituto de Investigaciones Farmacológicas, ININFA. Universidad de Buenos Aires—Consejo molpharm.aspetjournals.org Nacional de Investigaciones Científicas y Técnicas, CONICET. Buenos Aires, Argentina. at ASPET Journals on September 28, 2021 1 Molecular Pharmacology Fast Forward. Published on September 13, 2016 as DOI: 10.1124/mol.116.105981 This article has not been copyedited and formatted. The final version may differ from this version. MOL #105981 Running title: Current and perspectives for histamine receptors pharmacology. Corresponding author: Federico Monczor. Laboratorio de Farmacología de Receptores. Instituto de Investigaciones Farmacológicas, ININFA. Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Junin 956 (1113) Buenos Aires, Argentina. Tel:+54-11-5287-4856. e-mail: [email protected]. Total text pages: 41 Downloaded from Tables: 2 Figures: 1 References: 125 molpharm.aspetjournals.org Abstract words: 222 Abbreviations: AML, acute myeloid leukemia; ATP, adenosine triphosphate; GTP, guanosine triphosphate; AC, adenylyl cyclase; IP, inositol
    [Show full text]
  • THE USE of MIRTAZAPINE AS a HYPNOTIC O Uso Da Mirtazapina Como Hipnótico Francisca Magalhães Scoralicka, Einstein Francisco Camargosa, Otávio Toledo Nóbregaa
    ARTIGO ESPECIAL THE USE OF MIRTAZAPINE AS A HYPNOTIC O uso da mirtazapina como hipnótico Francisca Magalhães Scoralicka, Einstein Francisco Camargosa, Otávio Toledo Nóbregaa Prescription of approved hypnotics for insomnia decreased by more than 50%, whereas of antidepressive agents outstripped that of hypnotics. However, there is little data on their efficacy to treat insomnia, and many of these medications may be associated with known side effects. Antidepressants are associated with various effects on sleep patterns, depending on the intrinsic pharmacological properties of the active agent, such as degree of inhibition of serotonin or noradrenaline reuptake, effects on 5-HT1A and 5-HT2 receptors, action(s) at alpha-adrenoceptors, and/or histamine H1 sites. Mirtazapine is a noradrenergic and specific serotonergic antidepressive agent that acts by antagonizing alpha-2 adrenergic receptors and blocking 5-HT2 and 5-HT3 receptors. It has high affinity for histamine H1 receptors, low affinity for dopaminergic receptors, and lacks anticholinergic activity. In spite of these potential beneficial effects of mirtazapine on sleep, no placebo-controlled randomized clinical trials of ABSTRACT mirtazapine in primary insomniacs have been conducted. Mirtazapine was associated with improvements in sleep on normal sleepers and depressed patients. The most common side effects of mirtazapine, i.e. dry mouth, drowsiness, increased appetite and increased body weight, were mostly mild and transient. Considering its use in elderly people, this paper provides a revision about studies regarding mirtazapine for sleep disorders. KEYWORDS: sleep; antidepressive agents; sleep disorders; treatment� A prescrição de hipnóticos aprovados para insônia diminuiu em mais de 50%, enquanto de antidepressivos ultrapassou a dos primeiros.
    [Show full text]
  • Activation of 5-HT2C (But Not 5-HT1A) Receptors in the Amygdala Enhances Fear-Induced Antinociception: Blockade with Local 5-HT2C Antagonist Or Systemic fluoxetine
    Neuropharmacology 135 (2018) 376e385 Contents lists available at ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm Activation of 5-HT2C (but not 5-HT1A) receptors in the amygdala enhances fear-induced antinociception: Blockade with local 5-HT2C antagonist or systemic fluoxetine Lígia Renata Rodrigues Tavares a, b, Daniela Baptista-de-Souza a, c, * Azair Canto-de-Souza a, b, c, d, a Psychobiology Group, Department of Psychology/CECH- Federal University of Sao~ Carlos-UFSCar, Sao~ Carlos, Sao~ Paulo, 13565-905, Brazil b Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Sao~ Carlos, Sao~ Paulo, 13565-905, Brazil c Neuroscience and Behavioral Institute-IneC, Ribeirao~ Preto, Sao~ Paulo, 14040-901, Brazil d Program in Psychology UFSCar, Sao~ Carlos, Sao~ Paulo, 13565-905, Brazil article info abstract Article history: It is well-known that the exposure of rodents to threatening environments [e.g., the open arm of the Received 17 August 2017 elevated-plus maze (EPM)] elicits pain inhibition. Systemic and/or intracerebral [e.g., periaqueductal gray Received in revised form matter, amygdala) injections of antiaversive drugs [e.g., serotonin (5-HT) ligands, selective serotonin 5 March 2018 reuptake inhibitors (SSRIs)] have been used to change EPM-open arm confinement induced anti- Accepted 6 March 2018 nociception (OAA). Here, we investigated (i) the role of the 5-HT and 5-HT receptors located in the Available online 13 March 2018 1A 2C amygdaloid complex on OAA as well as (ii) the effects of systemic pretreatment with fluoxetine (an SSRI) on the effects of intra-amygdala injections of 8-OH-DPAT (a 5-HT1A agonist) or MK-212 (a 5-HT2C agonist) Keywords: fi Amygdala on nociception in mice con ned to the open arm or enclosed arm of the EPM.
    [Show full text]
  • HHS Template for Reports, with Instructions
    Texas Vendor Drug Program 1.1 Drug Use Criteria: Substance P/Neurokinin1 Receptor Antagonists Publication History 1. Developed December 2003. 2. Revised September 2020; September 2018; September 2016; May 2015; August 2013; June 2013; September 2011; October 2009; February 2006; January 2006. Notes: Information on indications for use or diagnosis is assumed to be unavailable. All criteria may be applied retrospectively; prospective application is indicated with an asterisk [*]. The information contained is for the convenience of the public. The Texas Health and Human Services Commission is not responsible for any errors in transmission or any errors or omissions in the document. Medications listed in the tables and non-FDA approved indications included in these retrospective criteria are not indicative of Vendor Drug Program formulary coverage. Prepared by: • Drug Information Service, UT Health San Antonio. • The College of Pharmacy, The University of Texas at Austin. 1 1 Dosage [*] Current therapies for chemotherapy-induced nausea/vomiting (CINV) and post- operative nausea and vomiting (PONV) target corticosteroid, dopamine, and serotonin (5-HT3) receptors. In the central nervous system, tachykinins and neurokinins play a role in some autonomic reflexes and behaviors. Aprepitant is a selective human substance P/neurokinin 1 (NK1) antagonist with a high affinity for NK1 receptors and little, if any, attraction for corticosteroid, dopamine, or 5-HT3 receptors. Rolapitant (Varubi®), the newest substance P/NK1 antagonist, is FDA- approved to prevent delayed CINV with initial and repeat chemotherapy courses including, but not limited to, highly emetogenic chemotherapy in adults. Combination therapy including netupitant, a substance P/NK1 antagonist and palonosetron, a selective 5-HT3 receptor antagonist (Akynzeo®), is now available to prevent acute and delayed CINV with initial and repeat chemotherapy courses including, but not limited to, highly emetogenic chemotherapy in adults.
    [Show full text]
  • Pathophysiology, Differential Diagnosis and Management of Rumination Syndrome Kathleen Blondeau, Veerle Boecxstaens, Nathalie Rommel, Jan Tack
    Review article: pathophysiology, differential diagnosis and management of rumination syndrome Kathleen Blondeau, Veerle Boecxstaens, Nathalie Rommel, Jan Tack To cite this version: Kathleen Blondeau, Veerle Boecxstaens, Nathalie Rommel, Jan Tack. Review article: pathophysiol- ogy, differential diagnosis and management of rumination syndrome. Alimentary Pharmacology and Therapeutics, Wiley, 2011, 33 (7), pp.782. 10.1111/j.1365-2036.2011.04584.x. hal-00613928 HAL Id: hal-00613928 https://hal.archives-ouvertes.fr/hal-00613928 Submitted on 8 Aug 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Alimentary Pharmacology & Therapeutic Review article: pathophysiology, differential diagnosis and management of rumination syndrome ForJournal: Alimentary Peer Pharmacology Review & Therapeutics Manuscript ID: APT-1105-2010.R2 Wiley - Manuscript type: Review Article Date Submitted by the 09-Jan-2011 Author: Complete List of Authors: Blondeau, Kathleen; KULeuven, Lab G-I Physiopathology Boecxstaens, Veerle; University of Leuven, Center for Gastroenterological Research Rommel, Nathalie; University of Leuven, Center for Gastroenterological Research Tack, Jan; University Hospital, Center for Gastroenterological Research Functional GI diseases < Disease-based, Oesophagus < Organ- Keywords: based, Diagnostic tests < Topics, Motility < Topics Page 1 of 24 Alimentary Pharmacology & Therapeutic 1 2 3 EDITOR'S COMMENTS TO AUTHOR: 4 Please consider the points raised by the reviewers.
    [Show full text]
  • AVMA Guidelines for the Depopulation of Animals: 2019 Edition
    AVMA Guidelines for the Depopulation of Animals: 2019 Edition Members of the Panel on Animal Depopulation Steven Leary, DVM, DACLAM (Chair); Fidelis Pharmaceuticals, High Ridge, Missouri Raymond Anthony, PhD (Ethicist); University of Alaska Anchorage, Anchorage, Alaska Sharon Gwaltney-Brant, DVM, PhD, DABVT, DABT (Lead, Companion Animals Working Group); Veterinary Information Network, Mahomet, Illinois Samuel Cartner, DVM, PhD, DACLAM (Lead, Laboratory Animals Working Group); University of Alabama at Birmingham, Birmingham, Alabama Renee Dewell, DVM, MS (Lead, Bovine Working Group); Iowa State University, Ames, Iowa Patrick Webb, DVM (Lead, Swine Working Group); National Pork Board, Des Moines, Iowa Paul J. Plummer, DVM, DACVIM-LA (Lead, Small Ruminant Working Group); Iowa State University, Ames, Iowa Donald E. Hoenig, VMD (Lead, Poultry Working Group); American Humane Association, Belfast, Maine William Moyer, DVM, DACVSMR (Lead, Equine Working Group); Texas A&M University College of Veterinary Medicine, Billings, Montana Stephen A. Smith, DVM, PhD (Lead, Aquatics Working Group); Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia Andrea Goodnight, DVM (Lead, Zoo and Wildlife Working Group); The Living Desert Zoo and Gardens, Palm Desert, California P. Gary Egrie, VMD (nonvoting observing member); USDA APHIS Veterinary Services, Riverdale, Maryland Axel Wolff, DVM, MS (nonvoting observing member); Office of Laboratory Animal Welfare (OLAW), Bethesda, Maryland AVMA Staff Consultants Cia L. Johnson, DVM, MS, MSc; Director, Animal Welfare Division Emily Patterson-Kane, PhD; Animal Welfare Scientist, Animal Welfare Division The following individuals contributed substantively through their participation in the Panel’s Working Groups, and their assistance is sincerely appreciated. Companion Animals—Yvonne Bellay, DVM, MS; Allan Drusys, DVM, MVPHMgt; William Folger, DVM, MS, DABVP; Stephanie Janeczko, DVM, MS, DABVP, CAWA; Ellie Karlsson, DVM, DACLAM; Michael R.
    [Show full text]