Summary of lnvestigations1

K. 0. EMERY and J. M. HUNT'

Abstract The Black Sea consists of a shelf, basin southeastern Black Sea to gain the Golden slope, bosin opron, ond Iorge ond smoll abyssal plains. Fleece. In more prosaic terms, the Greek cruise Its maximum depth is 2,206 m and water volume is 534,000 km3, of which about 90 percent is anaerobic. which was made about that time was designed It contains 8-14 km of sedimentary units; the thickest for, and succeeded in, the theft of sheepskins part is in the central basin area. Basin slopes are under­ that hard-working placer miners used to floor loin by buried peripheral ridges and troughs similar to sluice boxes in order to trap fine-grained gold. those of known coastal oil-producing regions. The sedi­ mentary units are underlain by 0-15 km of presumably This voyage was the beginning of a major metamorphic rocks which thicken landward. An addi­ change in the trade lines of civilization-from tional 6-22 km of basaltic rocks overlies the Mohorovicic the perilous land routes that had created the discontinuity. The sea was formed from eugeosynclines wealth of Egypt and the Near East to water that dale from Early Jurassic time. Numerous coastal terraces ranging up to 105 m above sea level show routes. These water routes developed from that deformation is still active. The sea was a fresh­ Europe and Africa into Asia through the water lake during the Wiirm glacial stage, and the Aegean and Black Seas, causing a shift in the later invasion of seawater caused stratification and center of wealth. As Egypt, Mesopotamia, and forma:ion of an cn:�erobic layer, which is now 200 m below the sea surface and is still rising. Water at 300 m then Persia withered, Phoenicia and Greece is 900 years old; the age increases to 2,000 years at blossomed. What drew mariners to the Aegean 2,000 m. Trace metals such as iron and manaanese area were the islands, strewn like jewels in all diffuse upward from the hydrogen sulfide water and directions so that ships could sail east, west, are precipitated in the oxygenated water, causing a high concentration of suspended pariicles above the north, or south and never be more than 40 mi hydrogen sulfide-oxygen interface. The sediments in­ from land. The mountains were a welcome clude cocco:ith ooze, sapropel beds, and banded lutites beacon to ships that had no compass to guide in the basins, and silt and s:�nd on the shelves. them. The Greeks called the Mediterranean Ho Annu:�l river inflow of 374 km3 includes about 150 million tons of solids in suspension. O:ganic carbon Pontos, the "passage" or "road," and the Black in sediments ranges from 0.5 percent in those deposited Sea was termed Ho Pontos Euxeinos, the "pas­ during the freshwa!er era to 5-15 percent in the pre­ sage kindly to guests," probably because its dominantly land-derived sediments deposited in the coastal currents carried their ships north to brackish-water environment. Anaero�ic bacteria, which form the bulk of the hydrogen sulfide by reduction of fetch grains, fish, and furs, and its strong cen­ dissolved sulfate, were identified near the hydrogen tral current flowed south to carry the mariners sulfide-oxygen water interface. Studies of Sr81 /Sr86 ratios home. Also, the northeasterly winds blew regu­ in the carbonates of the sediments show that shells in the daeper co:es are reworked from Cretaceous-Tertiary larly in the summer to help ships back to sedimentary units. Reactive ferrous iron is concentrated southern ports. The modern name is a transla­ in the deep-water sediments as hydrotroilite and pyrite, tion of Karadeniz (black), the name given to in contrast with unreactive ircn, which is present as the sea by the Turks, who feared its stormy magnetite and hem:�tite on the shelves. Methane focming in the sediments diffuses upward into the water where expanse. it recches concen"rclions of 0.1 ml/1 in the hyp:>limn:on As the Greeks moved north into the Black comp:Jred with about 7 ml/1 in the oxygenated Sea seeking grain, furs, metal, and trade, they X w-' wa:·ers. A comparison of the Bbck Sea, Red Se:�, and founded one city after another along the south­ Dac:d Sea shows wide ranges in water composition, sediment properties, and o:ganic activity that are con­ ern, eastern, and western shores of the sea. trolled by the position of the bos'n sills relative to the Strabo mentioned Sinope, where the cynic Di­ fluctuating level of the open ocean. ogenes was born, as a city splendidly adorned with gymnasium, agora, and shady colonnades. INTRODUCTION Trapezus, on the south shore, is where Xen-

Manuscript received, March 9, 1972. Woods Hole The earEest description of the Black Sea is 1 in the legendary "Voyage of the Argonauts," Oceanographic Institution Contribution No. 2831. 2 Woods Hole Oceanographic Institution, Woods which is supposed to have occurred about 3,200 Hole, Massachusetts. years ago. Jason and his crew of heroes sailed This research was supported by National Science aboard Argo to the coast of Colchis in the Foundation Grants GA-1659 and GA-25234.

575

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 576 K. 0. Emery and J. M. Hunt

ophon's 10,000 shouted with joy at the sight 25,000 stadia. These measurements correspond of the longed-for sea. to 1,100, 390, and 3,900 km, if 700 of Strabo's Around 660 B.C., Byzantium (now Istan­ stadia equal 1 degree of latitude-and they are bul) was built, and the city soon grew rich by nearly correct. Many other geographic details exacting tolls from passing vessels and export­ (topography, names of cities, etc.) were noted ing the grain of southern (Scythia) to for the Black Sea region by Strabo, showing Greece. Also exported were the fish that were that the region had become well traveled and easily netted as they crowded through the nar­ well known. Similar descriptions were provided row straits. Under Pericles, the Greeks levied about 50 years later by Pliny (Books IV and tolls at Byzantium and regulated the export of VI), indicating that he might have used the grain from the Black Sea as a contraband of same source materials. war. Generations later, Napoleon was to call Strato (according to Strabo-Book I, chap. this strategic port "the key to Europe." 3) was of the opinion that there formerly was Prosperity of the region led Persian King no exit from the Black Sea, but that the rivers Darius I to build a bridge of ships. across the entering it had eventually forced their way Hellespont to invade Greece, where he was de­ through the Bosporus. He suggested that this feated at Marathon in 490 B.C. His son, Xerxes, river flow accounts for the low salinity of the assembled a larger army and a navy largely Black Sea as well as its infilling with sedi­ contributed by the Phoenicians. His army also ments. Strabo also wrote that Posidonius, Hip­ crossed the Hellespont by a double-pontoon parchus, and Eratosthenes thought the flow in bridge, defeated the Greek guard under Leo­ the Bosporus to be in one direction, away from nidas at Thermopylae, and captured Athens. the Black Sea, not reversing itself twice a day However, when his fleet was destroyed by the as a tide following the moon; furthermore, they Greeks under Themistocles at Salamis in 480 thought there was no flow at all at times. B.C., Xerxes' army had to withdraw. At the The role of the Bosporus as a passage for time of the invasion by Darius, his ships mea­ navies and a barrier for armies continued sured the dimensions of the Black Sea (as re­ through the Crusades. When the armies of the corded by Herodotus, Book IV, chap. 86) in First Crusade reached Constantinople (Byzan­ terms of days and nights of sailing. These mea­ tium) in 1096-1097 A.D., they were ferried surements convert to 2,050 by 600 km. The across the Bosporus and given supplies by the dimensions are nearly double the actual ones, Greek. Orthodox bishop Alexis to keep the but their ratio is correct. Herodotus also re­ city safe from pillage. The largely Latin Fourth ferred to the shape of the southern shore as Crusade in 1202-1204 A.D. was diverted and similar to that of a Scythian bow with recurved captured Constantinople-never crossing the tips. More detailed measurements of the Bos­ Bosporus in force. Nothing seems to have been porus, the Sea of Marmara (Propontus), and learned about the Black Sea by the crusaders, the Dardanelles (Hellespont) were noted in who considered it only as an obstacle to be connection with the building of the pontoon avoided. In 1453, when ships of the Venetian bridge. Herodotus' descriptions of the rivers allies failed to arrive in time to help the Greeks, that drain into the Black Sea, and of the Sea of Constantinople was captured again, by the Otto­ Azov, provide evidence of his own observations man Turk Sultan Mahmud II, and renamed and of good information by others who had "Istanbul." For the next 300 years the Turks visited the numerous Greek colonies along the excluded all ships except their own from the shores. In fact, by 350 B.C., about half of Black Sea. In 1774 the right to trade was ceded Athen's grain came from the vicinity of the Sea to the Russians in the Treaty of Kainarji, and of Azov. by 1802 most of Europe was plying the Black The first soundings in the Black Sea were Sea freely. The military importance of the mentioned in 330 B.C. by Aristotle (Book I, straits even in later wars is illustrated by the chap. 13), who said that the sea is unfathomable capture of the Gelibolu Peninsula along the 10 mi offshore where "fresh water from the east side of the Dardanelles by the British and Caspian Sea rises to the surface." By 19 A.D., French troops in 1854. A similar attack by the Strabo (Book II, chap. 21) was able to provide British and French in 1915 was repelled by the a little better description of the Black Sea than Turks. Nevertheless, the Bosporus and the Herodotus had about 450 years earlier. His Black Sea remain the boundary between Europe records show the Black Sea to be about 7,000 (named for Europa, princess of Tyre, who was by 2,500 stadia, with a circumference of about kidnfipped by the Greeks, who in turn lost

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Summary of Black Sea Investigations 577

Helen to the Trojans) and Asia (named for Red Sea sediments? During the 7-week cruise the wife of Prometheus, who stole fire from (March 16 to May 7, 1969) in the Black Sea, heaven for the benefit of man). R/V Atlantis II carried scientists from Ger­ Russian oceanographic expeditions in the many, Turkey, Sweden, Italy, Great Britain, Black Sea began in 1890, and they have con­ and the USSR, as well as from several univer­ tinued with increasing frequency to the present. sities in the United States, in the search for an­ It was quickly discovered that salinity of the swers to these questions of scientific interest. water is about half that of the Mediterranean After the cruise, both sediment and water Sea and that dilute water flows out at the sur­ samples were sent to scientists in 10 countries face and saline water flows in at depth through for more detailed studies. This book is the the Bosporus. Moreover, the water deeper than compilation of their work. 200 m is anoxic and devoid of life larger than bacteria, in contrast with the abundant life in GEOLOGICAL AND GEOPHYSICAL SETTING the near-surface water. Drawing parallels with A knowledge of the topography, stratigraphy, the Black Sea, biologists have termed anaerobic and structure of the Black Sea serves as a waters everywhere "euxinic," apparently un­ record of its origin and general history-when aware that the name really means "hospitable." it began and what general extremes in proper­ In the absence of disturbance by benthic ani­ ties were reached by the waters during tens of mals, the sediments at depths greater than 200 millions of years. m must preserve the variations in sediments New soundings (Ross et al., this volume) from above as laminae or layers having seasonal substantiate previous charts (Smirnow, 1958) or longer cycles. Many of the characteristics of for the general form and maximum depth water, life, and sediments have been described (2,206 m). The new data serve as the basis for in approximately 2,000 articles published prior a hypsometric curve that shows a total volume to 1970 (Laking, 1970). However, at that time, of 534,000 km3 and a volume of the anaerobic virtually no work had been done using modern water (below 200 m) of 423,000 km3 (Deuser, methods and instruments of geophysics and this volume) . The new echograms also permit geochemistry. subdivision of the bottom into physiographic Sophisticated methods had provided much units: shelf, basin slope, basin apron, and large new information about the metalliferous brine and small (western) abyssal plains. The unit areas of the Red Sea during the 1966 expedi­ nearest to shore is the shelf, whose width ranges tion of the R/V Chain, organized by J. M. from less than 20 km to about 190 km. Its Hunt of the Woods Hole Oceanographic Insti­ seaward edge is at a depth of about 100 m, tution and funded by the National Science except along the northern coast, where it is Foundation (Degens and Ross, 1969). The more nearly 130 m. The basin slope is steepest Foundation supported a similar expedition for off the bordering highlands, where it also is dis­ the R/V Atlantis to investigate the Black Sea ll sected by most of the 75 recognizable subsea during 1969. The specific objectives of the canyons. Gentler and smoother basin slopes lie cruise were to gain a better understanding of opposite the northwestern end (the Danube ( 1) the chemical and biological interaction be­ fan) and the , as though large vol­ tween the aerobic and anaerobic waters, (2) umes of sediment had blanketed these two the origin and geologic history of the sea, and slopes. Canyons on both kinds of basin slopes ( 3) the source and nature of the sediments. can be traced into the basin aprons. Presuma­ Answers were sought to questions such as the bly, most of the canyons are relicts of stream following. What is the nature of the contact erosion at low interglacial levels of the Black between aerobic and anaerobic waters-does it Sea, but a net of small canyons opposite the consist of several overriding thin layers, or Bosporus may be due to the subsea flowof dense is it smoothly gradational? What is the resi­ Mediterranean water. In somewhat the same dence time of water above and below the oxy­ manner, outflowing Mediterranean water has gen discontinuity? Are life forms other than produced topographic features outside the Strait sulfate-reducing bacteria important at depth? of Gibraltar (Heezen and Johnson, 1969). Are heavy metals precipitated as sulfides? What Other irregularities that occur on the basin can be inferred about past climates and sea aprons are large angular blocks formed by levels from the planktonic organic remains in slumping and round symmetrical hills probably the sediments, and how similar are these cli­ caused by bottom currents. Except for these ir­ mates and sea levels to those estimated from regularities, the basin apron is smooth and has

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 578 K. 0. Emery and J. M. Hunt

a slope between 1:40 and 1:1,000. The Euxine 3 km/sec and probably is of early Neogene abyssal plains have slopes gentler than 1:1, 000 and late Paleogene ages. Deepest of the sedi­ and probably owe their origin to turbidites. mentary units is a layer 2-8 km thick; it has a Many subbottom acoustic reflections penetrate velocity of 4-5 km/sec and probably is Eocene 5-10 m around the entire basin slope except in to Cretaceous in age. The total thickness of the the northwest at the Danube fan. Such acoustic sedimentary section is 8-14 km. It is thickest reflectors also occur beneath the basin apron and in the central basin area where the layers are abyssal plains except in the eastern quarter of horizontal. Around the basin sides the layers the seafloor. are disturbed and overlie many irregularities in Deeper stratification beneath the floor of the basement topography. Two kinds of underlying Black Sea was shown by continuous seismic re­ basement rock are present. Topmost is rock flection profiles .(Ross, Uchupi, and Bowin, this that is confined to the sides of the basin; it volume) to about 1 km depth. According to thickens landward and beyond to about 15 km, these profiles, the bottom is almost horizontally and its acoustic velocity is 5.8-6.3 km/ sec. stratified beneath the abyssal plains and the Although termed "granitic," this layer is lower basin apron. Deformation due to sliding, thought to consist of metamorphosed ancient faulting, and probably differential compaction sedimentary rocks. Directly beneath the strata is common beneath the upper basin apron and of the central basin and beneath the "granitic" the basin slopes. Many of the profiles acrcss rock at the basin sides is a layer that is 6-22 the basin slopes, particularly those of the south km thick and has a velocity of 6.6-7.0 km/sec. side, reveal the presence of a buried peripheral It is termed "basaltic" and is believed to be ridge that is bounded by a family of normal gabbro. Thus the total crust is 18-45 km thi::k faults on the basin side and by a trough on the -being thinnest beneath the central basin­ landward side. The trough served as a trap for and overlies the MohoroviCic di�continuity (the land-derived sediments that filled it to over­ top of the mantle, where acoustic v�locitie> are flowing. The peripheral ridge and trough are 8.0-8.2 km/ sec). Confirmation of the base­ very similar to features that underlie con'inental ment structure inferred from the seisrric data shelves and slopes of most tectonic coasts of is provided by the correspondence of m�gnetic the Pacific and other oceans (Emery, 1968). discontinuities to the tops of the "basaltic" and The ridges beneath the Black Sea produce posi­ the "granitic" layers. Additional mpport is pro­ tive gravity anomalies, because the basement vided by the fact that earthquake activity gen­ rock in the ridges has a greater density than the erally restricted to the scu�hern margin of i:> sedimentary units on either side of them. The the Bhck Sea, and focal dep'hs are hss than 30 gravity measurements detected the basement km (Canitez and Toksoz, 1970). These ear'h­ ridges from greater depth than could be reached quake epicenters are within the narrow Alpine­ by seismic reflection; the gravity anomalies oc­ Himalayan seismic belt (Barazangi and D:Jr­ cur around the perimeter of the Black Sea ex­ man, 1969). cept just offthe Crimea. Much of the length of Information about the mantle is provided the ridge also produced magnetic anomalies, mainly by mea

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Summary of Black Sea Investigations 579

"granitic" layer beneath -the basin suggests that subsidence of the Black Sea area was accom­ erosion from above is the cause of the basin. panied by the emplacement of igneous dikes This erosion may have been the result of ther­ south of the sea; they are further evidence of mal expansion of the upper mantle during a relaxation and extension of the crust. Clearly, stage of convergence between the Eurasian and the geological and the geophysical data closely African plates. The topographic bulge would support each other in revealing the history of have been removed by subaerial erosion and the Black Sea basin. Many details of the struc­ the debris stored in adjacent geosynclines. tural evolution of the region are provided by Eventual relaxation of the compressive forces geologic maps. Such maps show that folds, would have allowed partial cooling and settling faults, and intrusions closely follow the trends of the crustal surface, thus producing the Black of the ancient geosynclines, which spread apart Sea basin. Subsequent deposition of sediment like the sides of a lens to enclose the present would have weighted the basin floorand caused area of the Black Sea (Tsagareli, this volume) . continuing subsidence. Deformation has continued to the present, as A record of the diastrophic history of the indicated by the numerous terraces that sur­ Black Sea basin is preserved in the sedimentary round the Black Sea. Along the coast of Bul­ strata of the surrounding region, in which the garia are seven such terraces that range up to nature and position of the sedimentary rocks 105 m above sea level (Vuchev, this volume). are the facts from which geologic inferences Differences in elevation of the terraces else­ can be drawn. Brinkmann (this volume) where serve as a measure of the Quaternary shows that during early Paleozoic time the deformation. site of the present Black Sea was a land area \VATER that shed debris from Precambrian meta­ morphic and igneous rocks (Pontian landmass) An understanding of the water sources, strati­ both north and south into bordering geosyn­ fication, and residence time under present con­ clines. By late Paleozoic time these geosyn­ ditions provides a basis for inferring how even clines had become better defined, and present slight changes in these factors could have pro­ outcrops permit their recognition. Eugeosyn­ duced large changes in the water properties dur­ clines, deep-water areas receiving thousands of ing prehistoric times. meters thickness of graywackes and volcanic The key to many of the water characteristics materials, then bordered both north and south of the Black Sea is the Bosporus (Gunnerson sides. The eugeosyncline at the north in turn and bzturgut, this volume; Scholten, this vol­ was bordered by another erosional area on the ume) . The strait is a narrow, slightly winding Russian platform. The one at the south side channel 31 km long. A southern sill is present was bordered by a miogeosyncline that received at about 33 m depth, but has elongate holes as shallow-water sands, clays, and carbonate ma­ deep as 110 m. A subsea canyon can be traced terial; it in turn was bordered by a shelf region. southward to a depth of 70 m in the Sea of By Early Jurassic time the two eugeosynclines Marmara, and several small canyons radiate had become deeper and narrower, and their northward to depths of at least 2,000 m in the sediments were partly folded and intruded by Black Sea. Bridge borings reveal gravel fill granodiorite. Sediments on the Black Sea sides atop a bedrock channel that lies about 100 m of each eugeosyncline began to include radio­ below sea level. This depth is about the same larian and ophiolitic material deposited atop as that of the shelf that borders the Black Sea. ultramafic rocks or serpentines in contrast to Within the gravel are Quaternary shells whose the older basement rocks of crystalline sch'st. age is related to the depth of submerged gravel This change in basement rock is the same as terraces. These relations indicate a complex that inferred from seismic refraction studies. history of cutting and filling that occurred at By middle Cretaceous time, additional but alternate times of low and high sea level, which parallel geosynclines had formed, especially in in turn correspond to glacial and interglacial the more mobile region south of the Black Sea. epochs of the Quaternary. The water surface in By Late Cretaceous and early Cenozoic times, the Bosporus slopes about 35 em toward the debris no longer was being shed north and south in the absence of strong southerly winds south of the landmass. Instead, debris was (if the 2-10-cm semidiurnal tides are ne­ being carried back into the former source glected). This slope causes a southward flow of area, indicating that the Black Sea basin had Black Sea surface water (17 .5%o salinity) formed and stream drainage had reversed. The amounting to between 3,000 and 30,000 m3/

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 580 K. 0. Emery and J. M. Hunt

second. Beneath this water is a layer of denser chlorinity of interstitial waters of sediment water (38.5%o salinity) whose surface slopes cores from the floor of the Black Sea (Man­ northward from a depth of about 24 m at the heim and Chan, this volume) . Chlorinities as south to about 60 m at the north end of the low as 4%o have been reported, and correction Bosporus. Under ordinary conditions, water for subsequent diffusion from above suggests from the Sea of Marmara (originating in the that the bottom water of the Black Sea had a Mediterranean Sea) flows northward at depth chlorinity of about 3. 57to (corresponding to a in a volume that is about the same as the out­ salinity of about 6.4%o) during the early Holo­ flow from the Black Sea and at an average cene, when sea level was low. Contours of in­ speed of perhaps 2 km/hour. Some mixing terstitial chlorinity at 2 and 5 m below the bot­ occurs between the overlying and underlying tom reveal regional differences suggestive of water, so that some of the underlying water is subsea discharge of relatively fresh groundwater returned to the Sea of Marmara, partly account­ into the Black Sea basin from most of the ing for the northward slope of the interface. perimeter, especially from west of the Crimea. During the winter the outflow is diminished, A saltier discharge near the Bosporus may be and during brief periods of storm winds from from buried evaporites, or it may be due to the south the surface flow is even reversed, so previously trapped salty inflow through the that high salinities occur at the surface. The Bosporus. Subsea discharge plus diffusion from present salinity of the Black Sea is a function the bottom sediments introduces salts in ratios of the river inflow plus direct precipitation different from those of the water from the Sea versus the evaporation plus the exchange of of Marmara. These ratios plus those of the Mediterranean water and Black Sea water tributary rivers may account for the differences through the Bosporus. The prehistoric sea levels in chemical composition of Black Sea water that were higher and lower than the present and ocean water. level controlled the salinity of the Black Sea. Other changes in the composition of the For example, at high interglacial sea levels the Black Sea water are due to diagenesis that takes cross section of the Bosporus available to the place over long time spans. A measure of the underflow was markedly increased and more time available is made by radiocarbon age de­ Mediterranean water entered; thus the Black terminations (Ostlund, this volume), which Sea became more saline. At low glacial sea show that the water at 300 m is about 900 levels the cross section diminished and even years older than the surface water, and that the vanished, so that the Black Sea became less water's age increases irregularly with depth to saline and even became a freshwater lake when about 2,000 years at 2,000 m. An irregular age sea level stayed low long enough. increase is attributable to differences in the During cruise 49 of the R/V Atlantis Il, depth to which the dense water that enters the salinity within the Black Sea (Kremling, through the Bosporus penetrates during years this volume; Brewer, 1971; Brewer and Spen­ of greater or lesser volume of inflow. cer, this volume) was found to be lowest at During the Wiirm glacial stage of low sea the surface (17.5-19.0%0), particularly off the level, the Black Sea was a freshwater to brack­ mouths of rivers. Between the surface and 300 ish-water lake that was aerobic from surface m depth, the salinity increased to about 21.9%c, to bottom. As soon as sea level rose enough to the steepest part of the halocline was at permit inflow of seawater through the Bos­ depths ranging from about 50 to 200 m. Prob­ porus, perhaps 9,000 years ago, this seawater ably the steepness and depth of the halocline formed a layer of bottom water that was too differ seasonally as well as regionally. Below dense to mix readily with the overlying fresher 300 m the salinity increases gradually and water. Continued infall of organic debris from evenly to about 22.4%o at 2,000 m depth. These phytoplankton growth at the sea surface soon two water masses (the epilimnion and the hypo­ used all of the dissolved oxygen in the dense limnion) contrast in many ways. In both, how­ bottom water; thus it became anaerobic about ever, the ratio of total salinity and of most 7,300 years ago. According to computations by individual salts to chlorinity is slightly larger Deuser (this volume), the anaerobic water than in ocean water, presumably because of the covered about 50 percent of the bottom area in particular chemical composition of the tributary only about 400 years. The interface between rivers. anaerobic and aerobic water rose rapidly at Formerly low salinities of the hypolimnion first, to 1,000 m depth about 5,200 years ago. are indicated by a consistent decrease in the The subsequent rise was slower-to 500 m

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Summary of Black Sea Investigations 581

about 3,400 years ago and an average of about and underlying saltier water. The rest of the 200 m at present-and it is continuing. The manganese and iron, however, are oxides pre­ contact is not horizontal, but it lies at depths cipitated when these ions diffused upward into of about 140 m along the axis of the Black Sea the oxidizing water above oxygen-zero. Dis­ and about 250 m along the sides (Neumann, solved manganese is far more abundant in the 1943). This is similar to the depths of the max­ anaerobic water into which the manganese imum-density gradient. Both in turn are func­ oxide settles. Dissolved iron is most abundant tions of the surface current that moves counter­ just beneath the depth of oxygen-zero, prob­ clockwise around the Black Sea (Caspers, ably because the oxide is reduced to ferrous 1957 ). Below the contact, hydrogen sulfide in­ iron that remains in solution until it reaches creases steadily with depth to a concentration saturation, whereupon iron monosulfide pre­ of 8 mill at 1,000 m, below which it increases cipitates. Dissolved copper and zinc are most only slightly to 8.5 mill at 2,000 m. Just abundant in the aerobic water; their low con­ above the bottom, hydrogen sulfide reaches centrations in the anaerobic water are due to 13.5 mill locally (Brewer and Spencer, this precipitation as sulfides. Dissolved cobalt and volume). nickel are more abundant in the anaerobic wa­ Organic debris falling into the dense an­ ter (cobalt is especially abundant just below aerobic water also regenerates components of oxygen-zero). Cobalt owes its distributional phosphorus, nitrogen, and silicon. The phos­ pattern to adsorption on the manganese oxide phate was examined by Fonselius (this vol­ precipitates and to release after solution of the ume), who found phosphate-phosphorus to be sinking manganese particles. The profile for about 7 ,ug-atoms/1 at depth, and organic phos­ nickel is similar to that in other oceans, sug­ phorus about 0.4 ,ug-atoms/1. Both forms are gesting that it is little influenced by the an­ about three times as concentrated as in the At­ aerobic waters of the Black Sea. lantic Ocean at similar depths; this greater con­ centration reflects the longer residence time in SEDIMENTS the Black Sea. According to tabulations by The sediments have preserved a detailed rec­ Brewer ( 1971), silicon also is about 12 times ord of the water properties during the past tens more concentrated, nitrite is 20 times more of thousands of years; they also provide in­

concentrated, and nitrate is only one sixth as formation about their sources and the manner concentrated at 1,500 m as at the same depth of deposition. in the Atlantic Ocean. Nutrient data for The physical nature of the water-sediment dissolved P04, N03, N02, NH,, and Si03 were interface is best revealed by bottom photo­ measured by chemists of the Institut fiir graphs (Vine, this volume). AU photographs Meereskunde ( Grasshoff, 1970). In addition, of the deep floor of the Black Sea show the pH and alkalinity were measured on board ship, bottom to be dark, but where disturbed by and a series of calculations on the complete impact of the camera the dark layer is seen carbonate system was made. Unfortunately, to be only a few millimeters thick and to be these data were not evaluated and interpreted underlain by lighter gray sediment. Scattered for publication, but they are available for 57 about the surface are elongate, low-relief stations in tabular form (Brewer, 1971). Some clumps composed of numerous irregular units of the most interesting chemical effects of the a few centimeters in length. These clumps are anaerobic water are exhibited by the metallic believed to be masses of vegetation (subaerial trace elements in both the dissolved and par­ or subaqueous) that drifted seaward until they ticulate form (Brewer and Spencer, this vol­ became waterlogged and sank to the bottom, ume). The distributions are most clearly shown where they gradually were buried under new where plotted with respect to the depths of oxy­ sediment. Some faint, smooth elongate mark­ gen-zero rather than in relation to sea level. ings may have been made by slow bottom cur­ Total suspended particles are most concentrated rents, but none of the photographs contain at or just above the depth of oxygen-zero. markings likely to have been made by benthic When analyzed, these suspensions were found animals. to consist partly of manganese and iron, some Determination of the general stratigraphy of which accompanies detrital grains from of the deep Black Sea sediments was based on rivers. Above the depth of oxygen-zero these detailed examination of one core followed by trace elements are held temporarily by the briefer comparisons with other cores obtained at 40 stations established by Atlantis plus density discontinuity between overlying fresher II,

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 582 K. 0. Emery and J. M. Hunt

descriptions of cores from other expeditions 23,000 years. Older dates on calcium carbonate (Ross and Degens, this volume). Three main are attributed to reworking of shelf carbonate stratigraphic units were penetrated by all cores material and its redistribution in deep water as of sufficient length. turbidites. The unit contains many coarse­ Unit coccolith ooze-The topmost unit, 1, grained layers, some of which are graded sands spanning the time from the present to 3,000 to silts. Because of turbidite deposition and years B.P. (based on radiocarbon dating) , is also because of increased discharge of detritus a carbonate-rich microlaminated layer com­ by streams at that time, the rate of deposition posed mainly of remains of the coccolithophore in unit 3 was several times that of units 1 and Emiliania huxleyi. Total thickness of the unit 2. The content of calcium carbonate ranges ranges from less than 20 em at the basin between 10 and 30 percent, and that of organic slopes to more than 100 em on the basin carbon generally is around 0.5 percent. Re­ apron; rates of deposition ranged from less mains of pelagic marine organisms are absent. than 10 cm/ 1 ,000 years to more than 30 Instead, a few freshwater discoid diatom frus­ cm/ 1 ,000 years. Laminae are generally 50- tules were noted. Darker layers of the unit are 100/ em; the light-colored bands contain more caused by iron monosulfide that quickly oxi­ than the overall average ( 40 percent) of cal­ dizes on exposure to air. The unit corresponds cium carbonate, and the dark bands have more to the Neoeuxinian, Karkinitian, and perhaps than the overall average (about 5 percent) of the upper part of the Tarkhankutian beds. organic carbon. The unit approximately cor­ Clearly, it was deposited in a fresh to brackish responds to the Russian "recent deposits" of lake that existed when the level of the Mediter­ deep water and the Dzhemetinian and the ranean Sea was too low for seawater to transit upper Kalamitian beds of shelf areas. Its base the Bosporus. Conditions for initiation of the marks the beginning of the present environ­ unit began probably about 23,000 years ago, mental conditions of the Black Sea. when sea level dropped below the level of the Unit 2, sapropel beds-The middle unit Bosporus, but some time elapsed before the ac­ underlies unit 1 with abrupt contact; its de­ cumulation of dense bottom water became position began about 7,000 years B.P. It is diluted and escaped with the outflowing fresh an organic-rich microlaminated layer with a water. During this time the content of calcium total .thickness of less than 20 to more than carbonate in the sediments was slightly higher 45 em, depending upon the contribution of than after about 22,000 years ago. terrigenous material that dilutes or even ob­ A very detailed study of the grain com­ scures it. The calcium carbonate content aver­ position of the sediments was made by Miiller ages about 10 percent and that of organic and Stoffers (this volume). They showed that carbon averages about 15 percent, although the deep-water sediments are the finest grained; in a few samples it exceeds 25 percent. Three more than 75 percent by weight consists of distinct white layers commonly are present. grains smaller than 2 fL· The deep area also has The top one consists of coccoliths from th;! the highest concentration of calcium carbonate same species as those in unit 1, the second (more than 60 percent by weight), but the contains coccoliths of another species plus dino­ quartz content amounts to less than 5 percent. flagellates, and the third consists almost entirely In contrast, the shelves and basin slopes have of aragonite. The unit approximately corre­ relatively abundant coarse silt and quartz but sponds to the Old Black Sea beds, from the less than 20 percent calcium carbonate. Cocco­ upper middle Kalanitian through the Vitya5e­ liths, concentrated in the deep area, are con­ vian and Bugazian beds. Its base is sharp and fined largely to the 1-2-JL size fraction. Detrital marks the establishment of the anaerobic con­ minerals exhibit rather certain provenance ditions in the saline water that had begun to from the north and northwest (largely the accumulate about 2,000 years earlier when sea Danube River) and from the south and east level rose enough to permit a counterflow along (Anatolia and the Caucasus Mountains) . the bottom of the Bosporus. Anaerobic condi­ Northern provenance is evidenced by abundant tions also are indicated by the common presence quartz and feldspar (but a high quartz/feldspar of pyrite framboids in the sediments. ratio), a high ratio of calcite to dolomite, Unit 3, banded lutite-Vnit 3 was not pene­ heavy minerals dominated by garnet, and clays trated fully by any of the cores, not even the dominated by illite (more than 50 percent of six that were more than 7 m long. The oldest total clay) with about 10 percent each of radiocarbon date on organic carbon is nearly kaolinite and chlorite. Southern provenance is

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Summary of Black Sea Investigations 583

characterized by abundant rock fragments bon) . In comparison, the annual production (limestone from the south, volcanic d�bris of organic carbon in the Black Sea is 44 mil­ from the southeast, and metamorphic rocks lion tons. Less than 10 percent of all this from the east), dominance of pyroxene among organic carbon is deposited on the bottom, the heavy minerals, and dominance of mont­ and nearly all the rest of it is regenerated to morillonite (more than, 50 percent) among the inorganic ions almost entirely within the layer clays. These minerals closely reflect the com­ of aerobic water. In addition to the production position of the source rocks of the drainage by phytoplankton, production by bacteria is areas on the north and south. Variations of nearly seven times greater (Shimkus and the mineral suites with depth in cores are Trimonis, this volume). This estimate reflects attributed to a decrease in relative contribu­ the view of Kriss (1959) that has been dis­ tions from the north as a result of glaciation credited by more modern work. and permafrost north of the Black Sea during A further investigation of the calcium car­ the Wi.irm glaciation. bonate in the Black Sea by Trimonis (this A summary of the sediment input to the volume) indicated that rivers bring about 11 Black Sea was assembled by Shimkus and million tons in suspension and 25 million tons Trimonis (this volume) largely from Russian in solution each year. Most of the suspended literature. The 374-km3 annual inflow of rivers carbonate is deposited nearshore and off the brings in about 150 million tons of solids in river mouths. A small percentage of the dis­ suspension, of which the Danube alone con­ solved carbonate is thought to be deposited tributes 55 percent. In addition, about 15 mil­ chemically, particularly on the northwestern lion tons of solids is brought in each year by basin slope and basin apron. Biogenic deposi­ traction load. About two thirds of the total tion is much more important. The zoobenthos load occurs during the springtime floojs. is concentrated in the broad shelf west of the The total annual contribution of diswlved solids Crimea, where the biomass is about 15 mil­ appears to be about 100 million tons, or only lion tons. Of this, 10 million tons is calcium about 2.5 percent of the salt carried each way carbonate, mostly aragonite. The annual through the Bosporus. If we m:e Gunnerson and amount of zoobenthonic deposition is un­ bzturgut's (this volume) figures of 17.5 and known, but eventually the skeletal material 28.5%o average salinity for outflow and in­ is comminuted mostly to sand sizes. More sig­ flow at the Bosporus, and Shimkus and Tri­ nificant is the deposition throughout the Black monis' (this volume) figures of 340 and 176 Sea of low-magnesium calcite in the form of km3 for the annual volumes of outflow and coccoliths. The coccolithophores have spring inflow, we find that the annual southward blooms during which more than 50 percent of transport of dissolved salts would be 5,950 the annual production occurs. When deposited, million tons and the annual northward trans­ the material is concentrated in the fine-clay port would be 5,020 million tons. Thus the and colloidal size fractions. net annual loss to the Black Sea would be 930 Studies of seven thick (55-120 em) graded million tons. This apparent loss contrasts with beds in four cores were made by Jipa (this other stronger evidence that the double flow volume). From 6 to 15 samples at various produces a net gain, which means that the depths in each bed were carefully analyzed, measurements in the Bosporus of either salinity and the resulting grain-size distributions showed or water flow, or both, need checking. The dis­ a predominance of sand at the bottom that solved salts brought in by the Russian rivers decreases upward into silt and lutite. The base (and also by the Danube; Clarke, 1924, p. 105) of one layer contained several species of shal­ consist predominantly of calcium bicarbonate, low-water mollusks. Each grain-size analysis and represent a contribution to the Black Sea revealed two or three normal distributions. The by the rivers far greater than the transport by coarser grained distribution was the sand de- the Bosporus. The contribution of calcium ' posited by the turbidity current, whereas the bicarbonate by rivers must be far greater now finer grained distribution was considered to be than it was during the glacial stage when the matrix that also had caused the semi­ vegetation was more sparse and weathering of stable high density of the original current. limestones was slower. The streams also pres­ Matrix constituted 10-50 percent of the sam­ ently contribute about 4 million tons of organic ples, and both sand and matrix were graded carbon annually (if it is assumed that the upward. Several of the layers indicate the re­ organic matter in the water is 44 percent car- peated occurrence of turbidity currents or,

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 584 K. 0. Emery and J. M. Hunt

more likely, several pulses of the same cur­ Shallow-water mollusk shells were present rent. in several of the deep-water cores, particularly According to Buachidze (this volume), the in unit 3, which contains many turbidites. nature of the 28 percent of the area of the Studies by Nevesskaya (this volume) showed Black Sea that is termed "shelf" is controlled that most of these mollusks had lived on the mainly by eustatic sea-level variations, tectonic outer shelf (depth range of 50-125 m) during movements, and river discharge of sediments. Neoeuxinian time and evidently had been The river contribution, in turn, is a function displaced by turbidity currents. Scarce shells of the local topography (plains, hills, or moun­ higher in the cores represent juvenile forms of tains) and also of the kind of strata being living shelf species that were transported to eroded. For example, the large rivers that the deep sea, where they died. The identifica­ drain wide areas of the hinterland have dis­ tion and zoning permitted correlation of shal­ charged large quantities of sediment and built low-water stratigraphic zones with the deep­ broad shelves on either side of the Crimea. water ones for the first time. Foraminifera also In fact, these sediments have filled the Sea live on the present shelf, although their small of Azov to a thickness of more than 30 km. size renders them less conspicuous than the Elsewhere, particularly at projecting capes and mollusks. Studies of Foraminifera in recent along parts of the southern and eastern coasts, sediments off Rumania ( Gheorghian, this vol­ the small rivers drain volcanic and metamor­ ume) show that they can be grouped into three phic rocks. They contribute so little sand to categories: those of limited depth range; those beaches that the coast is being eroded and is of wide depth range; and those which are interrupted by landslides. Of intermediate im­ scarce, either living species or species derived portance are small rivers of the southwestern from older deposits. coast that have breached miogeosynclines and Cores from the Black Sea contain many Cre­ reached easily eroded sandstones which supply taceous and Eocene coccoliths that have been large quantities of beach sand. As a result, reworked from outcrops. They are the only deposition predominates on 25 percent of the coccoliths present in sedimentary unit 3 coast, erosion predominates on 57 percent, and ( Bukry, this volume) . With the beginning of 18 percent is stable. deposition of unit 2, Holocene coccolitho­ Mass physical properties measured on sev­ phores of several species entered, and their eral cores by Keller (this volume) showed the remains became mixed, commonly in equal Black Sea sedimentary units to be very dif­ proportions, with the larger, reworked Cre­ ferent from those of the ocean and more like taceous and Eocene coccoliths. By the time those of lakes. Shear strength was not mea­ sedimentary unit 1 began to be deposited, the sured on unit 1 because of leakage from the Holocene coccolithophore Emiliania huxleyi core tubes, or on unit 2 because it flowed like predominated, and it constitutes most of the a slurry. Shear strength in unit 3 was found calcium carbonate fraction. In many cores this

to be low-12 g/ em 2 for most of its thickness unit in which E . .huxleyi predominates is suc­ and 35 g/ cm2 at a depth of 160 em. Similarly, ceeded by a unit in which coccoliths of this the high plasticity index and liquid limit for species are mixed with reworked older cocco­ units 1 and 2 are like those of organic clays. liths. Evidently, during the time of deposition of unit 3, the salinity of the Black Sea was too LIFE low for coccolithophores to live. When sea Biologic remains enclosed in the sediments level rose enough to admit water from the provide the most precise data on water tem­ Mediterranean to the Black Sea, some of the perature, salinity, and oxygen content by per­ Holocene forms that were tolerant to inter­ mitting comparison of distributions of orga­ mediate salinities entered and thrived. Only nisms during the past tens of thousands of the most tolerant form, E. huxleyi, has been years with those existing at present. Organic able to colonize the Sea of Azov, which has a remains might be expected to be abundant be­ salinity of only 11%0• cause the primary productivity by phyto­ Dinoflagellates found in the cores chiefly plankton in the Black Sea is large (Shimkus represent pelagic forms that lived at the time and Trimonis, this volume) ; the carbon aver­ of deposition. Studies by Wall and Dale (this ages about 200 mg/m2/day�about the same volume) showed that dinoflagellates of the as in most prolific neritic belts of the ocean lacustrine unit 3 consist of freshwater forms (Koblentz-Mishke al., 1970). dominated by two new species that reached et

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Summary of Black Sea Investigations 585

their maximum abundance just before the end Closely similar changes in concentration of of deposition of the unit. After water from the other fossil molecules with depth were mea­ Mediterranean entered and somewhat increased sured by De gens (this volume) : soluble amino the salinity of the Black Sea, brackish-water or acids, total amino acids, amino sugars, and estuarine dinoflagellates of certain species flour­ total sugars. The nitrogen in these molecules ished (time of unit 2 deposition). Later, unit and in ammonia accounts for only 40-60 per­ 1 deposition began with the "climatic opti­ cent of total organic nitrogen in the sediment. mum," when there arose a euryhaline assem­ The latter is about one twelfth the concentra­ blage characterized by many of the same spe­ tion of organic carbon, a ratio that is typical cies that presently live in the neritic belts of for marine sediments. The rest of the nitrogen the ocean. Thus, the cysts of dinoflagellates may be in polycondensates from which it is in the sedimentary units serve as good indica­ not released by treatment with 6N HCI. Inter­ tors of the past salinity changes in the Black mediate between the fossil molecules and fossil Sea. hard parts are remnants of protein layers at­ The frustules of pelagic diatoms are present tached to coccoliths, bacterial cell walls, and in the sediments of the Black Sea, but they are other materials in the sediment of unit 1. far less abundant than in sediments of the During diagenesis, metal ions in the interstitial ocean (Maynard, this volume). This difference waters become coordinated with the proteins in abundance is attributable partly to dilution and effectively stain the surface, as indicated by faster deposition of detrital sediments but by scanning electron micrographs. Another mostly to postdepositional solution of the intermediate kind of fossil is represented by siliceous frustules. The species are common preserved tubular membranes, which were first ones, and they consist exclusively of fresh­ noted in these sediments. water forms in unit 3 and brackish-marine ones Some information about the climate of the in units 2 and 1. Thus, the environmental con­ region is provided by pollen counts in a single ditions evidenced by the diatom, dinoflagellate, core (Traverse, this volume) . The results show and coccolithophore remains agree with other that the lower part of the core contains much kinds of data in showing episodes of increased reworked Late Cretaceous and early Eocene salinity of Black Sea water during late Pleisto­ pollen, but it also has pollen of contemporary cene and Holocene times. herbaceous plants including thistles, beets, and Organic growth in surface waters produces spinach types. At a sediment depth corre­ fossil molecules as well as fossil hard parts. sponding to about 15,000 years B.P., tree pol­ Among the fossil molecules is the green pig­ len begins to increase, reflecting the expansion ment, chlorophyll, that is altered through in­ of forests with the warming climate-first pine gestion by zooplankton and is otherwise de­ and cedar, then oak and walnut. About 8,000 graded. Measurements of chlorophyll deriva­ years B.P., pollen of the alder became very tives were made in a single core by Lorenzen abundant, indicating the onset of even warmer (this volume) . The results showed concentra­ and moister conditions. Confirmation of the tions averaging about 1 flg/ g of dry sediment later stages (represented by upper unit 3) was at depths corresponding to ages between 15,000 provided by pollen counts in one deep-water and 9,300 years ago. Concentrations increased core and three shelf cores off Rumania (Roman, about tenfold from 9,300 years B.P. to 7,000 this volume) . Pollen of the broad-leaved tree3 years ago, and increased further to an aver­ and herbs of temperate climates and spores of age of about 1,500 flgl em until 3,000 years ferns are representative of the Danube River ago (time of unit 1 deposition); after that delta west of the Black Sea, from which they time they decreased to about 500 flglg. In the were brought by both streams and wind. Fac­ top of the core the chlorophyll derivatives were tors that produce bias in pollen diagrams in­ accompanied by abundant carotenoid (yellow) clude the small size of birch pollen, the large pigments. The decrease in concentration of size of beech pollen, and the air bladders of pigments with depth probably is due to greater most conifer pollen. oxidation on the bottom when the Black Sea Shipboard investigations and laboratory ex­ was a brackish lake and less oxidation later periments (Jannasch et al., this volume) dem­ when dense salty water entered and separated onstrated the presence of bacteria capable of the oxygenated water from the bottom. It also altering the chemical composition of the Black may reflect changes in productivity as the sea Sea water. Most unique in their effects are progressed through its Holocene evolution. sulfate reducers that are concentrated near

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 586 K. 0. Emery and J. M. Hunt

the top of the anaerobic water mass; they Somewhat related results were obtained by produce the bulk of the sulfide ion in the Rona and Joensu (this volume) by numerous Black Sea by reducing the dissolved sulfate analyses uranium and thorium isotopes in for and more or less completely oxid!zing the three cores. Their results showed that con­ suitable organic matter in that water. Only a centrations and ratios in unit 1 are typical of small percentage of the sulfide comes from marine sediments, whereas those in unit 3 are organic sulfur. Additional reduction of sulfate indicative of freshwater sediments. occurs in the top 20 em of sediment, where Many of the geochemical changes in the fermentative bacteria produce the necessary sediments are reflected by changes in pore hydrogen donors from some of the organic water with depth in cores (Manheim and Chan, matter that escaped oxidation during settling. this volume). Most notable is a depletion of No photosynthetic sulfur bacteria were de­ sulfate 1 to 2 m below the sediment surface tected because the anaerobic waters lie well caused by bacterial reduction to sulfide. Sim­ below the euphotic zone. Thus, bacteria do ilarly, alkalinity and ammonia increase with not appear to be producers of appreciable depth owing to partial regeneration of organic amounts of organic matter in the Black Sea. matter into carbon dioxide and ammonia. Ammonia, nitrite, nitrate, and molecular nitro­ However, below a depth of about 3 m the gen also were transformed by other bacteria alkalinity again decreases, possibly because of within suitable environments. Methane-pro:luc­ precipitation of calcium carbonate at depth. ing bacteria are present, as indicated by the An�ong the cations in solution, the largest h;gh concentratio!1s of methane in both sedi­ ch'lnges are exhibited by potassium and mag­ ment and water. They probably function by nesium, which decrea'e with depth, and cal­ both fermentation and respiration of carbon cium and silicon, which increase with depth. dioxide. The potassium probably is taken up by clay minerals, the magnesium reacts with carbon­ GEOCHEMISTRY ates, calcium is released by the carbonates, Studies of geochemistry provide information and silicon is dissolved from organic debris. more on the processes at work in the Black Sea Differences in the composition of pore waters than on its history. They essentially con­ and overlying waters result in diffusion of vert idle speculation into an understanding of ions across the sediment-water interface; this how chemical reactions in the water, the orga­ diffusion causes some alteration of the Black nisms, and the sediments have produced the Sea water. Iron and manganese also are more observed characteristics of the Black Sea water concentrated with depth, at least in sediments and sediments. of the shelf, and their upward diffusion may The general chemical composition of car­ lead to deposition and growth of the concre­ bonate-free aluminosilicates in the Black Sea tions that occur on the surfaces of some shelf is similar to that of an average cratonic shale sediments. or a broad-abyssal-plain lutite derived from Major and minor elements were determined large areas of varied lithology and age (Cooper in 14 cores, mainly by use of X-ray fluores­ et al., this volume). Confirmation of this state­ cence and optical emission spectrography ment is provided by the ratios of lead isotopes (Hirst, this volume). A rather complex factor and of strontium isotopes, and by the con­ analysis of the results confirmed the threefold centrations and ratios of thorium and uranium stratigraphy that is visually evident. On the -all of which are typical of provenance from basis of chemical data, the stratigraphy appears continental crust rather than from deep-seated to be partly obscured in the west and northwest, basaltic oceanic rocks. Additional information where the grain sizes are coarser than else­ about Sr87 I Sr86 ratio provided by Cox and where; in the south and southwest, where coarse Faure (this volume) showed that the ratios in silt from the adjacent shelf dilutes unit 1 and the Black Sea water and in calcium carbonate where mollusk shells are relatively abundant in (mostly coccoliths) of unit 1 are identical, unit 2; and in the east and northeast, where about 0.7093. In contrast, the ratio in the turbidites in units 1 and 2 are more common carbonate fraction of unit 3 is 0. 7073, the than elsewhere. Perhaps most striking for the same as in the marine shells of Cretaceous and minor elements is the general but erratic de­ Tertiary age elsewhere in the world. Presum­ crease in concentrations of strontium and ably, this Sr87 I Sr86 ratio is due to the presence molybdenum with depth in the longer cores. of many reworked older coccoliths in unit 3. Probably many interesting results are obscured

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Summary of Black Sea Investigations 587

by the statistical methods that were employed; hematite) and reactive (easily soluble forms for example, what is the concentration of the that include hydrated oxides as hydrogoethite; elements when averaged within each of the silicates as clay minerals; iron carbonates; and known stratigraphic units? sulfides, particularly hydrotroilite and pyrite). The correlation, in fact, was made by Volkov Most of the iron that reaches the Black Sea via and Fomina (this volume), who show clear­ streams is carried in suspension, and most of cut concentrations of Mo, Co, Ni, Cu, and V it is in reactive form. Total iron in the Black Sea in the sapropelic layers of unit 2. The abun­ sediments ranges mostly between about 3.5 and dance of Mo, Ni, Cu, and V is approximately 4.5 percent of carbonate-free sediment. Non­ proportional to the content of organic carbon reactive iron is widespread, but is concentrated in the sediment; cobalt is related more to the in th� southeast where volcanic detrital min­ concentration of sulfur. All of these elements erals are most abundant. Reactive iron averages except vanadium are enriched with pyrite : Co, about 60 percent of the total and is concen­ 9-fold; Ni, 18-fold; Cu, 20-fold; Mo, 35-fold. trated in deep-water sediments that have high Thus a large perc�ntage of the total amount of contents of clay and organic carbon. Most of these elements is tied up with pyrite. Other it occurs as ferrous minerals easily soluble in relations are evident; for example, the concen­ HCI. Least abundant, except in the surface trations of molybdenum, copper, and cobalt layers on the shelf, is ferric iron, which is easily are inversely related to grain size (as though soluble in HCI. Intermediate in quantity is sul­ they had been precipitated), whereas vanadium fide iron, which increases with depth in cores and, to a much les�er extent, nickel are con­ mostly at the expense of the ferric component. centrated in silt (as though they had been car­ Further information about the iron sulfides r'ed with suspended sediments from strearrs). is provided by Berner (this volume). The iron Thus, if we omit the sapropelic muds of unit 2 monosulfide (hydrotroilite of Volkov, and from consideration, vanadium is most abundant greigite plus mackinawite of Berner) imparts in the older sediments of unit 3. The relation­ the black color to some sediments; where most ship in concentrat!on of most of these trace of the iron sulfide is present as disulfide (py­ elements and of organic carbon is indirect be­ rite), the sediments are gray. The failure of cause both are attributed to the reducing con­ monosulfides to progress to disulfides is at­ ditions that began with the entrance of dense tributed to the absence of sufficient sulfide ion.

seawater through the Bosporus. Precipitation This absence may be due to several things- · as sulfide minerals in unit 2 would thus be ex­ for example, an abnormally small quantity of pected for Mo, Cu, and probal:ly Ni and Co, hydrogen sulfide produced by a limited supply but not for V. Moreover, the influx of Mediter­ of sulfate ion, or the presence of abnormally ranean water increased the available supply of great quantities of iron with respect to sulfate. at least molybdenum. Many additional details In sedimentary unit 3, the color banding from regarding the concentration of molybdenum gray to black may reflect changes in the ratio were investigated by Pilipchuk and Volkov of deposition that upset the balance between ( th!s volume). Molybdenum is less concen­ the amounts of reactive iron and available sul­ trated in waters of the Black Sea than in the fide. In addition, the general tendency toward open ocean. It is not enriched appreciably in gray rather than black sediment at bottom­ plankton for later deposition, but is precipitated water depths of more than 2,000 m implies chemically in several ways. Under oxid'zing greater sulfide production in those finer grained conditions, it is coprecipitated with manganese and organic-rich sediments than in those at in­ oxides and hydroxides that form concretions on termediate depths. the shelf. Most of it, however, is deposited un­ Detailed analyses of the organic chemistry der reducing conditions in deep water by fixa­ of six samples from freshwater unit 3 and one tion to organic matter and incorporation in from brackish unit 2 were conducted by Simon­ pyrite. eit (this volume). About a fourth of the or­ Iron is important for its close association ganic matter was extractable with solvents and with the trace elements and as an indicator of consisted mainly of carboxylic acids and hy­ reducing conditions. Rozanov et al. (this vol­ drocarbons dominated by alkanes. The alkane ume) classified iron into two categories: non­ and acid distributions were typical of organic reactive (in the crystal lattice of detrital min­ matter of terrestrial origin. The organic matter erals as represented by the difficultly soluble of unit 2 particularly appeared to be land de­ silicates and oxides such as magnetite and rived: less than 5 percent originated from

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 588 K. 0. Emery and J. M. Hunt

water-formed organisms. Acid-alkane ratios Black Sea, and these properties in turn control range between 2: 1 and 1 : 2; a tendency to the life and sediments of the sea. Accordingly, lower ratios at depth perhaps is due to decar­ a schematic comparison relating the ocean level boxylation and polymerization of the acids. The and the sill depth to the salinity and the oxygen carboxylic acids ranged from C12 to C30 with and hydrogen sulfide contents of the deep wa­ an even-chain-length predominance. The al­ ters of the Black Sea is attempted in Figure 1. kanes ranged from C 15 to C33 with an odd­ The depth of the bedrock valley under the Bos­ chain-length predominance. Isoprenoid alkanes porus and under most of the shelves around the (mainly phytane and pristane) were found in Black Sea is about 100 m, implying that at unit 3 but no isoprenoid acids were detected in some time the level of the Black Sea was about any of the samples. Steroidal and pentacyclic -100 m. This low level was not reached dur­ triterpenoids mainly of terrigenous origin were ing the latest major lowering of ocean level, identified in the C27 to C30 range. The sample but must have occurred prior to 30,000 years from unit 2 contained an unusually large quan­ ago; subsequently, the Bosporus was partly tity of sterols, mainly 4-methylergostane. These filled with sands and gravels to its present sill sterols are different from those known to occur depth of 33 m. The most recent isolation of the in Pleistocene lake sediments, and also different Black Sea appears to have begun about 22,000 from known sterols in ocean sediments. They years ago, when the bottom sediments became appear to originate from the reduction of land­ less calcareous, and to have ended about 9,000 derived sterols. Many of the organic structures years ago, when marine fossils reappeared. Both identified in these cores are similar to known dates fit the general world curve of Milliman biogenic structure, having only minor modifica­ and Emery ( 1968) showing sea level to be tions. Additional organic analyses by Peake about 35 m below the present level. Possibly, et al. (this volume) showed changes in com­ the level of the Black Sea dropped a few more position with depth from a single core. They meters owing to partial erosion of the sediment confirmed the high sterol content of unit 3 and fill in the Bosporus when sea level dropped also showed that there was a decrease in sterols below the sediment surface; deposition of more with depth in this unit. Fatty acids had a simi­ sediment took place when sea level again rose. lar depth distribution, but the ratio of unsatu­ The salinity of water at 2,000 m depth in the rated to saturated ones decreased with depth, Black Sea is now about 22.4%o; however, on presumably as a result of reduction of the the basis of estimates made from interstitial former. Chlorins and porphyrin pigments were water in the sediments, it was about 6.4%o dur­ abundant, especially compared with carotenoid ing the time of isolation from the ocean. The pigments. salinity curve of Figure 1 for the Black Sea is Hydrocarbon gases, methane through the based on these data and on the belief that salin­ butanes, are reported by Hunt (this volume) to ity-before the sea became isolated-was about be especially abundant in the sediments and the same as today or slightly higher; estimated water. Methane averages about 0.1 mil 1 in the transitions in salinity are drawn for the begin­ hypolimnion and decreases to about 7 X 10-4 ning and end of the time of isolation. Similarly, ml/ 1 in surface waters. It appears to be gener­ the concentrations of dissolved oxygen and hy­ ated by methane-producing bacteria in the drogen sulfide in deep water of the Black Sea bottom sediments and degraded by methane­ are based on present measurements and infer­ oxidizing bacteria in the water column above ences derived from geochemical and faunal the hydrogen sulfide-oxygen interface. Ethane characteristics of the sediments. is less than 1 I 400 as concentrated, and propane For comparison, the water level of the Red and the butanes still less. The unsaturated Sea and the inferred salinity and oxygen con­ hydrocarbons ethylene and propylene are tent of its deep water also are shown schemati­ formed by biologic activity in the upper 200 cally in Figure 1 on the basis of data presented m of the Black Sea, but their concentrations are in the symposium volume edited by Degens orders of magnitude less than that of ethane and and Ross (1969). Because runoff into the Red propane, particularly in the hypolimnion. Sea is negligible and evaporation exceeds pre­ cipitation, the level of this sea became much CoMPARISON WITH OTHER lower than ocean level when it was isolated NEARBY INLAND SEAS from the ocean 20,000-13,000 years ago. When The flowof water through the Bosporus con­ ocean level rose again, the level of the Straits trols the properties of the water within the of Bab-el-Mandeb may have been cut to the

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Summary of Black Sea Investigations 589

10

BLACK SEA RED SEA !-Water levels, salinities, and oxygen (or hydrogen sulfide) contents of Black Sea, Red Sea, and Dead Sea (wideFIG. lines) with respect to ocean levels (narrow lines) during past 35,000 years (Degens and Ross, 1969; Ross and Degens, this volume; Milliman and Emery, 1968; Neev and Emery, 1967).

present level by the cascade into the Red Sea. mitted by low solubility in the very saline deep The salinity of the deep water in the Red Sea water. increased during the time of isolation, but it Comparison of the three seas shows the wide suddenly was decreased by the inflow of water range of water and sediment properties and of from the Indian Ocean. Subsequently, it be­ organic activity that is controlled by the posi­ came stabilized at 40.6%c, presumably about tion of the basin sills versus the level of the the same as prior to isolation. Oxygen is be­ open ocean. This wide range should give pause lieved to have been present always in the deep to the estimation by paleoecologists of charac­ water above the hot-brine interface, and in teristics of ancient water masses from even amounts controlled by its low solubility in the scantier evidence than is available for these rather warm and saline water. three water bodies for the past 30,000 years. Geographically located between the Black REFERENCES CITED Sea and the Red Sea is the Dead Sea, whose sill at 220 m above the ocean level has isolated Barazangi, M., and J. Dorman, 1969, World seismicity maps compiled from ESSA, Coast and Geodetic it from the ocean since late Pliocene time. In­ Survey, epicenter data, 1961-1967: Seismol. Soc. ternal drainage, mainly the Jordan River, has America Bull., v. 59, no. 1, p. 369-380. produced a large increase in salinity during this Berner, R. A., 1974, Iron sulfides in Pleistocene deep Black Sea sediments and their paleo-oceanographic long period. The level of the Dead Sea, dated significance: this volume. by radiocarbon measurements of various ma­ Brewer, Peter, 1971, Hydrographic and chemical data terials, has ranged from -180 m to an un­ from the Black Sea: Woods Hole Oceanog. Inst. known level below -440 m; the present level Tech. Rept. 71-65, 94 p. -398 m (Neev and Emery, 1967). Salinities Brewer, P. G., and D. W. Spencer, 1974, Distribution is of some trace elements in Black Sea and their flux of the deep water have been inversely related between dissolved and particulate phases: this to the water volume (approximately the water volume. level). Hydrogen sulfide is abundant in the Brinkmann, R., 1974, Geologic relations between Black Sea and Anatolia: this volume. deep waters owing to the development about Buachidze, I. M., 1974, Black Sea shelf and littoral 1,500 years ago of a halocline that prevented zone: this volume. convection from top to bottom. During times Bukry, David, 1974, Coccoliths as paleosalinity in­ of falling water level (when evaporation ex­ dicators-evidence from Black Sea: this volume. ceeded runoff plus precipitation), the halocline Canitez, Nezihi, and M. N. Toksoz, 1970, Source parameters of earthquakes and regional tectonics presumably was absent and convection intro­ of the eastern Mediterranean (abs.): Am. Geophys, Union Trans., 51, p, 420. duced the low concentrations of oxygen per- v.

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 590 K. 0. Emery and J. M. Hunt

Caspers, Hubert, 1957, Black Sea and the Sea of waters of Black Sea sediments: new data and re­ Azov, in J. W. Hedgpeth, ed., Treatise on marine view: this volume. ecology and paleoecology: Geol. Soc. America Maynard, N. G., 1974, Diatoms in Pleistocene deep Mem. 67, v. 1, p. 801-889. Black Sea sediments : this volume. Oarke, F. W., 1924, The data of geochemistry: U.S. Milliman, J. D., and K. 0. Emery, 1968, Sea levels Geol. Survey Bull. 770, 841 p. during the past 35,000 years: Science, v. 162, no. Cooper, J. A., E. J. Dasch, and Maureen Kaye, 1974, 3858, p. 1121-1 123. Isotopic and elemental geochemistry of Black Sea MUller, German, and Peter Stoffers, 1974, Mineralogy sediments: this volume. and petrology of Black Sea basin sediments : this Cox, J. M., and Gunter Faure, 1974, Isotope com­ volume. position of strontium in carbonate phase of two Neev, David, and K. 0. Emery, 1967, The Dead Sea: cores from Black Sea: this volume. depositional processes and environments of evapo­ Degens, E. T., 1974, Cellular processes in Black Sea rites: Israel Geol. Survey Bull. 41, 147 p. sediments : this volume. Neprochnov, Yu. P., A. F. Neprochnova, and Ye. G.

--- and D. A. Ross, eds., 1969, Hot brines and Mirl'n, 1974, Deep structure of Black Sea basin: recent heavy metal deposits in the Red Sea: New this volume. York, Sprin�er-Verla-r, Inc., 600 p. Neumann, G., 1943, Ober den Aufbau und die Frage Deuser, W. G., 1974, Evolution of anoxic conditions der Tiefenzirkulation des Schwarzen Meeres: Ann. in Black Sea during Holocene: this volume. Hydrog. Marit. Meteorol., v. 70, p. 1-20. Emery, K. 0., 1968, Shallow structure of continental Nevesskaya, L. A., 1974, Molluscan shells in deep­ shelves and slopes: Southeastern Geology, v. 9, water sediments of Black Sea: this volume. p. 173-194. Ostlund, H. G., 1974, Expedition "Odysseus 65": Erickson, Albert, and Gene Simmons, 1974, Environ­ radiocarbon age of Black Sea deep water: this mental and geophysical interpretation of heat-flow volume. measurements in Black Sea: this volume. Peake, Eric, D. J. Casagrande, and G. W. Hodgson, Fonselius, S. H., 1974, Phosphorus in Black Sea: this 1974, Fatty acids, chlorins, hydrocarbons, stero1s, volume. and carateno'ds from a Bla::k Sea core: t'"is volume. Gheorghian, Musat, 1974, Distribution pa'terns of Pilipchuk, M. F., and I. I. Vollcov, 1974, Behavior benthonic Foraminifera on continental shelf of of molybdenum in orocesses of sediment formation Black Sea off Rumanian shore: this volume. and diagenesis in Black Sea: this volume. Grasshoff, K., 1970, A simultaneous multiple channel Roman, Stefana, 1974, Palynoplanktologic analysis system for nutrient analysis in sea water with analog of some Black Sea cores : this volume. and digital data record, in Advances in automated Rona, Elizabeth, and Oiva Joensu, 1974, Uranium analysis: Technicon Symposium 1969, p. 133-145. geochemistry in Black Sea: this volume. Gunnerson, C. G., and Erdogan ozturgut, 1974, The Ross, D. A .. and E. T. Degens, 1974, Recent sedi­ Bosporus: this volume. ments of Black Sea: this volume. Heezen, B. C., and G. L. Johnson, 1969, Med'ter­ --- Elazar Uchupi, and C. 0. Bowin, 1974, Shal­ ranean undercurrent and microphysiography west low structure of Black Sea: this volume. of Gibraltar: Inst. Oceanogr. Bull., v. 67, no. 1382, --- et al., 1974, Bathymetry and microtopography 95 p. of Black Sea: this volume. Hirst, D. M., 1974, Geochemistry of sediments from Rozanov, A. G., I. I. Volkov, and T. A. Yagodinskaya, eleven Black Sea cores : this volume. 1974, Forms of iron in surface layer of Black Sea Hunt, J. M., 1974, Hydrocarbon geochemistry of sediments: this volume. Black Sea: this volume. Scholten, R., 1974, Role of the Bosporus in Black Jannasch, H. W., H. G. Truper, and J. H. Tuttle, Sea chemistry and sedimentation : this volume. 1974, Microbial sulfur cycle in Black Sea: this Shimkus, K. M., and E. S. Trimonis, 1974, Modern volume. sedimentation in Black Sea: this volume. Jipa, D. C., 1974, Graded bedding in some recent Simoneit, B. R., 1974, Organic analyses of Black Sea Black Sea turbidites : a textural approach : this cores: this volume. volume. Smirnow, L. P., 1958, Black Sea basin, in L. G. Weeks, Keller, G. H., 1974, Mass physical properties of some ed., Habitat of oil: Am. Assoc. Petroleum Geologists, western Black Sea sediments: this volume. p. 982-994. Koblentz-Mishke, 0. J., V. V. Volkovinsky, and Traverse, Alfred, 1974, Palynologic investigation of J. G. Kabanova, 1970, Plankton primary produc­ two Black Sea cores: this volume. tion of the world ocean, in W. S. Wooster, ed., Trimonis, E. S., 1974, Some characteristics of car­ Scientific exploration of the South Pacific: N atl. bonate sedimenta'ion in Black Sea: this volume. Acad. Sci., p. 183-193. Tsagareli, A. L., 1974, Geology of : Kremling, Klaus, Relation between chlorinity and this volume. conductometric salinity in Black Sea water: this Vine, A. C., 1974, Bottom photographs of Black Sea: volume. this volume. Kriss, A. E., 1959, The role of microorganisms in Volkov, I. I., and L. S. Fomina, 1974, Influence of the primary production of the Black Sea: Jour. or_sanic material and processes of sulfide formation Cons. Int. Explor. Mer., v. 24, p. 221-230. on distribution of some trace elements in deep­ Laking, P. N., 1970, Bibliography of scientific litera­ water sediments of Black Sea: this volume. ture on the Black Sea : Woods Hole Oceanog. Vuchev, V. T., 1974, Black Sea studies in Bulgaria­ Inst. Tech. Rept. 70-32, 278 p. (multirthed). a brief survey : this volume. Lorenzen, C. J., 1974, Chlorophyll degradation prod­ Wall, David, and Barrie Dale, 1974, Dinoflagellates ucts in sediments of Black Sea: this volume. in late Quaternary and deep-water sediments from Manheim, F. T., and Chan, 1974, Interstitial Black Sea: this volume. I(. M.

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Index

This index consists of two sections, which appear in the following order: ( 1) Author Index and (2) Keyword Index The author index is arranged alphabetically according to each author's last name. For papers by more than one author, each author's name appears in the index in alphabetical order. The appearance of an author's name followed by the title of an article does not mean that he is the only author of that article. He may be one of two or more authors of the paper whose title follows his name. The author index does not show multiple authors in any single listing. To locate a reference in the keyword index, the reader should begin by thinking of the significant words. Then he should look in the index for the keyword entry for each of those words. The reference codes will direct him to the pages. The columns on the right-hand side of the keyword index give the page number and a code number ( 1 or 3) indicating the nature of the source. The code is: ( 1) for phrase from title; and ( 3) for phrase from abstract, text, table, figure, or figure caption. The keyword for each entry is located at the left-hand side of the page. The ( >) sign indicates the first word in each title or key phrase. The ( < ) sign indicates the end of the title or key phrase.

591 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Author Index BERNER R, A,l !RO SULFIDES IN PLEI STOCENE DEEP BLACK SEA SED!ME 524 TRUPER Ho G,l MICROBIAL SULFUR CYCLE IN BLACK SEA 419 BOWIN C, Dol SHALLOWN STRUCTURE OF BLACK SEA TSAGAREU A, L,l GEOLOGY OF WESTERN CAUCASUS 77 Ul II BREWER Po G,l DISTRIBUTION OF SOME TRACE ELEMENTS IN BLACK SEA A 137 TUTTLE J , H,l MICROBIAL SULFUR CYCLE IN BLACK SEA 419 BRINKMANN R,l GEOLOGIC RELATIONS BETWEEN BLACK SEA AND ANATOUA 63 UCHUPI Eol BATHYMETRY AND MICROTOPOGRAPHY OF BLACK SEA 1 ;! BUACHIDZE I, Mol BLACK SEA SHELF AND LITTORAL ZONE UCHVPI Eol STRUCTURE OF BLACK SEA 308 SHALLOW 11 BUKRY 0,1 COCCOLITHS AS PALEOSALINITY INDICATORS••EVIOENCE FROM 353 VINE A, C,l BOTTOM PHOTOGRAPHS OF BLACK SEA 338 CASAGRAND Jol FATTY ACIOS, CHLORINS, HYDROCARBONS• STEROLS• VOLKOV E Q, 505 lo 1,1 BEHAViOR OF MOLYBDENUM IN PROCESSES OF SEDIMENT FO 542 CHAN K, M , l INTERSTITIAL WATERS OF BLACK SEA SEDIMENTS••NEW DATA 155 VOLKOV I• 1,1 FORMS OF !RON IN SURFACE LAYER Or BLACK SEA SEOIME 532 COOPER J , A,J ISOTOPIC AND ELEMENTAL GEOCHEMISTRY OF BLACK SEA S 554 VOLKOV I, 1,1 INFLUENCE OF ORGANIC MATERIAL AND PROCESSE S OF SUL 456 C OX J, Mol ISOTOPE COMPOSITION OF STRONTIUM IN CARBONATE PHASE 0 566 VUCHEV Vo T ,J BLACK SEA STUDIES IN BULGARIA••A BRIEF SURVEY 90 DALE Bol DINOFLAGELLATES IN LATE QUATERNARY DEEP• WATER SEDIMENT 364 W ALL Dol DINOFLAGELLATES IN LATE QUATERNARY DEE P• WATER SEDIMENT 364 DASCH E, Jol ISOTOPIC AND ELEMENTAL GEOCHEMISTRY OF BLACK SEA SE 554 YAGOOINSKAY T, A,l FORMS OF IRON SURFACE LAYER OF BLACK SEA 532 A IN DEGENS E, T ,I CELLULAR PROCESSES IN BLACK SEA SEDIMENTS 296 DEGENS Eo T ,, EDITOR I THE BLACK SEA••GEOLOGY• CHEMISTRY, AND BID I DEGENS E , T PAGE IX OEGENS Eo T ,I RECENT SEDIMENTS OF BLACK SEA ,I 183 DEUSER Wo G,l EVOLUTION OF ANOXIC CONDITIONS IN BLACK SEA DURING 1 33 EMERY K, Dol SUMMARY OF BLACK SEA INVESTIGATIONS 575 ER I CKSQN A ENVIRONMENTAL AND GEOPHYS! CAL INTERPRETATION OF HEA •I 50 FAURE G,l ISOTOPE COMPOSITION OF STRONTIUM IN CARBONATE PHASE OF 566 FOMINA L • S,l INFLUENCE OF ORGANIC MATERIAL AND PROCESSES OF SUL 456 FONSELIUS S, Hoi PHOSPHORUS I N BLACK SEA 144 GHEDRGHIAN Mol DISTRIBUTION PATTERN OF BENTHONIC FORAMINIFERA ON 411 GUNNERSON C, Go I BOSPORUS• THE 99 HIRST Do M ol GEOCHEMISTRY OF SEDIMENTS FROM ELEVEN BLACK SEA COR 430 HODGSON G , W,l FATTY ACIDS, CHLORINS, HYDROCARBONS, STEROLS, AND 505 HUNT J, M,l HYDROCARBON GEOCHEMISTRY OF BLACK SEA 499 HUNT J, H,l SUMMARY OF BLACK SEA INVESTIGATIONS 575 JANNASCH Ho Wol MICROBIAL SULFUR CYCLE IN BLACK SEA 419 JIPA 0, C,l G DED BEDDING IN RECENT BLACK SEA TURBIDITES"•A TEX 31 RA T )» JOENSU Dol URANIUM GEOCHEMISTRY IN BLACK SEA 570 KAYE Mol ISOTOPIC AND ELEMENTAL GEOCHEMISTRY Or BLACK SEA SEDIME 554 KELLER G, H,l MASS PHYSICAL PROPERTIES OF SOME WESTERN BLACK SEA 3 32 KREMLING K ol RELATION BETWEEN CHLORINITY AND CONOUCTOMETRIC SAL! 151 LORENZEN Co J,l CHLOROPHYLL• DEGRADATION PRODUCTS IN SEDIMENTS 0 426 MAC ILVAINE Jo Col BATHYMETRY AND MICROTOPOGRAPHY OF BLACK SEA 1 f:; MANHEIM F, To INTERSTITIAL W ATERS OF BLACK S D I EA SED!MENTS••NEW 155 MAYNARD N, Gol DIATOMS IN PLEISTOCENE DEEP BLACK SEA SEDIMENTS 389 MIRLIN YE, Gol DEEP STRUCTURE OF BLACK SEA BASIN 35 MULLER Gol MINERALOGY AND PETROLOGY OF BLACK SEA BASIN SEDIME�TS 200 = NEPROCHNOV YU, Pol OEEP STRUCTURE OF BLACK SEA BASIN 35 NEPROCHNOVA A , Fol DEEP STRUCTURE OF BLACK SEA BASIN 35 NEVESSKAY A Lo Aol MOLLUSCAN SHELLS IN OEEP•wATER SEDIMENTS OF BL 349 OSTLUND H, G,l EXPEDITION ODYSSEUS 65• RAG!OCARBON AGE OF BLACK 1 21 OZTURGUT Eol BOSPORUS• THE 99 PEAKE E,l fATTY ACIDS, CHLORINS, HYDROCARBONS, STEROLS• AND C ARD 505 PILIPCHUK M, Fol BEHAVIOR OF MOLYBDENUM IN PROCESSES OF SEDIMENT 542 P RADA K, Eol BATHYMETRY AND M I CROTOPOGRAPHY OF BLACK SEA 1 ROMA� S,l PALYNDPLAN.KTOLOGIC ANALYSIS OF SOME BLACK SEA CORES 396 RONA E,l URANIUM GEOCHEMISTRY IN BLACK SEA 570 ROSS O, A,l BATHYMETRY AND MICROTOPOGRAPHY OF BLACK SEA 1 ROSS Q, A,, EOITORI THE BLACK SEA••GEOLOGY• CHEMISTRY• AND BIOLD I ROSS O, A,l PAGE !X ROSS D, A,l RECENT SEDIMENTS OF BLACK SEA 183 ROSS 0, A,l SHALLOW STRUCTURE OF BLACK SEA 11 RDZANOV A, Gol FORMS OF IRON IN SURFACE LAYER Of BLACK SEA SEOIM 532 SCHOL N Rol ROLE THE BOSPORUS IN BL CK S CHEMISTRY AND SED TE 0< A EA 115 SHIMKUS K, Mol MODERN SEDIMENTATION IN BLACK SEA 249 SIMMONS G,l ENVIRONMENTAL AND GEOPHYSICAL INTERPRETATION OF HEAT 50 SIMONEIT Bo Rol ORGANIC ANALYSES OF BLACK SEA CORES 477 SPENCER D, W,l DISTRIBUTION Of SOME TRACE ELEMENTS IN BLACK SEA 137 STOFFERS Pol MINERALOGY AND PETROLOGY OF BLACK SEA BASIN SEOIMEN 200 TRAVERSE Aol PALYNOLOGIC INVESTIGATION Of TWO BLACK SEA CORES 381 TRIMONIS Eo S,J MODERN SEDIMENTATION IN BLACK SEA 249 TRIMONIS [, S,l SOME CHARACTERISTICS OF CARBONATE SEDIMENTATION 279

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Keyword Index AHEOATI FAULT<>CAUCASUS1 POT!• 82 ALP INE ORDGENY<>CAUCASUS• 3 eo AHkA ALBA<>BLACK SEA SEDIM ENTS• 351 ALPINE TECTOGENESIS<>BLACK SEA REGION, TO 3 AHYSSAL OEEP<>BLACK SEA• 308 A LPINE TECTOGENES I S<>CAUCASUS• WESTERN, 77 3 ABYSSAL PLAIN<>BLACK SEA BASIN• 2 ALUM!NUM<>BLACK SEA SEDIMENTS• 431 3 ABYSSAL P L AIN<>BLACK SEA SEDIMENTS, 332 ALUMINUM CONTENT<>BLACK SEA CORES, 572 3 ACANTHOICA ACA•THOS• MICROGRAPH<>BLACK SEA• 357 ALUMINUM C ONTENT<>BLACK SEA SEDIMENTS, 556 3 ACANTHOICA ACANTHOS• MICROGRAPHS<>ALACK SEA• 359 AMBARSKIY LANDSLIOE<>BLACK SEA REGION, CHERNO• 313 3 ACER OR MAPLE POLLEN<>BLACK SEA• 398 AMINO ACID DISTRIBUTION, GRAPH<>BLACK SEA SED IMENTS, 300 3 ACID• ALKANE RATIOS<>BLACK SEA CORES• ORGANIC ANALYSIS, 494 AMINO ACIO O!STR ISUTION• GRAPH<>BLACK SEA SEDIMENTS• 301 3 ACIO<>PALM ITIC 514 AMI�O ACIDS, DISTRIBUTION• TABLE<>BLACK SEA• 3D2 3 ACID ESTER FRACTION, BRANCHEO•CYCL!C, MAJOR CO/>BLACK SEA CORE, 49 4 >AMI�O ACIDS, SYNTHESIS< 303 3 ACID ESTEH FRACTION• GAS CHROMATOGRAPHY AND MA/>BLACK SEA CORE• 490 A MINO SUGAR DISTRIBUT ION• GRAPH<>BLACK SO SEDIMENTS• 300 3 ACID ESTER FRACTION, GAS CHROMATOGRAPHY AND MA/>BLACK SEA CORE• 491 AMMON I A• PHOSPHATE•PHOSPHORUS• S I L1CA, //EHTERN• !NTERSTI T1 AL 169 3 ACID ESTER FRACTION• MAJOR COMPONENTS, TABLE<>BLACK SEA CORE• 489 >AMMONIA BECCARI!, MICROGR APHS < 414 3 ACID ESTE R FRACT ION, MAJOR COMPO-�NTS, TABLES<>BLACK SEA CORE• 492 AMMONIA COMPACTA• DISTRIBUTION MAP<>BLACK SEA SHELf> RUMANIAN• 417 3 ACID FRACT IONS• TOTAL• ALKANE• AND ESTERIFIEO,/>BLACK SEA CORE• 480 >AMMONIA COMPACTA, MICROGRAPH S < 413 3 ACID YIELDS OF VARIOUS FRACTIONS• TABLE//SEA CORES• NEUTRAL• 496 AMMO�IA DISTRIBUTION, GRAPH<> BLACK SEA SEDIMENTS, 300 3 ACIDS<>BLACK SEA SEDIMENT CORE• FATTY 514 >AMMONIA PERLUC IDA• MICROGRAPHS< 414 3 ACIDS• CHLORINS• HYDROCARBONS• STEROLS• AND CAROTENOIDS/>FATTY 505 >AMMONIA SIKOKUENSIS, MICROGRAPHS< 414 3 >ACRITARCHS, MICROGRAPHS< 384 >AMMONIA TEPIDA• MICROGRAPHS< 414 3 ACRITARCHS PER GRAM OF SED I MENT<>BLACK SEA, DINOFLAGELLATES AND 382 >AMMONIA VIE NNE NSIS, MICROGRAPHS< 413 3 ACRITARCHS PER GRAM OF SEDIMENT, GRAPH<>BLACK SEA, 386 AMPHIZYGUS BROOKS !! BROOKS! !, MICROGRAPH<> BLACK SEA• 359 3 >AOENOSINE •TRIPHOSPHATE, ELECTRON TRANSFER OR HYDROLYSIS< 306 ANAEROBIC DEGRADATION, HYDROGEN ACCEPTO//SEA• ORGANIC MATTER• 422 3 ADZHARO• IMERETINSKIY R!OGE<>BUCK SEA REGION, 309 ANATOL !Ac •/BASIN AND RANGE PROVINCE• COMPARED TO BLACK SEA AND 73 3 AOZHARO• TR IALETSKIY fOLDED SYSTEM<>BLACK SEA BASIN• 308 ANATOLIA<>AEGEAN SEA• COMPARED TO BLACK SEA AND 73 3 ADZHARO• TR IALETSKIY FOLDED S Y STEM<>BLACK SEA BASIN• 311 >ANATOL!A, CAMBRIAN• MARINE ROCKS< 64 3 AOZHARO• TRIALETSKIY fOLDED SYSTEM<>CAUCASUS• WESTERN• 79 ANATOLIA• CENOZOIC HISTORY<>BLACK SEA AND 69 3 AUZHARO• TRIALETSKIY F OLDE D S YSTEM, CENTRAL ZONE<>CAUCASUS• 78 >ANATOLIA, CRUST, SPREADING OF< 3 Tl ADZHARO• TRIALETSKIY fOLDED SYSTEM, NORTHERN ZONEoCAUCASUS• 78 ANATOL !A, CRUSTAL STRUCTURE<>BLACK SEA AND 71 3 AUZHARO" T RIALETSKIY fOLDED SYSTEM• SOUTHERN ZONE<>CAUCASUS• 78 >ANATOL!A, EROSION RATE< 234 3 AOZHARO• TRIALETSKIY ZONE<>TRANSCAUCASIA• 69 >ANATOLIA, EVAPORITES< 70 3 ADlHARSKAYA fAULT<>CAUCASUS• MTSKHETA• 81 ANATOL!A, GEOLOGIC HISTORY<>BLACK SEA AND 71 3 >AEGEAN S E A < 99 ANATOLIA<>GEOLOGIC RELATIONS BETwEEN BLACK SEA AND 63 I >AEGEAN SEA, COMPARED TO BLACK SEA AND ANATOLIA< 73 >ANATOL !A, INLAND SEA< 63 3 AEHOBIC H t:TEROTROPH I C<>BLACK SEA, BACTERIA, 421 ANATOLIA, LIAS• DOGGER TROUGH• MAP<>TURKEY• 65 3 AERUe!C HETEROTROPH IC BACTER!A<>BLACK SEA• 424 ANATOL!A, MESOZOIC HISTORY<>BLACK SEA AND 66 3 AFFLUENTS• SUSPENDED LOAD• TABLE<>BLACK SEA, 253 ANATOLIA• MIOGEOSYNCLINES AND EUGEOSYNCLI�ESoTURKEY• 71 3 3' >AFRICA• SOUTHWESTERN COAST• PIGMENT CONTENT OF SEDIMENT, RELAT/ 427 >ANATOLIA, ORDOV ICIAN ROCKS< 64 3 AFRICAN• AND ARAB IAN PLATES• JUNCTION Of<>EURASIAN• VIII A NATOL!A• PALEOZOIC SEDIMENTS• SOURCEoTURKEY• 57 3 >AFRICAN AND EURASIAN PLATES• CONVERGENCE Of< 59 ANATOL!A, PONTIAN GEOSYNCLINE• MAP<>TURKEY• 65 3 i >AFRO• ARABIAN SHIELD< t 63 >ANATOLIA, PRECAMBRIAN ERA< 63 3 AGOAM fAULT<>CAUCASUS, LOKI• 82 ANATOLIA, RADIOLARITE• OPHIOLITE ZONES<>TURKEY, 68 3 AGE<>BLACK S[ A , II >ANATOLIA, REDBEDS< 64 3 AGE Of BLACK SEA DEEP WATERBLACK SEA AND 66 3 AKHALTSIKHE FAULT<>CAUCASUS• 88 ANATOL !A, SILURIAN AND DEVONIAN• TRANSGRESS!ON<>TURKEY, 64 3 AKHALTSIKHE SUSZONE<>CAUCASUS, 78 ANATOL!A<>TYRR�ENIAN SEA, COMPARED TO SLACK SEA AND 73 3 >ALBERTA• CHESTERMERE LAKE• STEROLS< 510 ANATOL IA, ULTRAMAF IC MASSIFS<>TURKEY• 68 3 >ALeERTA, COOKING LAKE, STEROLS< 510 ANATOL !A R EGIONS<>MEOITERRANEAN PROVINCE• BLACK SEA AND 63 3 ALOER POLLEN• DISTRIBUTION I N SEO!MENT<>BLACK SEA• ALNUS OR 383 ANATOLIAN BASIN<>CENTRAL 70 3 ALKALIN!Tl, TABLEBLACK SEA, 269 3 ALKANE FRACTIO�• MAJOR COMPONENTS, TABLE<>BLACK SEA CORE• 487 ANATOLIAN FAULT<>BLACK SEA, 3 II ALKANE FRACTION• MAJOR COMPONENTS, TABLE<>BLACK SEA CORE• 489 >ANC IENT BLACK SEA PERIOD< 441 3 ALKANE FRACTION• MASS•SPECTRAL DATA• GRAPH<>BLACK SEA CORE, 483 ANKER!TE<>SLACK SEA SEDIMENTS• MODERN, 285 3 ALKANE FRACTION ANALYSES<>8LACK SEA CORE, 486 ANOXIC, DEVELOPMENT• GRAPH<>BLACK SEA, WATER• 135 3 ALKANE RAT!OS<>BLACK SEA CORES, ORGANIC ANALYSIS, ACID• 494 ANOXIC BAS!N<>BLACK SEA• LARGEST VIII 3 ALLV�IAL fANS<>BLACK SEA BASIN• 124 ANOXIC CONDITIONS, PROGRESS OF<>BLACK SEA• 134 3 >ALNUS, MICROGRAPH< 405 ANOXIC CONDITIONS IN BLACK SEA DURING HOLOCENE<>EVOLUT!ON Of 133 I >ALNUS, MICROGRAPHS< 384 >ANOXIC ENVIRONMENTS• •oRMATION OF< 419 3 AL.NUS, PERCENT, GRAPH<>BLACK SEA, POLLEN, 387 ANT!CLINE<>BLACK SEA• 22 3 ALNUS OR ALDER POLLEN, DISTRIBUTION IN SED!MENT<>BLACK SEA, 383 ANTICLINORIUM OF MA IN RANGE<>CAUCASUS, WESTERN• 77 3 AL.NUS OR H!RCH POLLEN<>BLACK SEA• 396 ANTI CL I NOR IUMS<>C AUCA SUS, wESTERN, 79 3 AL.PINE• HIMALAYAN REGION• EDGE or, MAP<>BLACK SEA• 51 APHONI LANOSL!OES<>BLACK SEA REGION• NEW 313 3 >ALPINE F OLD BELTS< APRON<>BLACK SEA BASIN, I 2 3 ALPINE fOLO BEL TS<>BLACK SEA BASIN AREA• APRON HILLS<>BLACK SEA, BASIN• 3 3 II lUI ALPINE fOLOING<>MED ITERRANEAN GEOSYNCLINE• KIMMERIAN AND 203 ARABIAN PLATES, JUNCT ION OF<>EURAS!AN, AFRICAN, AND VIII 3 ALPINE DRDGEN<>BULGARIA• 91 ARABIAN SHIELO<>AFRO• 63 3 8

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 ARAGONITE<>BLACK SEA SEDIMENTS• 213 3 BACTER!A<>BLACK SEA• AEROBIC HETEROTROPHIC 424 3 ARAGON!TE<>BLACK SEA SEDIMENTS• MODERN, 282 3 BACTER!A<>BLACK SEA• METHANE 423 3 Ul ARAGONiTE• I•MM LAYER<>BLACK SEA, 190 3 BACTERIA, PHOTOSYNTHETIC NONSULFUR<>BLACK SEA, 421 3 ARAGONITIC RICE GRAINS, PHOTO<>BLACK SEA• 217 3 BACTERIA, PHOTOSYNTHETIC SULFUR<>BLACK SEA, 421 3 � ARCHEAN• PA LEOZOIC CRYSTALLINE ROCKS, MAP<>BLACK SEA BASIN, 311 3 BACTERIA> SULFATE•REOUCING> COUNTS<>BLACK SEA, 421 3 > ARGENTINE BASIN SED IMENT> RUBIDIUM• STRONTIUM OATA< 562 3 BACTERIA, SULFIOE•OX!OIZING, COUNTS<>BLACK SEA, 421 3 ARGILLACEOUS MATERIAL, SOURCE<>BLACK SEA• CLASTIC• 270 3 SAFF!N BAY, STEROLS<>TEXAS, 509 3 ARMENIA> ARZAKAN MASSIF<>USSR 80 3 BALKAN GEDSYNCLINE<>BULGARIA, BLACK SEA BELT• 91 3 Ak�MATICS> POLYCYCLIC<>BLACK SEA SEDIMENT CORE> 510 3 BALTIC REGION<>L! MNEA STAGE OF 374 3 AROMATICS• POLYCYCLIC, EXPERIMENTAL METHODS<>BLACK SEA CORE> 510 3 >BALTIC SEA, ONCE A LAKE•SEA< 376 3 A ROMATICS• POLYCYCLIC• SURFACE• THIN•LAYER CHROMATO/>BLACK SEA• 511 3 SAND I NG<>L I ESE GANG 529 3 A ROMATICS, POLYCYCLIC, THIN•LAYER CHROMATOGRAPHIC F/>BLACK SEA, 512 3 BARITE<>BLACK SEA SEDIMENTS• 437 3 >ARTEMISIA• MICROGRAPHS< 384 3 SARIUM<>BLACK SEA, 447 3 ARTEMISIA• PERCENT• GRAPH<>BLACK SEA, POLLEN, 388 3 BARIUM<>BLACK SEA SEDIMENTS, 432 3 ARTEMISIA POLLEN<>BLACK SEA• 385 3 BARIUM CONTENT<>BLACK SEA CORES, 572 3 ARTEMISIA POLLEN<>BLACK SEA, 398 3 SASALTIC<>BLACK SEA> CRUST, OCEANIC• 7l 3 > ARTEMISIA POLLEN, MICROGRAPH< 407 3 BASAL TIC LAYER<>BLACK SEA, 36 3 >ARTEMISIA POLLEN, MICROGRAPH< 409 3 BASEMENT, AGE AND LOCATION<>USSR• CAUCASUS• WESTERN• 80 3 ARTESIAN BASIN<>CRIMEAN REGION• 162 3 BASEMENT, MOVEMENTS DF<>CAUCASUS, so 3 ARTVIN• BOLNI SSIAN BLOCK<>CAUCASus, �ESTERN, 79 3 BASEMENT, STRUCTURAL STAGES<>CAUCASUS, WESTERN, 82 3 ARZAKAN MASSIF<>USSR, ARMENIA• 80 3 BASEMENT ROCKS<>BLACK SEA REGION, 68 3 ASH POLLEN<>BLACK SEA, FRAXINUS OR 398 3 BASIFICATION<>BLACK SEA, 58 3 AS!C.HA SUBZONE<>CAUCASUS,. 78 3 BASIF!CATION OF SIAL<>BLACK SEA AREA• 118 3 ASPHALTIC COMPOUNDS<>BLACK SEA SEDIMENT> 503 3 BASIN• APRON HILLS<>BLACK SEA• 3 3 ASP!NDZA• MANGLISI FAULT<>CAUCASUS, 82 3 BASIN ANO RANGE PROVINCE, COMPARED TO BLACK SEAI>UN ITEO STATES• 13 3 ASP!NOZA• MANGLIS! SUBZONE<>CAUCASUS• 78 3 BATHYGRAPHIC CURVES• GRAPH<>SLACK SEA, 134 3 ASSYNT!AN OR BAYKAL!AN METAMORPH!SM<>BULGAR!A, 63 3 BATHYMETRIC CHART<>BLACK SEA, 4 3 ASSYNTIAN OR BAYKALIAN METAMORPHISM<>CAUCASUS, 63 3 BATHYMETkV<>BLACK SEA, 2 3 ASSYNT!AN OR BAYKAL!AN METAMORPHISM<>CRIMEA• 63 3 BATHYMETRY, MAP<>BOSPO�US• 101 3 ASSYNT!AN OR BAYKALIAN METAMORPHISM<>RUMANIA• 63 3 BATHYMETRY<>MARMARA, SEA OF, 99 3 >A�TERIGERINA, MICROGRAPHS< 412 3 BATHYMETRY' SOUTHERN APPROAC HES• MAP<>SOSPORUS> 102 3 ATHIORHOOACEAE• COUNTS<>BLACK SEA, 421 3 >BATHYMETRY AND MICROTOPOGRAPHY OF BLACK SEA< 1 I ATLANTIC, BRAARUOOSPHAERA• NERITIC OOMINANCE<>SOUTH 360 3 BATUMI D!STR!CT<>B�ACK SEA, TRABZON• 310 3 ATLANTIC, COCCOL!THS<>NORTH 358 3 BATUM! SHELF DiSTRICT, STRUCTURE AND MORPHI>BLACK SEA, TRABZON• 309 3 A TLANTIC OCEAN• C•l4 D ATA• TABLE<>MED!TERRANEAN SEA AND NORTH 130 3 BAVARIAN MOLASSE, TERTIARY ROCKS<>BLACK SEA AREA, 203 3 ATL.ANT!C OCEAN• WHER SAMPLING STATIONSII>MEDITERRANEAN SEA ANO 128 3 BAYKALIAN METAMORPHISM<>BULGAR!A• ASSYNT!AN OR 63 3 ATLANTIC•SUBBOREAL CLIMATIC OPTIMUM<>BLACK SEA• 372 3 BAYKALIAN NETAMORPHISM<>CAUCASUS• ASSYNTIAN OR 63 3 $" >ATLANTIS II• CRUISE 49, OBJECTIVES< VIII 3 BAYKAL!AN METAMORPHISM<>CRIMEA• ASSYNT!AN OR 63 3 ATLANTIS II CORE ANALYSES<>BLACK SEA SEDIMENTS, GEOCHEMISTRY• 450 3 SAYKALIAN METAMORPHISM<>RUMANIA• ASSYNTIAN OR 63 3 ATLANTIS II CORE LOCAT!ONSBLACK SEA TURBIDITES• GRADED 329 3 f A TLANTIS II CORE STAT!ONS<>BLACK SEA• COCCOLITHS• 354 3 BEDDING, TRENOS<>BLACK SEA TURBIDITES, GRADED 318 3 f A TLANTIS II CORE STATIONS• MAP<>BLACK SEA, 1 84 3 BEDDING IN RECENT BLACK SEA TURBIO!TES••A TEXTURAL APPRI>GRAOED 317 I ATLANTIS II CORES• APPENOIX<>BLACK SEA, 198 3 BEECH POLLEN<>BLACK SEA, FAGUS OR 396 ATLANTIS II CRUISE RESULTS<>BLACK SEA 3 , PHOSPHORUS, 144 3 BEGGIATDA <>BLACK SEA• 420 3 ATLANTIS II CRUISE TRACK• 1969<>BLACK SEA• 2 3 >BEHAVIOR OF MOLYBDENUM IN PROCESSES OF SEDIMENT FORMATION AND/ 542 I ATLANTIS II SAMPLE LOCATION MAP<>BLACK SEA, 201 3 BENTHONIC fORAMINIFERA ON CONTINENTAL SI>O!STRIBUTION PATTERN OF 411 I ATOMIC••EAPONS TESTS• EFfECTS ON c•l4 ANO TRITIUM CI>BLACK SEA• 131 3 BENTHOS<>BULGARIA> BLACK SEA, 95 3 A TTIC PHASE<>CAUCASUS, 86 3 BENZENE• C ONCENTRAT!ON<>BLACK SEA SEDIMENT• 520 3 A USTRIAN P HASE<>CAUCASUS• 83 3 >BENZPYRENE< 510 3 >AZOV• BLACK SEA BAS IN• AfFLUENTS, MICROELEMENTS• ANNUAL SUPPL Y/ 261 3 >BERING SEA SEDIMENTS< 275 3 >AZOV• BLACK SEA BASIN• RIVER DISCHARGE• LIQUID AND SOLID• TABLI 250 3 >BETA• SITOSTEROL< 505 3 > AZOV• BLACK SEA BASIN• SALT INfLUX, TABLE< 254 3 BETULA OR BIRCH POLLEN<>BLACK SEA, 396 3 >AZOV• BLACK SEA BASIN, SUSPENDED LOAD, GRAIN SIZE , TABLE< 252 3 ANNUAL PRODUCTION TABLE<>SLACK SEA, 262 3 >AZOV• SLAC K SEA BASIN• SUSPENDED MATERIAL• CHEMICAL COMPOS!T!OI 254 3 ,�;����;� =���:!��; < ', 297 3 >AZUV• BLACK SEA BASIN, TRACTION LOAD, GRAIN SIZE, TABLE< 251 3 BIOLOGIC MEMBRANES• MOLECULAR OIMENSIONIICOMPDUNDS AND 303 3 AZOV• KERCH O!STR!CT<>BLACK SEA• 310 3 BIOLOGY<>BLACK SEA• 347 3 A ZOV• KERCH SHELF DISTRICT, STRUCTURE AND MDRPHDLOGI>BLACK SEA• 314 3 B!OLOGY<>BULGARIA• BLACK SEA, 94 3 >AZOV, SEA Of, EM!LIAN!A HUXLEY!< 360 3 BI�LOGY, SUMMARY<>BLACK SEA• 584 3 >A ZOV, SEA or, GEOPHYSICAL PROFILE< 15 3 BIUSTRAT!GRAPHY<>BLACK SEA• DINOFLAGELLATE 36! 3 >AZOV, SEA OF• MUDS• THERAPEUTIC< 155 3 BIRC H PDLLEN<>BLACK SEA• ALNUS OR 396 3 >AZOV, SEA OF, NEOEUX!N!AN LAYERS< 314 3 BIRCH PDLLEN<>BLACK SEA• BETULA OR 396 3 >AZOV AND BLACK SEAS• CARBON• PRIMARY PRODUCTION• MAP< 258 3 oiRCH POLLEN<>BLACK SEA• CARPINUS OR 396 3 AZOV SEAS• RIVER INFLUX, COMPOSITION, TABLE<>BLACK AND 175 3 B!SMUTH<>BLACK SEA SEDIMENTS, 432 3 BACILLARIOPHYCEAE<>BLACK SEA, 389 3 BITUMEN CONTENT< IISAPROPEL!C MUDS, TRACE•ELEMENT RELATION TO 466 3 SACTER!A, AEROBIC HETEROTROPHIC<>BLACK SEA, 421 3 BITUMENS, OCCURRENCE OF MICROELEMENTSoSAPROPELS, 468 3 BACTERIA<>BLACK SEA• 585 3 >BLACK AND AZOV SEAS• RIVER I NFLUX, COMPOSITION, TABLE< 175 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK AND CASPIAN SEA AREAS, NEDEUXINIAN PALEOGEOGRAPHY< 156 3 >BLACK SEA• BIOLOGY• SUMMARY< 564 3 >BLACK AND MEDITERRANEAN SEAS , SHIPS• SUNKEN, POSSIBLE PRESENCE/ 346 3 >BLAC � SEA• BLACK LAYERS, ORIGIN< 527 3 BLACK LAYERS, ORIGIN<>BLACK SEA• 527 3 >BLACK SEA• BORON• CARBON ASS OCIATION< 440 3 >SLACK SEA• ABYSSAL DEEP< JOB 3 >B ACK SEA• BOSPORUS CURRENT• LOWER, APPEARANCE OF< 459 3 >B'LACK SEA• ACANTHO!CA ACANTHOS, MICROGRAPH< 357 3 >B"ACK� SEA• BOSPORUS DISTRICT< 310 3 >BLACK SEA• ACANTHOICA ACANTHOS• MICROGRAPHS< 359 3 >BLACK SEA• BOSPORUS SHELf DISTRICT, STRUCTURE AND MORPHOLOGY< 308 3 >SLACK SEA• ACER OR MAPLE POLLEN< 398 3 >BLACK SEA• BOTTOM DEPOSITS< 537 3 >BLACK SEA• ACRITARCHS PER GRAM Of SEDIMENT, GRAPH< 386 3 BLACK SEA<>BOTTOM PHOTOGRAPHS OF 33B I >BLACK SEA• AEROB IC HETEROTROPHIC BACTERIA< 424 3 >BLACK SEA, BRAARUODSPHAERA BIGELOW!, MICROGRAPHS< 359 3 >BLACK SEA• AHLUENTS, ELEMENTS, BIOGENIC• SUPPLY• TABLE< 260 3 >BLACK SEA• BRAARUOOSPHAERA BIGELOW!• PHOTO< 186 3 >BLACK SEA• AffLUENT$, ELEMENTS, RARE AND TRACE• TABLE< 260 3 >B"ACK SEA, BRAARUOOSPHAERA BIGE�Owi, SIGNifiCANCE Of< 358 3 >BLACK SEA• AFFLUENTS• ORGANIC MATERIAL, DISCHARGE• TABLE< 256 3 >B"ACK SEA• BROMINE• INTERSTITIAL< 169 3 >BLACK SEA• AfFLUENT$, ORGANIC MATERIAL• MIGRATION, TABLE< 256 3 >BLACK SEA , BUGAZIAN STAGE< 194 3 >BLACK SEA, AFFLUENTS, SUSPENDED LOAD, TABLE< 253 3 >BI.ACK SEA• C• N RATIOS< 169 3 >BLACK SEA• AGE< II 3 >BLACK SEA• C • l 4 DATA< 129 3 >BLACK SEA• AGE< 55 3 >BLACK SEA• C•l4 DATA, TABLE< 129 3 >BLACK SEA• AGE OF< 69 3 >sLACK SEA• C•l4 OETERMINATIDNS, TABLE< 190 3 >BLACK SEA, ALNUS OR ALDER POLLEN, DISTRIBUTION IN SEDIMENT< 383 3 >BLACK SEA• CALCITE INFLUX< 281 3 >BLACK SEA• ALNUS OR BIRCH POLLEN< 396 3 >BI.ACK SEA• CALCIUM CARBONATE< 583 3 >BLACK SEA, ALPINE• HIMALAYAN REGION, EDGE OF, MAP< 5 1 3 >s�ACK SEA• CALCIUM CARBONATE, INTERSTITIAL< 165 3 >&LACK SEA• AMINO ACIDS• DISTRIBUT!DN• TABLE< 302 3 >BLACK SEA• C ALCIUM CARBONATE OVERSATURATION< 281 3 >BLACK SEA, AMPHIZYGUS BROOKS!! BROOKS!!, MICROGRAPH< 359 3 >B"ACK SEA• CARBON• INORGANIC, fiXATION< 420 3 >BLACK SEA• ANATOLIAN CONTINENTAL SLOPE• SEDIMENTS• MODERN< 269 3 >BLACK SEAl CARBON, ORGANIC< 441 3 >BLACK SEA• ANATOLIAN FAULT< II 3 >BLACK SEA• CARBON• ORGANIC• CHEMOSYNTHETIC FIXATION< 139 3 BLACK SEA• AND OCEAN• WATER COMPOSITION• TABLE<>DANUBE, 94 3 >BLACK SEA• CARBON• ORGANIC, CONCENTRATIONS< 533 3 >BLACK SEA• ANOXIC CONDITIONS, PROGRESS OF< 134 3 >bLACK SEA• CARBON, ORGANIC• IN MICROBIAL SULFUR CYCLE< 424 3 >BLACK SEA• ANTICLINE< 22 3 >BLACK SEA• CARBON, PRODUCTIVITY LEVEL OF< 133 3 >BLACK SEA• ARAGONITE• !•MM LAYER< 190 3 >BLACK SEA• CARBON• VARIANCE OF< 446 3 >BLACK SEA• ARAG ONITIC RICE GRAINS, PHOTO< 217 3 >B"ACK SEA• CARBON• I4 ACTIVITY< 127 3 >&LACK SEA• AROMATICS• POLYCYCLIC• SURFACE• THIN•LAYER CHROMATDI 511 3 >BLACK SEA, CARBONATE, AUTHIGENIC, ORIGIN< 190 3 >BLACK SEA, ARO MATICS, POLYCYCLIC, THIN•LAYER CHROMATOGRAPHIC fl 512 3 >BLACK SEA• CARBONATE ACCUMULATION, SOURCE< 271 3 >BLACK SEA• ARTEMISIA POLLEN< 385 3 >BLACK SEA, CARBONATE CONTENTS< 446 3 >BLACK SEA, ARTEMISIA POLLEN< 398 3 >BLACK SEA• CARBONATE DISSO"UTION< 171 3 BLACK SEABLACK SEA, CARBONATE IN MODERN SEDIMENTS< 282 3 >BLACK SEA• ATHIORHODACEAE, COUNTS< 421 3 >BLACK SEA• CARBONATE I Nf"UX> SUSPENDED< 281 3 a. >BI.ACK SEA• ATLANTIC•SUBBOREAL CLIMATIC OPTIMUM< 372 3 >BLACK SEA, CARBONATE PRODUCTION BY ORGANISMS< 282 3 I S" >BLACK SEA, ATLANTIS II CORE STATIONS, MAP< 184 3 >BLACK SEA• CARBONATE PRODUCTION BY ZDOBENTHOS, MAP< 2B2 3 >BLACK SEA• ATLANTIS 11 CORES, APPENDIX< 198 3 >BLACK SEA• CARBONATE ROCKS, O!STRyBUT!ON MAP< 215 3 t >BLACK SEA• ATLANTIS II CRUISE TRACK• 1969< 2 3 > BLACK SEA• CARBONATE SEDIMENT, BIOGENIC< 251 3 >< >BLACK SEA, ATLANTIS II SAMPLE LOCATION MAP< 201 3 >BLACK SEA• CARBONATE SEDIMENTS, SAMPLE LOCATIONS< 280 3 >BLACK SEA• ATOMIC•WEAPONS TESTS• EfFECTS ON C •l4 AND TRITIUM C/ 131 3 >BLACK SEA• CARBONATE ZONE< 442 3 >BLACK SEA• AZOV• KERCH DISTRICT< 310 3 >BLACK SEA• CARDIUM SIMILE< 252 3 >BLACK SEA• AZOV• KERCH SHELF DISTRICT, STRUCTURE AND MORPHOLOGI 314 3 >BLACK SEA• CAROTENOID•TYPE PIGMENTS< 427 3 >BLACK SEA• BACILLARIOPHYCEAE< 389 3 >BLACK SEA• CARPINUS OR BIRCH POLLEN< 396 3 >BLACK SEA• BACTERIA< 585 3 >BLACK SEA• CATION•EXCHANGE CAPACITY OF SEDIMENTS< 172 3 >BLACK SEA• BACTERIA> AEROBIC HETEROTROPHIC< 421 3 >BLACK SEA• CAUCASIAN CONTINENTAL SLOPE• SEDIMENTS• MODERN< 269 3 >BLACK SEA• BACTERIA• PHOTOSYNTHE TIC NONSULFUR< 421 3 >BLACK SEA, CAUCASION COAST, BIOMASSES, TABLE< 256 3 >BLACK SEA• BACTERIA• PHOTOSYNTHETIC SULFUR< 421 3 >BLACK SEA• CAUCASUS OROGENY< 22 3 >BLACK SEA• BA CTERIA• SULfATE•REDUCING, COUNTS< 421 3 >BLACK SEA> CAUCASUS SLOPE, FOLDING, FAULTING< 22 3 >BLACK SEA, BACTERIA, SULfiDE•OXIDIZING, COUNTS< 421 3 >BLACK SEA• CEDRUS POLLEN• DISTRIBUTION IN SEDIMENT< 383 3 >BLACK SEA• BARIUM< 447 3 >BLACK SEA> CHANNE�S< 18 3 >SLACK SEA, BASALTIC LAYER< 36 3 >SLACK SEA• CHEMOTROPHIC MICROORGANISMS< 420 3 >BLACK SEA> BASifiCATIDN< 58 3 >BLACK SEA• CHENOPODIACEAE POLLEN< 385 3 >BLACK SEA• BASIN• APRON HILLS< 3 3 >BLACK SEA• CHENDPODIACEAE PO�LEN< 398 3 >SLACK SEA> BATHYG�APHIC CURVES, GRAPH< 134 3 >BLACK SEA• CH!ASMOL!THUS DAMARUENSyS, MICROGRAPHS< 361 3 >BLACK SEA, BATHYME TRIC CHART< 4 3 >BLACK SEA• CHLORIDE• INTERSTITIAL, DISTRIBUTION• DIAGRAM< 160 3 >BLACK SEA• BATHYMETRIC STUDY, METHODS< >BLACK SEA• CHLOR IDE• INTERSTITIAL, DISTRIBUTION• TABLE< 174 3 I 3 >BLACK SEA• BATHYMETRY< 2 3 >BLACK SEA• CHLDRIOE• INTERSTITIAL, DISTRIBUTION VS OlPTH• GRAPI 176 3 BLACK SEA<>BATHYMETRY AND MICROTOPOGRAPHY OF I 1 >BLACK SEA• CHLORIDE• INTERSTITIAL, TRANSPORT, TABLE< 176 3 >BLACK SEA• BEGGI ATDA< 420 3 >BLACK SEA• CHLOR!OE CONCENTRATION, INTERSTITIAL• PLOTS< 159 3 BLACK SEA• BENTHOS<>BULGARIA, 95 3 >BLACK SEA• CHLORINITY, INTERSTITIAL• ANOMALIES< 162 3 >BLACK SEA• BETULA OR BIRCH POLLEN< 396 3 >BLACK SEA• CHLDRINITY, INTERSTITIAL• DISTRIBUTION MAP< 164 3 >BLACK SEA• BIBLIOGRAPHY AVAILABLE< IX 3 >BLACK SEA• CHLORINITYJ SAMPLES AND ANALYSIS< l SI 3 >BLACK SEA• BIOGENIC MATERIAL, ANNUAL PRODUCTION• TABLE< 262 3 >BLACK SEA• CHLDRINITY CHANGE, INTERSTITIAL, BULK fLOW< 159 3 >BLACK SEA• BIOLOGY< 347 3 >BLACK SEA• CHLDRINITY CHANGE, INTERSTITIAL, DIFFUSION< 159 3 "' BLACK SEA• BIOLOGY<>BULGARIA, 94 3 >BLACK SEA• CHLORINITY RATIOS Of SULFATE, BORON, FLUORIDE, AND/ 152 3 -o"'

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA• CHLOR!NS AND PORPHYR INS, ABUNDANCE< 519 3 >BLACK SEA• CYPERACEAE POLLEN< 396 3 >BLACK SEA• CHLORINS AND PORPHYRINS, EXPERIMENTAL METHODS< 516 3 >BLACK SEA• DANUBE rAN< 20 3 Ul >BLACK SEA• CHLOR INS ANO PORPHYRINS, HISTOGRAMS Or MASS SPECTRA< 521 3 >BLACK SEA• DANUBE rAN< 191 3 >BLACK SEA, CHLORINS AND PORPHYRINS, SOLVENT•EXTRACTION SCHEME,/ 519 3 >BLACK SEA• DANUBE OR OANUREA FAN< 6 3 : >BLACK SEA• CHLORINS AND PORPHYRINS, VISIBLE SPECTRUM rROM SURrl 519 3 BLACI\ SEA<> OANUBE RIVER, SEDIMENT DISCHARGE TO 205 3 >BLACK SEAl CHLOR ITE• SIGNIFICANCE< 447 3 >BLACK SEA• DECARBOXYLATION DIAGENETIC PROCESS< 494 3 BLACK SEA<> CHLOROPHYLL• DEGRADATION PRODUCTS IN SEDIMENTS Dr 426 >BLACK SEA, OEEP SEISMIC SOUNDING OR OSS, RESULTS< 35 I 3 >BLACK SEA• CHLOROPHYLL•OEGRAOATION PRODUCTS• METHODS O r STUDY< 426 3 >BLACK SEA• OEEP•WATER AND SHALLOW•WATER DEPOS ITS• CORRELATION< 349 3 >BLACK SEA• CLASTIC• ARGILLACEOUS MATERIAL• SOURCE< 270 3 >BLACK SEA• OENITRiriCATION< 422 3 >BLACK SEA• CL AY FRACTION, CAR RONATE•rREE• SURFACE SAMPLES, TAB/ 233 3 >BLACK SEA• DEPOSITIONAL ENVIRONMENT< 332 3 >BLACK SEA• CLIMATE CHANGES< 367 3 >BLACK SEA, DEPOS ITIONAL EN�IRONMENTS< 537 3 >BLACK SEA• CLIMATIC OPTIMUM< 374 3 >BLACK SEA• DEPOSITIONAL RATES< 52 9 3 >BLACK SEA• COAST DYNAMICS< 315 3 >BLACK SEA• DESALINIZATION< 1!9 3 >BLACK SEA• COASTAL ABRASION< 261 3 >BLACK SEA• OESULrOTOMACULUM, COUNTS< 421 3 >BLACK SEA• COBALT, DISSOLVED, PROriLE< 142 3 >BLACK SEA• DESULFOV IBR!O, COUNTS< 421 3 >BLACK SEA• COCCOLITH•BEARING SEDIMENTS< 349 3 >BLACK SEA• DIAGENESIS< 172 3 >BLACK SEA• COCCOL ITH MUDS< 269 3 >BLACK SEA• DIAGENETIC POLYMERIZATION PROCESS< 494 3 >BLACK SEA• COCCOLITH OOZE< 184 3 >BLACK SEA• DIAGENETIC PROCESSES< 306 3 >BLACK SEA, COCCOL ITH PROOUCT!ON, AGE< 190 3 >BLACK SEA• DIAPIRIC STRUCTURES< 19 3 >BLACK SEA• COCCOLITH STRATIGRAPHIC UNITS• DIAGRAM< 354 3 >BLACK SEA• DIATOM< 376 3 >BLACK SEA• COCCOLITH STRATIGRAPHY< 353 3 >BLACK SEA• DIATOM OISTRIBUT!ON IN CORES• TABLE< 392 3 >BLACK SEAl COCCDLITHOPHORES< 261 3 >BLACK SEA• DIATOM SPECIES• DISTRIBUTION IN CORES, TABLE< 393 3 >BLACK SEA, COCCOLI THOPHORES, EXTRACTION Or LIME 8Y< 299 3 >BLACK SEA• DIATOM THANATOCOENOSESc 391 3 >BLACK SEAl COCCOL!THOPHORES, MASSIVE DEVELOPMENT< 276 3 >BLACK SEA• DIATOMACEOUS MUO• DISTRIBUTION < 265 3 >BLACK SEA• COCCDLITHOPHYCEAEc 353 3 > BLACK SEA• DIATOMS• ELEMENT CONCENTRATION, TABLE< 261 3 >BLACK SEA• COCCOLITHS< 251 3 >BLACK SEA, DIATOMS, METHODS OF STUDY< 389 3 >BLACK SEA• COCCOLITHS< 290 3 >BLACK SEA• DIATOMS• PAUCiTY ore 390 3 >BLACK SEA• COCCOLITHS< 564 3 >BLACK SEA• DIATOMS• PHOTO< 217 3 >BLACK SEA, COCCOLITHS, AGE RESTRICTION< 35 3 3 >BLACK SEA• DIATOMS• PHOTOS< 169 3 >BLACK SEA• COCCOLITHS• ATLANTIS II CORE STATIONS< 354 3 >BLACK SEA, DIATOMS, SAL INITY TOLERANCES< 39 1 3 ;II; >BLACK SEA• COCCOLITHS, CRETACEOUS< 353 3 >BLACK SEA• DINOFLAGELLATE BIOSTRATIGRAPHY< 366 3 >BLACK SEA• COCCOLITHS, EOCENE< 353 3 >SLACK SEA, O!NOrLAGELLATE OR OINOPHYCEAE CYSTS< 402 3 >BLACK SEA• COCCOLITHS, HOLOCENE< 353 3 >BLACK SEA• O!NOrLAGELLATE PALEOECOLOGY< 375 3 >BLACK SEA• COCCOLITHS, HOLOCENE, MICROGRAPHS< 355 3 >SLACK SEA• DINOrLAGELLATES< 564 3 >BLACK SEA• COCCOLITHS, PHOTO< 217 3 >BLACK SEA• DINOFLAGELLATES, COMPARISON WITH OTHER REGIONS< 377 3 >BLACK SEA• COCCOL ITHS, STRONTIUM< 566 3 >BLACK SEA• DINOFLAGELLATES AND ACRITARCHS PER GRAM or SEUIMENT< 382 3 >BLACK SEA• COCCOL ITHS AS S ALINITY INDICATORS< 362 3 >BLACK SEA• DINOFLAGELLATES PER GRAM OF SEDIMENT• GRAPH< 386 3 :; >BLACK SEA• COMPARISON WITH DEAD SEA< 569 3 >BLACK SEA• DISCOASTER SA!PANENSIS, MICROGRAPHS< 361 3 >BLACK SEA• COMPARISON WITH OTHER NEARBY INLAND SEAS< 586 3 >BLACK SEA• OISCOASTER TAN! NODirER, MICROGRAPHS< 361 3 >BLACK SEA• COMPARISON WITH RED SEA< 569 3 >BLACK SEA• O!SCOLITHINA• MICROGRAPH< 357 3 1 >BLACK SEA• COMPOSIHE POLLEN< 398 3 >BLACK SEA• DNEPR• DANUBE DISTRICT< liD t 3 >BLACK SEA• CONCRETIONS• IRON• MANGANESE• AGE< 171 3 >aLACK SEA• DNEPR• DANUBE SHELr DISTRICT, STRUCTURE AND MDRPHOL/ 314 3 >BLACK SEA• CONCRETIONS, !RON• MANGANESE• GROWTH RATE< 171 3 BLACK SEA<> DNEPR RIVER, SEDIMENT DISCHARGE TO 205 3 >BLACK SEA• CONDUCTIVE LAYER< 59 3 BLACK SEA<>DNESTR RIVER• SEDIMENT DISCHARGE T O 205 3 >BLACK SEA• CONT INENT IN ANCIENT T IME< 63 3 >BLACK SEA, DOBRUJA• CRIME A • CAUCASUS GEOSYNCLINE< 63 3 >BLACK SEA• CONTINENTAL CRUST< 57 3 >BLACK SEA• DOLOMITE INrLUX< 261 3 >BLACK SEA• CONTINENTAL SLOPE< 3D6 3 BLACK SEA<>DON RIVER, SEDIMENT DISCHARGE TO 205 3 >BLACK SEA• CONVECTION CELL< 74 3 >SLACK SEA• OOWNMIXING< 149 3 >BLACK SEA• COPPER, DISSOLVED, PROr!LE< 141 3 >BLACK SEA• DRAINAGE AREA< 2DO 3 >BLACK SEA• CORYLUS O HAZEL POLLEN< 396 3 >BLACK SEA• DRA INAGE AREA• GEOLOGY< 2D2 3 >aLACK SEA• CRUST• CONTINR ENTAL • GRANITIC< 7 2 3 >BLACK SEA• DRAINAGE AREA• MAP< 202 3 >BLACK SEA• CRUST, OCEANIC• BASALTIC< 71 3 >BLACK SEA• DSS DATA• RWM DATA, COMPARISON< 43 3 >BLACK SEA• CRUST, RELAXATION AND EXTENSION< 579 3 >BLACK SEA• OSS PROr !LES• MAP< 36 3 >BLACK SEA• CRUST, SUBOCEANIC< 3 >BLACK SEA• DZHEMETINIAN• KALAM!T!AN BOUNDARY< 349 3 71 >BLACK SEA• CRUSTAL CROSS SECTION< 12 3 >BLACK SEA• OZHEMETINIAN STAGE< 194 3 >BLACK SEA• CRUSTAL STRUCTURE< 36 3 >BLACK SEA• EARLY MEASUREMENTS< 576 3 >BLACK SEA• CRUSTAL STRUCTURE, TRANSITIONAL< 58 3 >BLACK SEA• EARTHQUAKE ACTIVITY< 578 3 >BLACK SEA• CRUSTAL THICKNESS< 3 >BLACK SEA• EAST AND NORTHEAST, GEOPHYSICAL PROriLE< 2 3 3 II >BLACK SEA• CURRENT SYSTEM• MAP< 262 3 >BLACK SEA• EAST ANO NORTHEAST• SEDIMENT CORES, GEOCHEMISTRY< 445 3 >BLACK SEA• CURRENTS• LONGSHORE BOTTOM, SEDIMENT DISTRIBUTION< 259 3 >BLACK SEA, EAST AND SOUTHEAST, GEOPHYSICAL PROriLE< 22 3 >BLACK SEAl CURRENTS• SURrACEc 202 3 >BLACK SEA• EAST•CENTRAL• GEOPHYSICAL PROr!LE< 16 3 >BLACK SEA• CURRENTS• SURrACE, SEDIMENT DISTRIBUTION< 259 3 >BLACK SEA• EAST•CENTRAL, GEOPHYSICAL PROFILE< 2 3 3 >BLACK SEA• CYCLOCOCCOLITHINA rORHOSA• MICROGRAPHS< 361 3 >BLACK SEA• EAST•CENTRAL• SEISMIC PRDr!LE< 26 3 >BLACK SEA• CYCLOCOCCOLITHINA GAMMAT ION, MICROGRAPHS< 361 3 >BLACK SEA, EAST EUROPEAN PLATrORMc 46 3 >BLACK SEA• CYCLOCOCCOLITHINA LEPTOPORA, ABSENCE Or< 362 3 >BLACK SEA• EASTERN• GEOPHYSICAL PROFILES< 25 3 >BLACK SEA• CYCLONIC CIRCULAT ION, SEDIMENT DISTRIBUTION< 259 3 >BLACK SEA• EASTERN, INTERSTITIAL AMMONIA, PHOSPHATE•PHOSPHORUS/ 169 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA> ECHOGRAMS< 8 >BLACK SEA> HALOCLINE> DEPTH OF"< 147 3 >BLACK SEA> ELEMENTS, DISTRIBUTION IN SAPRDPELIC MUDS< 462 >BLACK SEA> HEAT FLOW> INTERPRETATION< 5T 3 >BLACK SEA> ELEMENTS> DISTRIBUTION IN VERTICAL SECTION< 458 >BLACK SEA> HEAT FLOW, MEASUREMENT TECHNIQUE AND DATA REDUCTION< 51 3 >BLACK SEA> ELEMENTS, HALOCLINE, VERTICAL TRANSPORT THROUGH, TA/ 142 >BLACII SEA> HEAT•FLOW DATA> TABLE< 52 3 >BLACK SEA> ELEMENTS> ORGANIC CONCENTRATION OF< 259 >BLACK SEA> HEAT•FLOW MEASUREMENT, ENVIRONMENTAL CORRECTIONS< 54 3 >BLACK SEA.. EMlllANIA HUXLEY!< 290 >BLACK SEA> HEAT•FLOW MEASUREMENT> LOCATION MAP< 53 3 >BLACK SEA> EM!LIANIA HUXLEY!< 353 >BLACK SEA> HEAT•FLOW MEASUREMENT, RESULTS< 53 3 >BLACK SEA> EMILIANIA HUXLEY!< 566 >BLACK SEA> HEAT•FLOW MEASUREMENT> TOPOGRAPHIC EFFECTS< 56 3 >BLACK SEA> EMILIANIA HUXLEY!, MICROGRAPHS< 355 >BLACK SEA> HEAT•FLOW MEASUREMENT, WATER•TEMPERATURE VARIATIONS< 56 3 >BLACK SEA, EMILIANIA HUXLEY!, PHOTO< 186 >BLACK SEA> HEAVY•MINERAL PROV INCES, MAP< 225 3 >BLACK SEA> EMILIANIA HUXLEY!, SIGNIFICANCE OF< 360 >BLACK SEA> HEAVY MINERALS> DESCRIPTION> TABLE< 224 3 >BLACK SEA> ENVIRONMENT, C HANGES IN< 301 >BLACK SEA> HEAVY MINERALS> DISTRIBUT ION PROVINCES< 224 3 >BLACK SEA> EQUILIBRIUM CO�CENTRATIONS, OBSERVED AND CALCULATED< 142 >BLACK SEA> HOLOCENE COCCOLITHS, SALINITY DISTRIBUTION• TABLE< 362 3 >BLACK SEA> ESTER IFICATION> CLAY•CATALYZEO< 494 >SLACK SEA> HOLOCENE PELAGIC SEDIMENTATION, PREDOMINANCE OF< 356 3 >BLACK SEA> ETHANE• ETHYLENE RAT IOS RELATIVE TO OXYGEN•ZERO, GR/ 501 >BLACK SEA> HYOROCORBON GEOCHEMISTRY> SEDIMENT COLUMN< 502 3 >BLACK SEA> ETHANE> UPW•RD DIFFUSION < 499 >BLACK SEA• HYDROCARBON GEOCHEMISTRY> WATER COLUMN< 499 3 >BLACK SEA> ETHANE PLUS ETHYLENE DISTRIBUTION RELAT IVE TO OXYGE/ 501 BLACK SEA<> HYOROCARBON GEOCHEMISTRY OF 499 I >BLACK SEA> EUXINIC BOTTOM COND ITIONS< 119 >BLACII SEA> HYDRODYNAMIC REGIME> INFLUENCE Of< 460 3 >BLACK SEA> EUXINIC BOTTOM•WATER CONDITIONS< 364 >BLACK SEA> HYDROGEN SULFI Q(, EFFECT ON 8 I OGEN I C PRODUCT!ON< 250 3 >BLACK SEA> EVENTS AT 3, 000 YEARS R,P,< 374 >BLACK SEA, HYDROGEN SULFIDE, EFFECT ON CARBONATE ACCUMULATION< 261 3 >BLACK SEA, EVENTS AT T,OOO YEARS B,P,c 373 >SLACK SEA> HYDROGEN SULFIDE> EFFECT ON TRACE•[LEMENT CONCENTRA/ 461 3 >BLACK SEA> FOGUS OR BEECH POLLEN< 396 >BLACK SEA> HYDROGEN SULFIDE, SOURCE OF< 419 3 >BLACK SEA, FATTY ACIOS, DIAGENESIS< 515 >BLACII SEA> HYDROGEN SULFIDE PRODUCTION< 528 3 >BLACK SE'' FAUNA, FRESHWATER< 123 >BLACK SEA> HYDROGEN SULFIDE ZONE, SEDIMENT UNITS< 297 3 >SLACK SEA .. FLUORITE< 169 > BLACII SEA> HYDROGRAPHIC OBSERVATIONS AND VERTICAL•MIXING HODEL< 136 3 >BLACK SEA> FORAMINIFERA> NERITIC> DISTRIBUTION< 411 >SLACK SEA> HYDROGRAPHIC STATIONS, LOCATION MAP< 151 3 >BLACK SEA, FORAMINIFE�A, NERITIC, FAUNAL LIST< 415 >BLACK SEA> HYOROTROILITE< 441 3 >BLACK SEA> FORAMINIFERA> SPEC IES OF< 411 >BLACK SEA> HYOROTROILITE lONE< 55 1 3 >BLACK SEA> FORAMI NIFERA TEST, PHOTO< 189 >SLACK SEA> HYSTRICHOSPHAERIOS< 402 3 >BLACK SEA> FRACTUR ING> DEEP< 45 >BLACK SEA> H2S ZONE< 196 3 >BLACK SEA> FRACTURING AND FAULTING< >BLACK SEA> ILLITE OR FELDSPAR< 447 3 ro >BLACK SEA> FRANCOLITE< 169 BLACK SEA< /IN LATE QUATERNARY DEEP• W ATER SEDIMENTS OF 364 I >BLACK SEA> FRAX!NUS OR ASH POLLEN< 398 >BLACK SEA> INFLUX OF MEDITERRANEAN WATER< 373 3 >BLACK SEA> FRESHWOTER•LAKE PHASE< 195 BLACK SEA> INTERACTIONS BETWEEN<>BOSPORUS AND II& 3 >BLACK SEA> GAGRA DISTRICT< 310 BLACK SEABLACK sE•• GAGRA SHELF DISTRICT> STRUC TURE AND MORPHOLOGY< 313 >BLACK SEA> IONIC COMPOSITION OF PORE FLUIDS< 164 3 f >BLACK SEA> GARNET> DISTRIBUTION MAP< 225 >BLACK SEA> IRON> CLASTIC< 533 3 S" >BLACK SEA> GARTNERAGO COST•TUM COSTATUM> MICROGRAPHS< 359 > BLACK SEA> IRON> DATA PRESENTATION< 532 3 >BLACK SEA> GEOCHEMISTRY< 429 >BLACK SEA> IRON, DIAGENESIS< 536 3 >BLACK SEA> GEOCHEMISTRY> SUMMARY< 586 >BLACK SEA> IRON> DISSOLVED< 139 3 >BLACK SE'' GEOGRAPHY AND HYDROGRAPHY< f 200 >BLACK SEA> IRON, DISSOLVED> PROFILE< 140 3 >BLACK SE '' GEOLOGIC EVENTS< 391 >BLACK SEA> IRON> FORMS OF> IN SEDIMENT, SURFACE LAYER> TABLE< 534 3 >BLACK SEA> GEOLOGIC HISTORY> RECENT< 195 >BLACK SEA> IRON• MANGANESE CONCRETIONS< 265 3 >BLACK SEA, GEOLOGICAL AND GEOPHYSICAL SETTING < 577 >BLACII SEA> IRON> PARTICULATE, PROFILE< 140 3 BLACK SEA"•GEOLOGY> CHEMISTRy, AND BIOLOGY••PREFACE<>THE VIII >BLACII SEA> !RON, PREVIOUS STUDIES< 532 3 >BLACK SE•••GEOLOGY, CHEMISTRy, AND BIOLOGY••SUMMARY< 573 > BLACK SEA> IRON> REACTIVE> DISTRIBUTION< 533 3 BLACK SE•··GEOLOGY> CHEMISTRy, AND BIOLOGY<>THE I >BLACK SEA> IRON, REACTIVE> DISTRIBUTION MAP< 536 3 >BLACK SEA> GEOPHYSICAL EXPLOR•TION, METHODS< 1 2 >BLACK SEA> IRON> REACTIVE• F ORMS OF> TABLE< 539 3 >BLACK SEA• GLAUCONITE, O!STR!BUTION MAP< 215 >BLACK SEA> IRON> SAMPLE LOCATION MAP< 533 3 >BLACK S(,, GONYAULAX DIGITALIS< 404 >BLACK SEA> IRON> TOTAL> D ISTRIBUTION< 535 3 >BL ACK SEA> GONYAULAX POLYEORA< 375 >BLACK SEA> IRON> TOTAL> DISTRIBUTION MAP< 536 3 >BLACK SEA> GONYAULAX POLYHEDRA, PHOTO< I8B >BLACK SEA> IRON MONOSULFIOESc 525 3 >BLACK SEA• GONYAULAX SPINIFERA< 375 >BLACK SEA> IRON SULFIOATION< 528 3 >BLACK SEA> GORNO• CRIMEAN DISTRICT< 3 10 >BLACK SEA> IRON SULFIDE> FACTORS CONTROLLING AMOUNT< 530 3 >SLACK SEA> GORNO• CRIMEAN SHELF DISTRICT, STRUCTURE ANO MORPHO/ 314 >BLACK SEA> IRON SULFIDES> CHEMICAL ANALYSES< 525 3 >BLACK SEA> GRA!N•SIZE ANALYSIS< 272 >BLACK SEA> IRON SULFIDES, DIAGENESIS< 527 3 >BLACK SEA> GRAMINEAE POLLEN< 398 > BLACK SEA> IRON SULFIDES> HYOROTRO!LITE AND PYRITE> D!STR!BUT !/ 537 3 >BLACK SEA> GRANITIC LAYER< 58 >BLACK SEA> IRON SULFIDES, METASTABLE< 300 3 >BLACII SEA> GRAVITY> RESULTS< 22 >BLACK SEA> IRON SULFIDES, ROLE IN ACCUMULATION OF TRABLACK SEA> GRAV ITY ANOMALY< 12 >BLACK SEA> IRON SULFIDES, SAMPLE PREPARATION< 524 >BLACK SEA> GRAVITY OBSERVAT IONS> MAP< 31 >BLACK SEA> ISLAND ARC•L!KE STRUCTURE< 59 >BLACK SEA> GREEK NAME FOR< 575 >BLACK SEA> ISOLATION OF< 174 >BLACK SEA> GRE!GITE< 527 >BLACK SEA> ISOSTATIC EQUILIBRIUM< 75 > BLACK SEA> GRE!GITE AND MACK!NAWITE CONCRETIONS> MICROGRAPH< 527 >BLACK SEA> ISOSTATIC IMBALANCE< 59 >BLACK SEA> GUDAUTA DISTRICT< 3 10 >BLACK SEA> ISOTOPIC AND ELEMENTAL GEOCHEMISTRY• ANALYTICAL MET/ 555 Ul >BLACII SEA> GUOAUTA SHELF DISTRICT, STRUCTURE AND MORPHOLOGY< 313 >BLACK SEA> ISOTOPIC AND ELEMENTAL GEOCHEMISTRY, CORE LOCATION/ 556 oO .....

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >B�ACK SEA• JUGLANS OR WALNUT POLLEN< 400 3 >BLACK SEA• NEOEUX INIAN LAKE•SEA< 316 3 >B�ACK SEA• K INTERSTITIAL< • CL RATIOS, 164 3 >BLACK SEA• NEOEUXINIAN SEDIMENTS< 195 3 Ill >B�AC� SEA• KALAMITIAN• VITYAZEVIAN BOUNDARY< 349 3 > BLACK SEA> NEOEUXIN!AN SEDIMENTS> GEOCHEMISTRY< 458 3 oO >B�ACK SEA• KALAMITIAN STAGE< 3 194 >B�ACK SEA• NEOEUXINIAN SEDIMENTS• HYDROTRO!LITE CLAYS• ORIGIN< 551 3 co >BLACK SEA• KARKINITIAN STAGE< 194 3 >B�ACK SEA• NEOEUX INIAN SHELL MATERIAL< 349 3 >BLACK SEA• KERCH CONTINENTAL SLOPE, SEDIMENTS, MOOERN< 3 270 >BLACK SEA• NEOEUX INIAN STAGE< 194 3 >B�ACK SEA• KIMMER IAN MOUNTA INS< 71 3 >BLACK SEA• NEOEUX INIAN STAGE, CASPIAN FAUNA< 312 3 >B�ACK SEA• KOLKH!DA DISTRICT < 310 3 >SLACK SEA• NEOEUXINIAN STAGE, MOLLUSCAN fAUNA< 316 3 >BLACK SEA• KO�KHIOA DISTRICT, SUBMARINE VALLEYS< 312 3 >BLACK SEA• NEOEUX INIAN TIME, SALINITY< 458 3 >BLACK SEA> KOLKHIOA SHELF DISTRICT, STRUCTURE AND MORPHOLOGY< 312 3 >BLACK SEA• NEOKIMMERIAN PHASE• MOUNTAIN BUILDING< 6 8 3 B�ACK SEA< >KUBAN RIVER, SED IMENT DISCHARGE TO 205 3 >SLACK SEA• NEW, TERRACE< 312 3 >8�ACK SEA• KYANITE• DISTRIBUTION MAP< 225 3 >BLACK SEA> NICKEL> DISSOLVED, PROF!�[< 142 3 >BLACK SEA> LARGEST AhOXIC BASIN< 3 nn >BLACK SEA• NORTHEAST, GEOPHYSICAL PROFILE< 26 3 >BLACK �UDS< SEA• L!MAN 1 TO 3 >BLACK SEA• NORTHEAST• SEISMIC PROFILE< 29 3 >BLACK SEA• LINGULDO ihiUM MACHAEROPHORUM< 366 3 >BLACK SEA• NORTHEAST, SEISMIC PROFILE< 30 3 3 >8�ACK SEA• LINGULOOINIUM MACHAEROPHORUM< 315 >BLACK SEA• NORTHWEST• GEOPHYSICAL PROFILE< 19 3 >B�ACK SEA> LITTORAL•ZONE DYNAMICS 309 3 < >B�ACK SEA> NORTHWEST, SEISMIC PROFILE< 26 3 >aLACK SEA• MACKINAWITE< 527 3 >BLACK SEA• NORTHWEST SHELf• WATER, INTERSTITIAL• COMPOSITION•/ 170 3 >8LACr< SEA, MACROZOOBENTHOS, TOTAL BIOMASS, TABLE< 256 3 >BLACK SEA• NORTHWESTERN, MACROZOOBENTHOS• DENSITY AND BIOMASS>/ 256 3 >s�ACK SEA• MAGNETIC ANOMALIES• MAP< 32 3 >BLACK SEA• NUTRIENT SALTS• INTERSTITIAL< 169 3 >BLACK SEA• MAGNETIC ANOMALIES• MAP< 44 3 >BLACK SEA• NYMPHAEAN TRANSGRESSIVE PHASE< 314 3 >BLACK SEA• MAGNETIC FIELD< 3 12 >BLACK SEA• OCEANIC CRUST< 11 3 >BLACK SEA• MAGNETIC FIELD< 44 3 >BLACK SEA• OCEANIC CRUST< 57 3 >BLACK SEA• MAGNETICS• RESULTS< 25 3 >BLACK SEA• DCEANIZATIDN HYPOTHESES< 58 3 >BLACK SEA• MAGNETOMETER AND SEISMIC DATA• ANALYSIS< 45 3 >BLACK SEA• OCEANOGRAPHY< 93 3 > < BLACK SEA• MANGANESE, OISSD�VEO 139 3 BLACK SEABLACK SEA, MANGANESE, OISSOLVEO, PROfiLE < 140 3 BLACK SEA< /OF STRONTIUM IN CARBONATE PHASE OF TWO CORES FROM 566 I >SLACK SEA• MANGANESE• INCREASE IN CONCENTRATION OF< 461 3 >BLACK SEA• OLD BLACK SEA BEDS< 195 3 >BLACK SEA, MANGANESE, PARTICULATE, PROFILE< 140 3 >sLACK SEA• OLD BLACK SEA DEPOSITS, MOLYBDENUM CONTENTS< 548 3 >BLACK SEA• MANGANESE OR M ANGANESE• IRON NODULES< 437 3 >BLACK SEA, OLD BLACK SEA SEDIMENTS, MICROELEMENT CONTENT IN SA/ 463 3 >BLACK SEA• MANGANESE OXIDE< 447 3 >BLACK SEA• OPERCULOOINIUM CENTROCARPUM< 366 3 >BLACK SEA• MANTLE< 578 3 >BLACK SEA, ORGANIC COMPOUNDS, DIAGENESIS< 522 3 >BLACK SEA, MANTLE, DENSITY CHANGES< 3 58 >B�ACK SEA• ORGANIC COMPOUNDS, SUMMARY< 585 3 >B�ACK SEA• MEDITERRANEAN I NFL OW< 138 3 >BLACK SEA• ORGANIC MATERIAL, BALANCE, TABLE< 258 3 >BLACK SEA• MEDITERRANEAN SEA, LOCATION MAP< 115 3 >BLACK SEA> ORGANIC MATERIAL• TERRESTRIAL< 496 3 >BLACK SEA• MEDITERRANEAN WATER• INFLUX OF< 3 301 >BLACK SEA• ORGANIC MATERIAL, TRACE•ELEMENT CONCENTRATION RELAT I 460 3 >BLACK SEA• METAMORPHIC R£ACTJONS, HEAT•FLOW VALUES< 57 3 >BLACK SEA• ORGANIC MATTER• ANAEROBIC DEGRADATION, HYDROGEN ACC/ 422 3 :; >BLACK SEA• METAMORPHIC ROCKS, DISTRIBUTION MAP< 215 3 >B"'CK SEA• ORGANIC MATTER• SOURCE< 271 3 >BLACK SEA• METHANE• UPWARD D IFFUSION< 499 3 >SLACK SEA• ORGANIC PRODUCTIVITY< 249 3 >BLACK SEA> METHANE BACTERIA< 423 3 >BLACK StA• ORIGIN< 59 3 i >BLACK SEA• M ETHANE CONCENTRATION< 423 3 f >BLACK SEA• ORIGIN< 578 3 >BLACK SEA• METHANE DISTRIBUTION RELATIVE TO DXYGEN•ZERO• GRAPH< 500 3 >BLACK SEA• ORIGIN• SPECULATIONS< 57 3 >BLACK SEA> METHANE•PROOUCING PROCESSES< 3 423 >B�ACK SEA• OXIDATION PROCESSES< 424 3 >BLACK SEA• MG• CL RATIOS< 165 3 >BLACK SEA• OXYGEN• DirFUSION OF< 133 3 >BLACK SEA> MICRANTHOLITHUS• MICROGRAPHS< 3 361 >BLACK SEA• OXYGEN• HYDROGEN SULFIDE INTERFACE< 419 3 BLACK SEA< MICROB!AL SULFUR CYCLE IN > 419 1 >BLACK SEA> OXYGEN DEPLETION• CAUSE O F < 133 3 > BLACK SEA• MICROBIOLOGY• PROBLEMS< 420 3 >BLACK SEA• OXYGEN DEPLETION> TIME SCALE< 134 3 >BLACK SEA, M!CROELEMENT CONTENT IN IROtf SULFIDES rROM NEOEUXIN/ 41 1 3 >BLACK SEA• OXYGEN•ZERO< 138 3 >BLACK SEA> MICRO[LEMENT CONTENT IN PYRITE FROM MODERN OEEP•SEAI 3 470 >BLACK SEA• OXYGENATED ZONE< 422 3 >BLACK SEA, MICROORGANISM COUNTS, MAP< 421 3 >BLACK SEA• OXYGENATED ZONE• MOLYBDENUM• DIAGENETIC REOISTRIBUT/ 545 3 >BLACK < SEA• MICROPLANKTON• ABUNDANCE 406 3 >BLACK SEA• OXYGENATION, PERIODIC> NEOEUXINIANc 171 3 >B�ACK SEA• MICROTOPOGRAPHY< T 3 >BLACK SEA• PALEOSALINITY GRADIENT< 364 3 >BLACK SEA• MOBILE REGION• EDGE OF< 50 3 >BLACK SEA• PALYNOLOGY, CORE L OCATION MAP< 396 3 >BLACK S • MODERN AND NEOEUX !NJAN SEDIMENTS, COMPAR !bONS< EA 472 3 >BI.ACK SEA> PALYNOLOGY STUDY• METHODS< 396 3 BLACK SEA<>MOOERN SEDIMENTATION IN 249 1 >BLACK SEA• PALYNOPLANKTOLOGIC CONTENT OF CORE 1461< 404 3 >BLACK SEA> MOOIOLA PHASEOLINA< 251 3 >BLACK SEA• PALYNOPLANKTOLOGIC CONTENT OF CORE 61< 402 3 >BLACK SEA> MOHOROVICIC DISCONTINUITY< 72 3 >BLACK SEA• PALYNOPLANKTDLDGIC CONTENT OF CORE 66< 398 3 >BLACK SEA• MOHOROVICIC DiSCONTINUITY< 578 3 >BLACK SEA• PALYNOPLANKTOLDGIC CONTENT OF CORE 72< 400 3 >BLACK SEA> MOLLUSCAN FAUNAS• OEEP•WATER STRAT IGRAPHY AND LOCAL/ 361 3 >BLACK SEA• PARAFFIN• OLEFIN RATIOS< 501 3 BLACK SEA<>MOLLUSCAN SHELLS IN OEEP•WATER SEDIMENTS OF 349 1 >BLACK SEA• PART ICULATE MATTER• RIVER INPUT< I42 3 >BLACK SEA• MOLYBDENUM, SAMP�E MATERIAL< 3 542 >B�ACK SEA• PERIDINIUM COMPRESSUM< 366 3 >BLACK SEA• MOLYBDENUM IN CONCRETIONS• !RON•MANGANESE< 3 545 >BLACK SEA• PERIDINIUM CONIC,O !OES< 366 3 >BLACK SEA• MOLYBDENUM IN HUMIC SURSTANCES< 550 3 >BLACK SEA• PERIDINIUM NUDUM< 366 3 >BLACK SEA> MUDS, THERAPEUTIC< 155 3 >BLACK SEA• PER!DINIUM SUBINERME< 366 3 >BLACK SEA> MYT!LUS GALLOPROV!NCIALIS< 3 252 >BLACK SEA• PERIDINIUM TROCHOJD[UM< 375 3 >BLACK SEA> NEOEUXINIAN• END OF• DATE< 372 3 >BLACK SEA> PERIDINIUM TROCHO!DEUM, PHOTO< 186 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA• PERIDINIUM TROCHD IOEUM, PHOTO< 188 3 >BLACK SEA> QUERQUS OR OAK POLLEN> DISTRIBUTION IN SEDIMENT< 383 >BLACK SEA• PETROLEUM ETHER• DIETHYL ETHER, VISIBLE SPECTRUM• G/ 520 3 >�LACK SEA• RADIOCARBON ANALYSIS• EXPERIMENTAL RESULTS< 129 NTENT VS >BLACK SEA• PHAEO• PIGMENTS, VERTICAL DISTRIBUTION• GRAPH< 427 3 >BLACK SEA• RADIOCARBON CO DEPTH> GRAPH< 131 >BLACK SEA• PHAEOPHORBIDE< 426 3 �LACK SEA<> RECENT SEDIMENTS OF 183 >BLACK SEA• PHAEDPHYTIN< 426 3 >BLACK SEA• REDOX CONDITIONS• CHANGE IN< 461 >BLACK SEA• PHANAGORIAN REGRESSION< 373 3 >BLACK SEA> REDOX POTENTIAL• GRADIENT< 420 >BLACK SEA> PHANAGDRIAN REGRESSION< 374 3 >BLACK SEA• REDUC ING ENV IRONMENT• ESTABLISHMENT Of< 297 >BLACK SEA> PHOSP�ORUS> ATLANTIS I I CRUISE RESULTS< 144 3 >BLACK SEA> REDUC ING ZONE, MOLYBDENUM, DIAGENETIC REOISTRIBUTIO/ 548 >BLACK SEA> PHOSPHORUS, BIOLOGIC ACTIVITY< 146 3 >BLACK SEA• REFLECTED•HAVES METHOD OR RWM• RESULTS< 43 >SLACK SEA> PHOSPHORUS, COMPARISON WITH EARLIER MEASUREMENTS< 144 3 >BLACK SEA• REGRESSION< 309 >BLACK SEA> PHOSPHORUS, SAL INITY> OXYGEN• AND HYDROGEN SULr iOE/ 147 3 >BLACK SEA• REGRESSION, HOLOCENE• SHORELINE LEVELS< 312 >SLACK SEA> PHOSPHORUS, SAMPLING AND ANALYTICAL METHODS. 144 3 >BLACK SEA> RHABOOSPHAERA TENUIS, MICROGRAPHS< 361 >BLACK SEA> PHOSPHORUS BALANCE< 147 3 BLACK SEA< >RIONI RIVER, SEDIMENT DISCHARGE TO 205 >BLACK SEA• PHOSPHORUS BALANCE, MODEL< 148 3 >BLACK SEA• RUMEX POLLEN< 398 >BLACK SEA> PHOSPHORUS COMPONENTS, MEAN VALUES, GRAPH< >BLACK SEA• SALINE KATER> INfLUX OF< 133 145 3 >BLACK SEA> PHOSPHORUS DISTRIBUTION, GRAPHS< 146 3 >BLACK SEA> SALINIFICATION< 372 BLACK SEA<>PHOSPHORUS IN 144 I >BLACK SEA> SALIN!f!CATION• BIOTIC RESPONSE< 373 >BLACK SEA> PHOSPHORUS SEDIMENTATION< 149 3 >BLACK SEA• SALINITIES> CONDUCTOMETRIC AND TITRIMEHIC> GRAPH< 154 >BLACK SEA• PHOTOTROPHIC ZONE< 4 22 3 >BLACK SEA> SALINITY< 118 >BLACK SEA> PHYLLOPHORA NEVROSA< 252 3 >BLACK SEA• SALINITY< 356 >BLACK SEA> PHYSIOGRAPHIC PROVINCES< 6 3 >BLACK SEA• SALINITY< 375 >BLACK SEA• PHYSIOGRAPHIC PROVINCES< 13 3 >BLACK SEA> SALINITY< 391 >BLACK SEA> PHYSIOGRAPHIC PROV INCES• AREA OF< 3 3 >BLACK SEA• SALINITY• CHANGE IN< 570 >BLACK SEA• PHYTOPLANKTON• BIOMASS, GRAPH< 255 3 >BLACK SEA• SALINITY, CONDUCTOMETR IC• AND CHLORINITY VALUES, TA/ 152 BLACK SEA> PHYTOPLANKTON<>BULGARIA> 95 3 >BLACK SEA• SALINITY• CONDUCTOMETRIC> SAMPLES AND ANALYSIS< 151 >BLACK SEA• PHYTOPLANKTON PRODUCTION< 271 3 >BLACK SEA• SALINITY, EFFECT ON BIOGENI C PRODUCTION< 250 >BLACK SEA> PICEA OR SPRUCE POLLEN< 396 3 >BLACK SEA> SALINITY> INCREASE I N< 387 >BLACK SEA> PIGMENTS, ABSORPTION SPECTRA, GRAPH< 427 3 >BLACK SEA> SAL INITY• LOWERED, REASONS FOR< 529 >BLACK SEA> PIGMENTS• CONCLUSIONS REGARDING< 428 3 >BLACK SEA> SALINITY• TEMPERATURE• ANO DENSITY PROF ILES< 138 > BLACK SEA> PINUS POLLEN< 396 3 >BLACK SEA> SALINITY FLUCTUATIONS• QUATERNARY< 156 >BLACK SEA• PINUS POLLEN> DISTRIBUTION IN SEDIMENT< 383 3 >BLACK SEA• SALINITY HISTORY< 394 >BLACK SEA• PLANKTON, CARBONATE PRODUCTION< 281 3 >BLACK SEA> SALINIZATION< 119 >SLACK SEA> PLANT GROUPS< 252 3 >BLACK SEA• SALINIZATION< 121 >BLACK SEA• PLATE OR GLOBAL TECTONICS< 50 3 >BLACK SEA> SAL INIZATION< 459 >BLACK SEA• PLENIGLACIAL STAGE < 194 3 >BLACK SEA• SALIX OR WILLOW POLLEN< 400 >BLACK SEA> SALT OISlHIBUTION, INTERSTITIAL< >BLACK SEA• POLLEN< 585 3 158 5' >BLACK SEA> POLLEN• ALNUS• PERCENT, GRAPH< 387 3 >BLACK SO• SALTY BOTTOM wATER> SOURCE OF< 138 >BLACK SEA• POLLEN> ARTEMISIA, PERCENT, GRAPH< 388 3 >BLACK SEA• SALVINIA SPORES< 402 < >BLACK SEA> POLLEN• CHENOPODIACEAE, PERCENT> GRAPH< 388 3 >BLACK SEA• SAND COMPOSITION C HANGES 235 D >BLACK SEA• SAND PROVINC' >• C OMPOSITION> TABLE< 230 i >BLACK sEA> POLLEN> PINUS AN CEDRUS> PERCENT> GRAPH< 387 3 t >BLACK SEA• POLLEN> PTEROCARYA• PERCENT, GRAPH< 387 3 >BLACI\ SEA• SAND PROVINCtS• M AP< 229 < >BLACK SEA> POLLEN• �UERCUS, PERCENT• GRAPH< 387 3 >BLACK SEA• SAPROPEL LAYER 135 < >BLACK SEA• POLLEN> SPORES• A ND MICROPLANKTON• REWORKED< 406 3 >BLACK SEA• SAPROPELIC CLAYS 374 >BLACK SEA> POLLEN AND SPORES, REWORKED< 383 3 >BLACK SEA• SAPROPELIC LAYERS, AGES< 190 >BLACK SEA> POLLEN AND SPORES PER GRAM OF SEDIMENT< 382 3 >SLACK SEA• SAPROPELIC MUDS• COBALT AND CARBON, ORGANIC• CUNTEN/ 465 / >BLACK SEA• POLLEN DIAGRAM OF CORE 1461< 403 3 >SLACK SEA• SAPROPELIC MUDS> cOPPER AND CARBON, ORGANIC• CONTEN 464 >BLACK SEA• POLLEN DIAGRAM OF CORE 61< 401 3 >BLACK SEA> SAPROPELIC MUDS• ELEMENT CONCENTRAT ION IN ORGANIC F/ 467 O/ >SLACK SEA> POLLEN DIAGRAM OF CORE 66< 397 3 >BLACK SEA> SAPROPELIC MUDS> MOLYBDENUM AND CARBON> ORGANIC, C 464 464 >BLACK SEA> POLLEN DIAGRAM OF CORE 72< 399 3 >BLACK SEA• SAPRDPELIC MUOS> NICKEL AND CARBON, ORGANIC> CONTEN/ S >.BLACK SEA• POLLEN SPECTRA• DE SCRIPTION< 396 3 >BLACK SEA> SAPROPELIC MUD > SULfUR> T OTAL• AND CARBON• DRoANIC/ 465 >BLACK SEA> POLLEN TYPES, DISTRIBUTION IN SEDIMENT< 383 3 >BLACK SEA> SAPROPELIC MUDS• SULFUR, TOTAL> AND COBAL! CONTENT•/ 465 >BLACK S >BLAC� SEA• POLLENS> VARIETIES< 398 3 SEA> SAPROPELIC MUD • TRACE•ELEMENT RELATION TO BITUMEN/ 466 >BLACK SEA> POLYPOOIACEAE SPORES< 402 3 >BLACK SEA> SAPRDPEL IC MUDS, TRACE•ELEMENT RELATION TO FULVIC AI 467 >BLACK SEA• PONTIOES FOREDEEP< 69 3 >BLACK SEA> SAPROPELIC MUDS • TRACE•ELEMENT RELATION TO HUMIC AC/ 466 >BLACK SEA• PORE•WATER SAMPLING STATIONS, MAP< 158 3 >BLACK SEA> SAPROPELIC MUDS, VANADIUM AND CARSON, ORGANIC, CONTI 464 >BLACK SEA• P04•P AND PHOSPHORUS> ORGANIC> TABLE< 145 3 >BLACK SEA> SAPROPELIC ZONE< 442 BLACK SEA SCIENTifiC STUDIES, PUBL ICATIONS<> 9ULGARIA, 90 >BLAC� SEA> PROPANE• PROPYLENE RATIOS RELATIVE TO OXYGEN•ZERD> I 502 3 >SLACK SEA• SCYPHOSPHAERA, MICROGRAPHS< 359 >BLA�K SEA> PTEROCARYA OR WALNUT POLLEN, DISTRIBUTION IN SEOIME/ 383 3 >BLACK SEA• SCYTHIAN PLATFORM< 46 >BLACK SEA• PYRITE FRAMBOIDS• PHOlO< 189 3 >BLACK SEA• SEA LEVEL< 373 >BLACK SEA> PYROXENE• DISTRIBUTION MAP< 225 3 >BLACK SEA> SEA LEVEL• •DIFFERING IDEAS< 374 E I >BLACK SEA> �UATERNARY• HOLOCENE STRATIGRAPHY< , 194 3 >SLACK SEA> SEA LEVEL> RIS N• EFFECTS< 298 >BLACK SEA> �UATERNARY, LATE> LITHOSTRATIGRAPHY AND CHRONDSTRAT/ 366 3 >BLACK SEA• SEA LEVEL> RISE OF< 353 E< >SLAC� SEA• QUATERNARY GENERA< 377 3 >BLACK SEA> SEA•LEVEL CURV 196 >BLACK SEA• QUATERNARY SfOIMENTATION AND MARINE LIFE• F ACTORS Cl 118 3 >BLACK SEA> SEA•LEVEL FLUCTUATIONS, PLEISTOCENE , DIAGRAM< 157 Ul >BLACK SEA• �UER�US OR OAK POLLEN< 396 3 >BLACK SEA• SEA LEVELS< 156 :g

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA• SEAQUAKES< 275 3 >BLACK SEA• SEDIMENT UNITS 2 AND 3, TEXTURAL PROPERTIES< 207 3 >BLACK SEA• SEAWATER• ORGANIC MATTER< 94 3 >BLACK SEA• SEDIMENTATION, CARBONATE• DATA PRESENTATION < 279 3 >BLACK SEA• SEDIME�T, POLLEN AND SPORE CONTENT, GRAPH< 3 8 2 3 >BLACK SEA• SEDIMENTATION, COMPARISONS< 275 3 >BLACK SEA• SEDIMENT• WATER INTERFACE, SILICON, DISSOLVED< 390 3 >BLACK SEA• SEDIMENTATION• RATE< 332 3 >BLACK SEA• SEDIME�T ACCUMULATION RATE< 139 3 >BLACK SEA, SEDIMENTATION., RATE OF< 175 3 g >BLACK SEA• SEDIMENT AND !NTERSTIT!AL•WATER DATA• TABLE< 169 3 >BLACK SEA• SEDIMENTATION PATTERNS, REG!1JNAL< 191 3 >BLACK SEA• SEDIMENT CORE, CALCIUM CARBONATE ANO CARBON, ORGAN!/ 185 3 >�LACK SEA• SEDIMENTATION RATE< 298 3 >BLACK SEA• SEDIMENT CORE 1432, CARBON DIOXIDE DISTRIBUTION, GRI 442 3 >BLACK SEA• SEDIMENTATION RATE< 349 3 >BLACK SEA• SEDIMENT CORE 1432, CARBON DISTRIBUTION• GRAPH< 442 3 >BLACK SEA• SEDIMENTATION RATES< 29 3 >BLACK SEA• SEDIME�T CORE 14321 MOLYBDENUM DISTRIBUTION, GRAPH< 442 3 >BLACK SEA• SEDIMENTATION RATES< 190 3 >BLACK SEA• SEDIMENT CORE 14321 STRONTIUM D ISTRIBUTION• GRAPH< 442 3 >BLACK SEA• SEDIMENTATION RATES• RAPID< 55 3 >BLACK SEA• SEDIMENT CORE 1432, SULFUR DISTRIBUTION• GRAPH< 442 3 >BLACK SEA• SEO!MlNTAT!ON ZONE TRANSITIONS< 268 3 >BLACK SEA• SEDIME�T CORE 1440, CARBON OIOX!OE DISTRIBUTION, GRI 445 3 >BLACK SEA• SEDIMENTS< 181 3 >BLACK SEA• SEDIMENT CORE 1440, CARBON DISTRIBUTION, GRAPH< 445 3 >BLACK SEA• SEDIMENTS Of< 205 3 >BLACK SEA• SEDIMENT CORE 1440, MOLYBDENUM DISTRIBUTION, GRAPH< 445 3 >bLACK SEA• SEISMIC fEATURES• MAP< 33 3 >BLACK SEA• SED!ME�T CORE 1440• SHONT!UM DISTRIBUTION• GRAPH< 445 3 >BLACK SEA• SEISMIC PROf iLES• MAP< 1 4 3 >BLACK SEA• SEDIMENT CORE 1440• SULFUR DISTRIBUTION• GRAPH< 445 3 >BLACK SEA• SEISM I C PROfiLES, RESULTS< 17 3 >BLACK SEA, SEDIMENT CORE 1452, CARBON DIOXIDE DISTRIBUT ION, GR/ 444 3 >BLACK SEA• SEISMIC REFLECTION< 12 3 >BLACK SEA• SEDIMENT CORE 1452• CARBON DISTRIBUTION• GRAPH< 444 3 >BLACK SEA• SEISMIC REFLECTION< 71 3 >BLACK SEA• SEDIMENT CORE 1452, MOLYBDENUM DISTRIBUTION , GRAPH< 444 3 >HLACK SEA• SEVASTOPDL BAY• CONCRETIONS AND SEDIMENTS• COMPOSIT/ 172 3 >BLACK SEA• SEDIMENT CORE 1452• STRONTIUM DISTRIBUTION• GRAPH< 444 3 >BLACK SEA• SEVASTOPOL BAY, MANGANESE AND PHOSPHORUS IN PORE WA/ 171 3 >BLACK SEA, SEDIMENT CORE 1452, SULFUR DISTRIBUTION, GRAPH< 444 3 BLACK SEA<>SHALLOW STRUCTURE OF I II >BLACK SEA• SEDIMENT CORE 1462• CARBON OIDXIOE DISTRIBUTION, GRI 443 3 >BLACK SEA• SHELf, MINERAL EXPLOIHTION< 316 3 >BLACK SEA, SEDIMENT CORE 1462 1 CARBON DISTRIBUTION, GRAPH< 443 3 >BLACK SEA• SHELF DISTRICTS• MAP< 310 3 >BLACK SEA• SEDIMENT CORE 14621 MOLYBDENUM DISTRIBUTION, GRAPH< 443 3 >BLoCK SlA• SHELf FORMATION< 315 3 >BLACK SEA• S EDIMENT CORE 1462• STRONTIUM DISTRIBUTION, GRAPA< 443 3 >BLACK SEA• SHELf fORMAT ION, RIVER DISCHARGE< 308 3 > SLACK SEA• SEOI�ENT CORE 1462, SULFUR DISTRIBUTION• GRAPH< 443 3 >BLACK SEA• SHELf FORMATION• SEA•LEVEL CHANGES, EUSTATIC< 308 3 CK BU >BLA SEA• SED!�ENT CORE 1470• CARBON DIOXIDE DISTRI TION• GR/ 443 3 > BLACK SEA• SHELf FORMAT ION, TECTONIC MOVEMENTS< 306 3 >BLACK SEA• SEDIMENT CORE 1410, CARBON DISTRIBUTION• GRAPH< 443 3 >BLACK SEA• SHELf ZONE< 308 3 >BLACK SEA• SEDIMENT CORE 1470• M QLYBDENU� D ISTRIBUTION, G PH< 443 RA 3 > BLACK SEA• SHELf ZONES, WATER, H•TERST!TIAL< 170 3 >BLACK SEA> SEDIMENT CORE 1470• STRONTIUM OISTRIBUT!Oh• GRAPH< 443 3 >BLACK SEA• SINOP• SAMSUN DISTRICT< 310 3 >BLACK SEA• SEDIMENT CORE 1470, SULFUR DISTRIBUTION• G RAPH< 443 3 >BLACK SEA, SINOP• SA�SUN SHELf DISTRICT• STRUCTURE AND MURPHOL/ 309 3 >BLACK SEA• SEOI�ENT CORE 1412• CARBON DIOXIDE DISTRIBUTION• GR/ 446 3 >BLACK SLUMPING< SEA, 19 3 >BLACK SEA• SEDIMENT CORE 1472• CARBON DISTRIBUTION• GRAPH< 446 3 >BLACK SEA• • NOVORUSSIYSK DISTRICT< 310 3 >BLACK SEA• SEDIMENT CORE 1472• MOLYBDENUM DISTRIBUTION, GRAPH< 446 3 >BLACK SEA• •ocHI• NOVOROSSIYSK SHELF DISTRICT, STRUCTURE AND M/ 313 3 iL >aLACK SEA• SEDIMENT CORE 1472• STRONTIUM DISTRIBIJT !ON• GRAPH< 446 3 BLACK SEA<>SOME CHARACTERISTICS Of CARBONATE SEO !MENTATION I• 279 f I >BLACK SEA• SEDIMENT COR£ 1472, SULfUR DISTRIBUTION• GRAPH< 4.46 3 >BLACK SEA• SOUTH AND SOUTHWEST• SED IMENT CORES, GEOCHEM ISTRY< 444 3 S" >BLACK SEA• SEDIMENT CORE 1484• CARBON O!OX!OE DISTRIBUTION, GR/ 3 446 >BLACK SEA, SOUTHEAST, GEOPHYSICAL PROFILE< 24 3 >BLACK SEA, SED IMENT CORE 1484, CARBON DISTRIBUTION, GRAPH< 3 t 446 >BLACK SEA• SPARGANIUM POLLEN< 398 3 >sLACK SEA• SED IMENT CORE 1484• MOLYBOENU� OISTRIBUTION, GRAPH< >< 446 3 >BLACK SEA• SP!NlfERITES BENTOql< 366 3 >BLACK SEA• SEDIMENT CORE 1484, STRONTIUM DISTRIBUTION, GRAPH< 446 3 >BLACK SEA• SPINIFERITES BULLOIDES< 366 3 >BLACK SEA• SEDIMENT CORE 1484• SULFUR DISTRIBUTION, GRAPH< 446 3 >BLACK SEA, SPIN!f(RITES CRUC!fORM!S< 366 3 >BLACK SEA• SED IMENT CORES, DEPOSITION RATES, RELATIVE< 193 3 >BLACK SEA• SPINifER!TES CRUC!fORM!S< 375 3 >BLACK SEA• SEDIMENT CORES• FACTOR ANALYSES< 439 3 >BLACK SEA• SPINIFERITES MIRA�ILIS< 366 3 >BLACK SEA• SEDIMENT CORES, SAND• SILT• CLAY RATIOS, DIAGRAM< 212 3 >BLACK SEA• SPINIFERITES NODOSUS< 366 3 >aLACK SEA• SE IMENT DEPOSITION• RATE Of< 7 2 3 >BLACK SEA• SPINifERITES SCABRATUS< 366 3 >BLACK SEA, SEDIMENT SUPPLY, MAP< D 255 3 >BLACK SEA• SPORES< 402 3 >BLACK SEA• SEDIMENT TYPES• GRAPH< 232 3 >BLACK SEA• SPRINGS, SUBMARINE< 162 3 >BLACK SEA• SEDIMENT TYPES• GRAPHS< 231 3 >BLACK SEA• STEROL fRACTION, SURfACE• HISTOGRAM Of MASS SPECTRU/ 509 3 >BLACK SEA• SEDIMENT TYPES• UNIT 1, MAP< 231 3 >BLACK SEA• STRATIGRAPHIC COLUMNS< 195 3 >BLACK SEA• SEDIMENT TYPES• UNITS AND 3, MAP< 2 231 3 >bLACK SEA• STRATIGRAPHY• THREEFOLn< 442 3 >BLACK SEA• SEDIMENT UNIT I< 365 3 >BLACK SEA• STRONTIUM ISOTOPES, ANALYTICAL PROCEDURES< 566 3 >BLACK SEA• SEOI�ENT UNIT I• CLAY FR_ACT!ON ANALYSIS• TABLE< 210 3 >BLACK SEA• STRUCTURE, SUMMARY< 576 3 >BLACK SEA• SEDIMENT UNIT 1, COCCOliTH OOZE< 582 3 >BLACK SEA• SUBBOREAL CLIMATIC SHIFT< 372 3 >BLACK SEA• SEDIMENT UNIT 1, CORRELATION< 373 3 >BLACK SEA• SUBMARINE CANYONS< 2 3 >BLACK SEA• SEDIMENT UNIT 1, GRAIN•SIZE DISTRIBUTION• HAPS< 211 3 >BLACK SEA• SUBMARINE CANYONS< 162 3 >BLACK SEA• SEDIMENT UNIT HASS PHYSICAL PROPERTIES< Z, 336 3 >BLACK SEA• SUBMARINE RIDGES< 2 3 >BLACK SEA• SEDIMENT UNIT !, TEXTURAL PROPERTIES< 207 3 >BLACK SEA• SUBSIDENCE< 57 3 >BLACK SEA• SEOI�ENT UNIT 2< 365 3 >BLACK SEA• SULFATE• CHLORIDE RATIO< 419 3 >BLACK SEA• SEDIMENT UNIT 2, HASS PHYSICAL PROPERTIES< 336 3 >BLACK SEA, SULfATE, INTERSTITIAL< 164 3 >BLACK SEA• SEDIMENT UNIT 2, PERMEABILITY< 337 3 >BLACK SEA• SULFATE REDUCTION< 419 3 >BLACK SEA• SEDIMENT UNIT 2, SAPROPEL BEDS< 582 3 >BLACK SEA• SULfATE REOUCTIONc 422 3 >BLACK SEA• SEDIMENT UNIT 3< 365 3 >BLACK SEA• SULfiDE• DISSOLVED• PROF ILES< 139 3 >BLACK SEA• SEDIMENT UNIT ), LUTITE, BANDED< 582 3 >BLACK SEA• SULFIDE• VERTICAL FLUX Of< 138 3 >BLACK SEA• SEDIMENT UNIT 3, MASS PHYSICAL PROPERTIES< 337 3 >BLACK SEA• SULFIDE OXIDATION< 423 3 >BLACK SEA• SEDIMENT UNITS• THICKNESS AND AGE< 578 3 >BLACK SEA• SULF IDE OXIDATION, BIOLOGIC AND CHEMICAL< 420 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA> SULFIDES> DIAGENETIC DEVELOPMENT< 446 l >BLACK SEA> WATER, ANOXIC> DEVELOPMENT, GRAPH< 135 3 >BLACk SEA> SULFUR, ORGAN!C•INORGAN!C RATIO< 419 l >BLACK SEA• WATER, CALCIUM CARBONATE SUPERSATURATION< 252 3 >BLACK SEA> SULFUR CYCLE> MICROBIAL, DIAGRAM< 42l 3 >BLACK SEA> WATER, DEEP, RESIDENCE TIME< 127 3 >BLACK SEA> SULFUR CYCLE, MICROBIAL, METHODS OF STUDY< 42 1 l >BLACK SEA> WATER, INTERSTITIAL> METHODS< !57 3 >BLACK SEA> SULFUR CYCLE> ORGANIC MATTER> ROLE OF< 419 3 >BLACK SEA> WATER, IONIC VARIATION< 151 3 >BLACK SEA> SULFUR STUDIES> METHODS< 421 3 >BLACK SEA> WATER, OXYGENATED LAYER< 127 3 >BLACK SEA> SUMMARY< XI l >BLACK SEA> WATER, SALINITY AND CHEMICAL COMPOSITION< 93 3 >BLACK SEA> SUSPENDED MATERIAL< 262 l >BLACK SEA> WATER, SAMPLING ANO ANALYTICAL TECHN IQUES< 127 3 >BLACK SEA> SUSPENDED MATTER> CONCENTRATION IN UPPER LAYER> GRA/ 3 264 l >BLACK SEA> WATER AND PORE �ATERS1 CHEMICAL COMPOSITION, TABLE< 166 >BLACK SEA> SUSPENDED MATTER, CONCENTRATION IN W ATER COLUMN, GR/ 264 l >BLACK SEA> WATER BALANCE> MODEL< 146 3 >BLACK SEA> SUSPENDED NATTER> DRY WEIGHT> GRAPH< !l9 l >BLACK SEA> WATER BALANCE, MODEL< 148 3 >BLACK SEA> SUSPENDED MATTER, SURFACE CONCENTRATION> MAP< 26l l >BLACK SEA> WATER BALANCE, TABLE< 250 3 >BLACK SEA> SYRACOSPHAERA MED!TERRANEA, MICROGRAPH< l55 3 >BLACK SEA> WATER BUDGET< 121 3 >BLACK SEA> SYRACOSPHAERA MlD!TERRANEA, MICROGRAPHS< l57 3 >BLACK SEA> WATER CONTENT> POROSITY, AND PHYSICAL PROPERTIES OF! 160 3 >BLACK SEA> SYRACOSPHAERA PYRUS, MICROGRAPH< 357 3 >BLACK SEA> WATER•EXCHANGE VALUES< 147 3 >BLACK SEA> TARKHANKUT!AN STAGE< 194 3 >SLACK SEA> WATER MASSES< 580 3 >BLACK SEA> TECTATDOINIUM PELL!TUMc 366 3 >BLACK SEA> WATER OUTFLOW> INFLOW< 373 3 >BLACK SEA• TECTATODINIUM PSILATUM< 366 l >BLACK SEA> WATER SAMPLING STATIONS> MAP< 128 3 >BLACK SEA> TECTATODINIUM PSILATUM< 375 3 >BLACK SEA> WATER TEMPERATURE< 93 3 >BLACK SEA> TEMPERATUHE•DEPTH PROFILES< 54 l >BLACK SEA> WATER VOLUMES< 149 3 >BLACK SEA> THERMAL REFRACTION< 55 l >BLACK SEA> WATER VOLUMES< 577 3 >BLACK SEA> THIOBACILLUS< 420 3 >BLACK SEA> WAVE ACTION> SEDIMENT DISTRIBUTION< 259 3 >BLACK SEA> THIOBAC!LLUS> COUNTS< 421 l >BLACK SEA> WEST ANO NOnHWEST> SEDIMENT CORES, GEOCHEMISTRY< 443 3 >BLACK SEA> THIOMOLYBDATE< 543 3 >BLACK SEA> WEST BASIN SLOPE, GEOPHYSICAL PROFILE< 19 3 >BLACK SEA> TH!ORHODACEAE> COUNTS< 421 3 >BLACK SEA> WEST•CENTRAL> GEOPHYSICAL PROFILE< 18 3 >BLACK SEA> THIOSULfATE OXIDATION< 424 3 >BLACK SEA> WEST TO EAST•CENTRAL> GEOPHYSICAL PROFILE< 21 3 >BLACK SEA> TH!OXYMOLYBOATE< 543 3 >BLACK SEA> WEST TO EAST•CENTRAL> SEISMIC PROF ILE< 28 3 >BLACK SEA> TILIA OR LINDEN POLLEN< 398 3 >BLACK SEA• WESlERN> GEOPHYSICAL PROFILE< 18 3 >BLACK SEA> TRABZON• BATUMI DISTRICT< 310 l >BLACK SEA> WURM GLACIATION< 566 3 >BLACK SEA> TRABZON• BATUMI SHELF DISTRICT, STRUCTURE AND MORPH/ 309 3 >BLACK SEA> WURM GLACIATION> GLACIATION AND PERMAFROST MAP< 228 3 >BLACK SEA> TRACE• METAL C ONCENTRATION IN SEDIMENTS< 259 3 >SLACK SEA> WURM I I I GLACIATION> EFFECT ON SED!MENTATIONc 235 3 >BLACK SEA> TRACE ELEMENTS> ANALYSIS OF PARTICULATE MATTER< 137 3 > BLI4CK SEA> WURM INTERVAL> DINOFLAGELLATE> FRESHWATER< 377 3 >BLACK SEA> TRACE ELEMENTS> COLLECTION OF SAMPLES AND ANALYSIS< 137 3 >BLACK SEA> ZEOLITES, OISTRIBUT!ON MAP< 215 3 >BLACK SEA> TRACE ELEMENTS• DISSOLVED VSo SUSPENDED< 457 3 >BLACK SEA• ZINC> OISSOLVEO• PROFILE< 141 3 >BLACK SEA> TRACE ELEMENTS> EFFECT OF MEDITERRANEAN WATER lNFLU/ 461 3 >SLACK SEA, ZINC IN DIATOM SAMPLES< 559 3 iL >BLACK SEA> TRACE ELEMENTS> SAMPLE LOCATION MAP< 457 3 >BLACK SEA> ZIRCONIUM< 3 f 444 >BLACK SEA> TRACE ELEMENTS> STUOIESc 456 3 >SLACK SEA> ZONGULOAK DISTRICT< 310 3 ;' >SLACK SEA> TRACE ELEMENTS AND CARBO�, ORGANIC, VERTICAL OISTRI/ 458 3 >SLACK SEA> ZONGULOAK SHELF DISTRICT> STRUCTURE AND MORPHOLOGY< 309 3 t >BLACK SEA> TRACE METALS• DISSOLVED, ANALYSIS< 137 3 >BLACK SEA> ZOOBENTHDS< 2BI 3 >C >BLACK SEA> TRANSGRESSIVE PULSES< 374 3 > BLACK SEA> ZDOBENTHOS BIOMASS> DISTRIBUTION> MAPS< 257 3 >BLACK SEA , TRANSVERSOPONTIS PULCHER, MICROGRAPHS< 361 3 BLACK SEA> ZOOPLANKTON<>BULGARIA• 95 3· >BLACK SEA> TURBIDITE> GRAIN•SIZE GRAPH< 229 3 >BLACK SEA> ZOOPLANKTON> ELEMENT CONCENTRATION> TABLE< 261 3 >BLACK SEA> TURBIDITE DEPOSITION< 212 3 >BLACK SEA> ZOSTERA< 258 3 >�LACK SlA> TURSIOITE SEQUENCE< 349 3 >BLACK SEA• ZYGOOISCUS DEFLANDRE!• MICROGRAPH< 359 3 >BLACK SEA> TURBIDITES< 22 3 >BLACK SEA> 02• H2S INTERFACE, OEPTH VS TIME, GRAPH< 135 3 >BLACK SEA> TURBIDITES< 191 3 > BLACK SEA AHLUENTS> CARBONATE> QUARTz, AND FELDSPAR CONTENTS/ 206 3 >BLACK SEA> TURBIDITY•CURRENT ACT! V!TYc 3 3 >BLACK SEA AHLUENTS, CHARACTERISTICS, TABLE< 205 3 >BLACK SEA> TURBIDITY CURRENTS< 18 3 >BLACK SEA AHLUENTS> CLAY•MlNERAL AND HEAVY•M!NERAL CONTENTS,/ 207 3 >BLACK SEA> TURSIOITY CURRENTS< 1!9 3 >BLACK SEA AFFLUENTS> SEDIMENT S OF< 205 3 >BLACK SEA> TURBIDITY CURRENTS< 268 3 BLACK SEA AND ANATOLIA< ,/BASIN AND RANGE PROVINCE> COMPARED TO 73 3 >BLACK SEA> TURBIDITY CURRENTS, LUTUM DENSITIES< 331 3 BLACK SEA ANO ANATOLI A<>AEGEAN SEA, COMPARED TO 7 3 3 >BLACK SEA> TURBIDITY CURRENTS> NEDEUX!NIAN< 351 3 >BLACK SEA AND ANATOLIA, CENOZOIC HISTORY< 69 3 >BLACK SEA• TURKISH COAST> VOLCANIC ROCKS< 24 3 >BLACK SEA ANO ANATOLIA> CRUSTAL STRUCTURE< 71 3 >BLACK SEA> TYPHA POLLEN< 398 l >BLACK SEA AND ANATOLIA, GEOLOGIC HISTORY< 71 3 >BLACK SEA> ULMUS OR ELM POLLEN< 398 3 BLACK SEA AND ANATOLIA<>GEOLOGIC RELATIONS BETWEEN 63 1 >BLACK SEA> UPLIFT< 57 3 >BLACK SEA ANO ANATOLIA, MESOZOIC HISTORY< 66 3 >BLACK SEA> UPLIFT> COASTAL< 3!4 3 >BLACK SEA AND ANATOLIA> SEDIMENT THICKNESS< 66 3 >BLACK SEA> UPMIX!NG< 150 3 BLACK SEA AND ANATOLIA<>TYRRHEN!AN SEA, COMPARED TO 73 3 >BLACK SEA> URAN IUM GEOCHEMISTRY> ANALYTICAL METHODS< 570 3 BLACK SEA ANO ANATOLIA REG!ONS<>MEOITERRANEAN PROVINCE, 63 3 >BLACK SEA> URANIUM GEOCHEM ISTRY, CORE LOCATION MAP< 570 3 >BLACK SEA AND BOSPORUS> SUBMARINE CANYONS< 124 3 SLACK SEA<>URANIUM GEOCHEMISTRY IN 570 I BLACK SEA AND THEIR FLUX BETWEEN OISSDLI/SOME TRACE ELEMENTS IN 137 I >BLACK SEA> VENUS< 251 3 >BLACK SEA AND WORLD OCEAN> ORGANIC MATERIAL> TABLE< 258 3 >BLACK SEA> V!TYAZEVIAN STAGEc 194 3 >BLACK SEA AREA> BASIFICATION OF SIAL< 118 3 >BLACK SEA> VOLCANIC ROCKS> DISTRIBUTION MAP< 215 3 >BLACK SEA AREA> BAVARIAN MOLASSE> TERTIARY ROCKS< 203 3 >BLACK SEA> WASHOUT< 313 3 >BLACK SEA AREA> BOHEMIAN MASSIF> CRYSTALLINE ROCKS< 203 3 >BLACK SEA> WATER< 97 3 >BLACK SEA AREA> CLIMATE VARIATION< 249 3 s -

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA AREA• CLIMATE ZONES< 202 3 >BLACK SEA BASIN• QUATERNARY SEDIMENTS, MAP< 310 3 >eLACK SEA AREA, DENUDATION AND EROSION< 202 3 >BLACK SEA BASIN• RISES, GRANITIC LAYER< 40 3 >BLACK SEA AREA• GEOLOG IC MAP< 203 3 BLACK SEA BASIN• RIVER DISCHARGE• L IQUID AND SOLID> TABL/>AZOV• 250 3 BLACK SEA AR£A1 GEOLOGIC MAP<>BUL GARI.A• 93 3 >BLACK SEA BASIN, SALINIFICAT!ON< 364 3 >BLACK SEA AREA, HUNGARIAN AND WALACHIAN LOWLANDS, QUATERNARY R/ 203 3 BLACK SEA BASIN• SALT INFLUX, TABLE<>AZDV• 254 3 § >BLACK SEA AREA• INDO• BASIN< 6 9 3 >BLACK SEA BASIN• SCYTHIAN PlATE< 308 3 >BLACK SEA AREA, KARKIN!T BASIN< 69 3 >BLACK SEA BASIN• SCYTHIAN PLATFORM< 310 3 >BLACK SEA AREA, P•WAVE VELOC ITIES, TABLE< 72 3 >BLACK SEA BASIN• SEDIMENT•CORE PROFILE< 192 3 >BLACK SEA AREA• PONTIAN GEOSYNCLINE< 63 3 >BLACK SEA BASIN• SEDIMENTARY LAYERS> DEPTH, MAPS< 41 3 >BLACK SEA AREA• RUSSIAN PLATFORM< 202 3 >BLACK SEA BASIN, SEDIMENTARY MATERIAL, DISTRIBUTION< 259 3 >BLACK SEA AREA• SIVASH BASIN< 69 3 >BLACK SEA BASIN• SEDIMENTARY ROCKS• THICK SECTION< 24 3 >BLACK SEA AREA, SWABIAN ALB• JURASSIC ROCKS< 203 3 >BLACK SEA BASIN, SEDIMENTARY SEQUENCE, AGES< 42 3 >BLACK SEA AREA• • CASPIAN BASIN< 69 3 >BLACK SEA BASIN• SEDIMENTARY THICKNESs, MAPS< 40 3 >BLACK SEA AREA• WALACHIAN LOWLANDS< 202 3 >BLACK SEA BASIN, SEDIMENTATION RHES< 7 3 >BLACK SEA SASIN> ABYSSAL PLA IN< 2 3 >BLACK SEA BASIN• SEISMIC BOUNDARY VELOC ITIES•OEPTH• REL ATION< 42 3 >BLACK SEA BASIN> ADZHARO• TRIALETSKIY FOlDED SYSTEM< 306 3 >BLACK SEA BASIN, SEISMIC CROSS SECT IONS< 39 3 >BlACK SEA BASIN• ADZHARO• TRIALETSKIY FOlDED SYSTEM< 311 3 >BLACK SEA BASIN> SEISMIC VELOC ITIES• AVERAGE< 35 3 SLACK SEA BASIN, AFHUENTS, HICROELEMENTS, ANNUAL SUPPLY/>AZOV• 261 3 >BI.ACK SEA BASIN, SEISMIC VELOCITIES, DISTRIBUTION, MAP< 38 3 >SLACK SEA BASIN• ALLUVIAL FANS< 124 3 >BLACK SEA BASIN• SEISMIC VELOC!TY•OEPTH> RELATION< 38 3 >BLACK SEA BASIN• APRON< 2 3 >BLACK SEA BASIN, SEISMIC WAVE FIELD< 35 3 >BLACK SEA BASIN• ARCHEAN• PALEOZOIC CRYSTALLINE ROCKS• MAP< 311 3 >BLACK SEA BASIN• SEISMIC WAVES• PRIMARY• HOOOGRAPH< 37 3 >BlACK SEA BASIN, CARBONATE FORMS IN RIVERS, TABLE< 279 3 >SLACK SEA BASIN, SHAKHE CANYON< 314 3 >BLACK SEA BASIN• CAUCASUS< 306 3 >BLACK SEA BASIN• SHELF< 2 3 >BLACK SEA BASIN, CAUCASUS, GREAT< 311 3 >BLACK SEA BASIN• SHELF AREA• MAP< 311 3 >BLACK SEA BASIN• CHEMICAL DATA< 256 3 >BLACK SEA BASIN• SLOPES< 2 3 >BLACK SEA BASIN, CLASSIFICATION< 306 3 >BLACK SEA BASIN• SLUMP FEATURES< 3 3 >BLACK SEA BASIN• COMPRESSION< 3 >BLACK SEA BASIN• STARA PLANINA MEGA•ANTICL INORIUM< 308 II 3 >BLACK SEA BASIN, CRETACEOUS SEDI MENTARY ROCKS, MAP< 311 3 >BLACK SEA BASIN, STARA PLANINA MEGA•ANTICLINORIUM< 310 3 >BLACK SEA BASIN• CRIMEA< 308 3 >BLACK SEA BASIN• STRUCTURE• DISCUSSION< 25 3 >BLACK SEA BASIN, CRIMEAN MEGA•ANT!CLLNORIUM< 310 >BLACK SEA BASIN, STRUCTURE A ND MORPHOLOGY< 3 308 3 >BLACK SEA BASIN• CRUSTAL CROSS SECTION< 46 3 >BLACK SEA BASIN• SUBDUCTION ZONE< 59 3 >BLACK SEA BASIN, CRUSTAL CROSS SECTIONS< 4S 3 >BLACK SEA BASIN• SUBMARINE CANYONS< 309 3 >BLACK SEA BASIN• DANUBE F AN< 3 3 >BLACK SEA BASIN• SUBSIDENCE< II 3 >BLACK SEA BASIN, DEEP, WATER, INTFRSTITIAl, DISTRIBUTION AND C/ 158 3 >BLACK SEA BASIN• SUBSIDENCE< 124 3 BLACK SEA BASIN<>DEEP STRUCTURE Or JS BLACK SEA BASIN• SUSPENDED LOAD• GRAIN SIZE• TABLE<>AZO V• 252 I 3 >SLACK SEA BASIN, OOBRUJA MASSIF< 308 3 >BLACK SEA BASIN• SUSPENDED LOAD• SEASONAL DISCHARGE• TABLE< 251 3 >BLACK SEA BASIN> EAST PONTIAN SYNCLINORIUM< 309 3 BLACK SEA SASIN• SUSPENDED MATERIAL> CHEMICAL COMPOSITIO/>AZOV• 254 3 ;' >BLACK SEA BASIN• EAST PONT!AN SYNCLINORIUM< 311 3 >BLACK SEA BASIN• TAVRICHESK SUITE< 43 3 >BLACK SEA BASIN• EUXINE ABYSSAL PLAIN< 3 3 >BLACK SEA BASIN• TECTONIC ELEMENTS• MAP< 46 3 >BLACK SEA BASIN, FLUVIAL INFLOW, STRUCTURE, TABLE< 251 3 >BLACK SEA BASIN• TERRIGENOUS DETRITUS< 308 3 I >BLACK SEA BASIN• FOLDS, DISJUNCTIVE• MAP< 311 3 BLACK SEA BASIN• TRACTION LOAD• GRAIN SIZE, TABLE<>AZOV• 251 3 � BLACK SEA BASIN, GEOPHYSICAL PROf !LE<>TURKEY, 3 >BLACK SEA BASIN• WEST PONT!AN SYN INORIUM< IT CL 308 3 >BLACK SEA BASIN• GEORGIAN BLOCK< 308 3 >BLACK SEA BASIN> WEST PONTIAN SYNCLINORIUM < 310 3 >BLACK SEA BASIN, GRANITE•FREE AREA, EXPLANATION OF< 47 3 >SLACK SEA SA SIN AREA• ALPINE FOLD BELTS< 11 3 >BLACK SEA BASIN• HORIZONS• REFLECTING< 43 3 >BLACK SEA BASIN AREA• EARTHQUAKE ACTIVITY< 11 3 >BLACK SEA BASIN, HYOROGRAHPIC HISTORY< 156 3 SLACK SEA BASIN SEDIMENTS<>MINERALDGY AND PETROLOGY OF 200 I >BLACK SEA BASIN• INDO• KUBAN TROUGH< 311 3 SLACK SEA BEOS<>BLACK SEA• OLD 195 3 >BLACK SEA BASIN, INDO• KUBAN TROUGH< 3!4 3 BLACK SEA BELT• BALKAN GEOSYNCLINEc>BULGARIA> 91 3 >BLACK SEA BASIN• ISTRANCA ANTICLINORIUM< 308 3 BLACK SEA BEL T• BURGAS DEPRESSIDN<>BULGARIA• 91 3 >BLACK SEA BASIN> ISTRANCA ANTICLINORIUM< 310 3 BLACK SEA BELT• DOBRUJA MASSIF<>BULGARIA• 91 >BLACK SEA BASIN• JURASSIC SEOIMENTARY•VOLCANIC ROCKS> MAP< 311 3 BLACK SEA BELT• GEOLOGY• GEOGRAPHy, AND GEOPHYSICS<>BULGARIA• 91 3 >BLACK SEA BASIN• MESOZOIC• CENOZOIC CRYSTALLINE ROCKS, MAP< 311 3 BLACK SEA BELT, KAMCHIYAN, LOWER, TROUGH<>BULGAR!A, 91 3 >BLACK SEA BASIN• MEZIY PLATFORM< 308 3 BLACK SEA BELT• KAVARNA SYNCLINE<>BULGAR!A, 91 3 >BLACK SE A BASIN> MEZIY PLATFORM< 310 3 BLACK SEA BELT• MOESIAN PLATFORM<>BULGAR!A, 91 3 >BLACK SEA BASIN• MICROTOPOGRAPHY< 3 3 BLACK SEA BELT• STRANOZHA MOUNTAINS<>BULGARIA• 91 3 >BLACK SEA SASIN• MOHOROVICIC SURHCE< 42 3 BLACK SEA BELT, TYULENOVD BLOCK<>BULGARIA, 91 3 >BLACK SEA BASIN• NEOGENE SEDIMENTARY ROCKS, MAP< 310 3 BLACK SEA BELT• VARNA OEPRESSION<>BULGARIA• 91 3 >BLACK SEA BASIN• NORTHERN• OOWNWARPS< 43 3 >BLACK SEA BOTTOM PHOTO< 344 3 >BLACK SU SASIN• NORTHERN• UPL IFTS< 43 3 >BLACK SEA BOTTOM PHOTOGRAPHS, EQUIPMENT AND TECHNI QUES< 338 3 >SLACK SEA SASIN• ORGANIC MATERIAL< 252 3 >BLACK SEA BOTTOM PHOTOS< 340 3 >BLACK SEA BASIN• PALEOGENE SED I MENTARY ROCKS> MAP< 310 3 >BLACK SEA BOTTOM PHOTOS< 342 3 >BLACK SEA BASIN• PALEOGENE VOLCANOGENIC•SEOIMENTARY ROCKS, MAP< 311 3 >BLACK SEA BOTTOM PHOTOS< 343 3 >BLACK SEA BASIN• PALEOSALINITY IN NEOEUXINIAN TIME< 174 3 >BLACK SEA BOTTOM PHOTOS< 345 3 >BLACK SEA BASIN, PALEOZOIC SEDIMENTARY ROCKS• MAP< 311 3 >BI.ACK SEA BOTTOM PHOTOS• BLOBS< 341 3 >BLACK SEA BASIN• PHYSIOGRAPHIC PROVINCES< 2 3 >SLACK SEA BOTTOM PHOTOS> CAMERA ASSEMBLY• DIAGRAM< 339 3 >BLACK SEA BASIN• PONTIAN SYNCLINORIUMS< 308 3 >BLACK SEA BOTTOM PHOTOS• CAMERA•STATION LOCATION MAP< 339 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA BOTTOM PHOTOS, DEBRIS• SMALL< 339 >BLACK SEA CORES, LEAD CONTENT< 572 3 >BLACK SEA BOTTOM PHOTOS, LINEAL DARK PATTERNS< 341 >BLACK SEA CORES, MANGANESE CONTENT< 572 3 >BLACK SEA BOTTOM PHOTOS• METHANE BUBBLES< 346 >BLACK SEA CORES• MOLYBDENUM CONTENT< 572 3 >BLACK SEA BOTTOM PHOTOS, NEPHELOIO LAYER< 346 >BLACK SEA CORES, N•AlKANES, DISTR IBUTION HISTOGRAMS< 497 3 >BLACK SEA BOTTOM PHOTOS• PHYSICAL DISTURBANCE, LACK Of< 339 >BLACK SEA CORES, NEUTRAL• ACID YIELDS OF VARIOUS FRACTIONS, TA/ 496 3 >BLACK SEA BOTTOM PHOTOS, PROTUBERANCES, LOW•RELIEF< 34 1 >BLACK SEA CORES• NICKEL CONTENT< 572 3 BLACK SEA CHEMISTRY AND SEOIMENTATION<>ROLE OF THE BOSPORUS IN 115 BLACK SEA CORES<>ORGANIC ANALYSES OF 417 1 >BLACK SEA COAST• ACCUMULATIVE< 315 >BLACK SEA CORES, ORGANIC ANALYSIS, ACID• ALKANE RATIOS< 494 3 BLACK SEA COAST• CHAUDINSKA TERRACE<>BULGARJA, 93 >BLACK SEA CORES, ORGANIC ANALYSIS, CARBOXYLIC ACIDS< 481 3 BLACK SEA COAST, EUX!NO• UZUNLARSKA TERRACE<>BULGARIA• 93 >BLACK SEA CORES• ORGANIC ANALYSIS, ESTERIFIED ACID FRACTION< 479 3 BLACK SEA COAST• LANDSUOES<>BULGARIA, 93 >BLACK SEA CORES> ORGANIC ANALYSIS, FATTY ACIDS< 489 3 BLACK SEA COAST• MLAOOKARANGATSKA TERRACEe>BULGARIA• 93 >BLACK SEA CORES• ORGANIC ANAL YSIS, HYDROCARBONS< 487 3 BLACK SEA COAST• NIMFE!SKA TERRACE<>BULGARIA• 93 >BLACK SEA CORES, ORGANIC ANALYSIS, ISOALKANES< 419 3 BLACK SEA COAST, NOVOCHERNOMORSKA TERRACEoBULGAR!A, 93 >BLACK SEA CORES, ORGANIC ANALYSIS, ISOPRENOIDS< 479 3 >BLACK SEA COAST• STABLE< 315 >BLACK SEA CORES, ORGANIC ANALYSIS, OLEFINSc 479 3 BLACK SEA COAST, STARO• EUXINSKA TERRACE<>BULGARIA, 93 >BLACK SEA CORES• ORGANIC ANALYSIS, PERYLENE OR OEHYDRDCHDLANTH/ 479 3 BLACK SEA COAST• STARDKARANGATSKA TERRACE<>BULGARIA• 93 >BLACK SEA CORES, ORGANIC ANALYSIS, PHTHALATE E STERS< 419 3 BLACK SEA COAST, TERRACES<>B ULGARIA• 93 >BLACK SEA CORES• ORGANIC ANALYSIS, PHYTAOIENES< 491 3 >BLACK SEA COAST• WASHED OUT< 315 >BLACK SEA CORES, ORGANIC ANALYSIS, STEROIDAL COMPOUNDS< 479 3 >BLACK SEA COASTLINES, RETROGRADING< 309 >BLACK SEA CORES• ORGANIC ANAL YSIS, STRUCTURES< 485 3 >BLACK SEA COCCOLITHS, CRETACEOUS• MICROGRAPHS< 359 >BLACK SEA CORES, ORGANIC ANALYSIS, TRITERP'ENO!OAL COMPOUNDS< 479 3 >BLACK SEA COCCOLITHS, EOCENE, MICROGRAPHS< 36 1 BLACK SEA 381 CORES<>PALYNOLOGIC INVESTIGATION OF TWO I >BLACK SEA COCCOLITHS• HOLOCENE, MICROGRAPHS< 357 BLACK SE CORES< PALYNOPLANKTOLDG!C ANALYSIS OF SOME 396 A > I >BLACK SEA COCCOLITHS, HOLOCENE, MICROGRAPHS< 359 >BLACK SEA CORES• PYRITE CONCENTRATION< 526 3 BLACK SEA CORE< •/HYDROCARBONS, STEROLS• AND CAROTENOIOS FROM A 505 >BLACK SEA CORES• SCANDIUM CONTENT< 512 3 >BLACK SEA CORE, ACID ESTER FRACTION, BRANCHED•CYCLJC, MAJOR CD/ 494 >BLACK SEA CORES• SILICA CONTENT< 572 3 >BLACK SEA CORE• ACID ESTER FRACTION• GAS CHROMATOGRAPHY AND MAl 490 >BLACK SEA CORES• SULFUR• ELEMENTAL< 417 3 >BLACK SEA CORE, ACID ESTER FRACTION, GAS CHROMATOGRAPHY AND MA/ 491 >BLACK SEA CORES• SULrUR• ELEMENTAL, VS SULriDE SULFUR• GRAPH< 525 3 >BLACK SEA CORE• ACID ESTER FRACTION• MAJOR COMPONENTS• TABLE< 489 >BLACK SEA CORES• SULFUR, REDUCED, CONCENTRATION< 526 3 >BLACK SEA CORE, ACID ESTER FRACTION, MAJOR COMPONENTS, TABLES< 492 >BLACK SEA CORES• SULFUR, REOUCED• VS IRON, REACTIVE• GRAPH< 526 3 >BLACK SEA CORE• ACID FRACTIONS• TOTAL, ALKANE• AND ESTERIFIED•/ 4 80 >BLACK SEA CORES• TITANIUM CONTENT< 572 3 >BLACK SEA CORE, ALKANE FRACTION, MAJOR COMPONENTS, TABLE< 487 >BLACK SEA CORES• URANIUM AND THORIUM ANALYSES, TABLE< 571 3 >BLACK SEA CORE• ALKANE FRACTION• MAJOR COMPONENTS• TABLE< 489 >BLACK SEA CORES• VANADIUM CONTENT< 512 3 >BLACK SEA CDR£, ALKANE FRACTION, MASS• SPECTRAL DATA, GRAPH< 483 >BLACK SEA CORES• YTTRIUM CONTENT< 572 3 >BLACK SEA CORE• ALKANE FRACTION ANALYSES< 486 >BLACK SEA CORES• ZIRCONIUM CONTENT< 572 3 >BLACK SEA COR£, AROMATI CS• POLYCYCLIC, EXPERIMENTAL METHODS< 510 >BLACK SEA DEEP< 313 3 >sLACK SEA CORE• FATTY•ACID METHYL ESTERS• GAS CHROMATOGRAMS< 515 >BLACK SEA DEEP WATER• HYDROGEN SULFIDE• SOURCES< 93 3 ;" >BLACK SEA CORE• FATTY ACIDS, ABUNDANCE< 514 BLACK SEA DEEP WATERBLACK SEA CORE• FATTY ACIDS. STUDY PROCEDURE< 514 >BLACK SEA DEPRESSION, FORMATION ore 88 3 >BLACK SEA CORE• GAS CHRDMAT0GRAPHY•M ASS•SPECTRAL ANALYSES, TOT/ 486 >BLACK SEA DINOFLAGELLATE ASSEMBLAGES• LIT�OSTRATIGRAPHIC UNITS/ 366 3 I >BLACK SEA CORE• GAS•CHRDMATOGRAPHY•MASS•SPECTRAL ANALYSES, TOT/ 493 >SLACK SEA 01NO FLAGELLATES• C ALC I 001 NELLUM OpEROSUM< 366 3 !" >BLACK SEA CORE• METHYl ESTER ANALYSIS< 486 >BLACK SEA DINOFLAGELLATES, CORE LOCATIONS, TABLE< 365 3 >BLACK SEA CORE• METHYL ESTER FRACTION, MAJOR COMPONENTS• TABLE< 487 >BLACK SEA DINOFLAGELLATES• GRAVIMETRIC ABUNDANCE• GRAPH< 369 3 >BLACK SEA CORE• NEUTRAL FRACTION• BRANCHED•CYCLIC• MAJOR COMPO/ 494 >BLACK SEA DINOFLAGELLATES, PERIDIN!UM CLAUOICANSc 366 3 >BLACK SEA CORE• NEUTRAL FRACTION• BRANCHEO•CYCliC• MASS SPECTR/ 495 >BLACK SEA DINOFLAGELLATES• PERIOINIUM LEONI$< 366 3 >BLACK SEA CORE• NITROGEN COMPOUND DISTRIBUTION• TABlE< 496 >BLACK SEA DINOFLAGELLATES, PERIDINIUM TROCHOIOEUM< 366 3 >BLACK SEA CORE, ORGANIC ANALYSIS• SEPARATION PROCEDURE ANO YIE/ 478 >&LACK SEA OINOrLAGELLATES• QuATERNARY, METHODS Dr INVESTIGATID/ 365 3 >BLACK SEA CORE• SOLVENT•SDLUBLE fRACTIONS. GAS CHROMATOGRAMS< 488 >BLACK SEA DINOFLAGELLATES, SPEC IES DISTRIBUTION< 367 3 >BLACK SEA CORE• STEROLS• EXPERIMENTAL METHODS< 506 >BlACK SEA 0 I NOrLAGELLATES• SPECIES Ll S T< 366 3 >BLACK SEA CORE• STEROLS• GAS CHROMATOGRAM< 508 >BLACK SEA OINDrLAGELLATES• SpECIMEN ASUNDANCEc 367 3 >BLACK SEA cORE SAMPLES, ELEMENTAL ANALYSIS• TABLE< 479 >BlACK SEA DINOFLAGELLATES• SYSTEMATIC TREATMENT< 365 3 >BLACK SEA CORES• ALUMINUM CONTENT< 572 >BLACK SEA DINOFLAGELLATES• VERTICAL DISTRIBUTION, GRAPH< 370 3 >BLACK SEA CORES• BARIUM CONTENT< 572 >BLACK SEA DINOFLAGELLATES• VERTICAL OI IBUTION• GRAPH< 371 3 >BLACK SEA CORES• BORON CONTENT< 572 >BLACK SEA DINOFLAGELLATES, VERTICAL DISTR»>!_ BUTION, GRAPH< 372 3 >BLACK SEA CORES, CALCIUM CARBONATE CONCENTRATION< 526 BLACK SEA DURING HDLOCENE<>EVOLUTION OF ANOX� IC CONDITIONS IN 133 I >BLACK SEA cORES. CARBON• ORGANIC• CONCENTRATION< 526 >BlACK SEA HORIZON OR STAGE< 372 3 >BLACK SEA CORES, CARBOXYLIC ACIDS, NORMAL, DISTRIBUTION H!STOG/ 497 BLACK SEA INFLOWS AND DUTFLDWS<>BOSPORUS• 110 3 >BLACK SEA CORES• CHEMICAL DATA, TABLES< 526 BLACK SEA INVESTIGATIONS<>SUMMARY OF 575 I >BLACK SEA CORES, CHROMIUM CONTENT< 572 >BLACK SEA LEVEL• DROP IN< 124 3 >BLACK SEA CORES• COBALT CONTENT< 572 >BLACK SEA MOLLUSKS• OIHRACTOGRAMS OF SHELLS< 283 3 >BLACK SEA CORES, COPPER CONTENT< 572 BLACK SEA OFF RUMANIAN SHDREc/ON CONTINENTAL SHELF OF 411 I SLACK SEA CORES<>GEOCHEMISTRY OF SEDIMENTS FROM ELEVEN 430 >BLACK SEA PALYNOLOGY• CORE LOCATION MAP< 381 3 >BLACK SEA CORES, IRON, REACTIVE• CONCENTRATION< 526 BLACK SEA PERI OD<>ANC lENT 441 3 >BLACK SEA cORES• IRON CONTENT< 572 BLACK SEA PHASE<>BDSPORUS• DLO 123 3 >BLACK SEA CORES, IRON MONOSULFIDES, CONCENTRATION< 526 >BlACK SEA POSTGLACIAL STAGES< 372 3 >BLACK SEA CORES• LANTHANUM CONTENT< 572 >BLACK SEA REGION, ADZHARO• IMERETINSKIY RIDGE< 309 3 8

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA REGION, ALPINE TECTOGENESIS< 70 3 >SLACK SEA SEDIMENT• PETROLEUM ETHER• CONCENTRATION< 520 3 >BLACK SEA REGION, BASEMENT ROCKS< 68 3 >BLACK SEA SEDIMENT• PETROLEUM ETHER•D!ETHYL ETHER• CONCENTRATI/ 520 3 0. >BLACK SEA REGION, BUG RIVER• SEDIMENT< 314 3 >BLACK SEA SEDIMENT• HUBIOIUM• STRONTIUM DATA• TABLES< 562 3 0 >BLACK SEA REGION, RIVER, SEDIMENT< 313 3 >BLACK SEA SEDIMENT, STEROL, UNKNO�N< 5!0 3 � >BLACK SEA REGION, CARBONifEROUS• PERMIAN• MAP< 66 3 >BLACK SEA SEDIMENT• STEROLS• ABUNDANCE• TABLE< 506 3 >BLACK SEA REGION, CHERNO• AMBARSK!Y LANDSLIDE< 313 3 >BLACK SEA SEDIMENT• STRONTIUM•ISDTOPE RATIOS VS DEPTH• GRAPH< 568 3 >BLACK SEA REGION, COAST STABILIZATION< 316 3 >BLACK SEA SEDIMENT• SURfACE SAMPLE• ABSORPTION• EXCITATION, ANI 511 3 >BLACK SEA REGION, CORUH RIVER, SEDIMENT< 309 3 >BLACK SEA SEDIMENT AND MANGANESE NODULES• LEAO•!SOTOPE RATIOS•/ 56 ! 3 >BLACK SEA REGION• CRETACEOUS, MIDDLE• MAP< 68 3 >BLACK SEA SEDIMENT AND WATER, STRONTIUM•ISOTOPE RATIOS, TABLE< 567 3 >BLACK SEA REGION, CROSS SECTIONS< 74 3 >BLACK SEA SEDIMENT CORE• AROMATICS• POLYCYCLIC< 5!0 3 >BLACK SEA REGION, DANUBE AND DNEPR RIVERS, DRAINAGE< !D7 3 >BLACK SEA SEDIMENT CORE• CAROTEND !DS< 512 3 >BLACK SEA REGION, DANUBE RIVER• SEDIMENT< 314 3 >BLACK SEA SEDIMENT CORE, CHLORINS AND PORPHYRINS< 516 3 >BLACK SEA REGION, ONEPR RIVER• SEDIMENT< 314 3 >SLACK SEA SEDIMENT CORE• fATTY ACIDS< 514 3 >BLACK SEA REGION, ONESTR RIVER• SEDIMENT< 314 3 >BLACK SEA SEDIMENT CORE, GAS ANALYSIS, TABLE< 502 3 >BLACK SEA REGION, DON RIVER• SEDIMENT< 314 3 >BLACK SEA SEDIMENT CORE• STEROLS< 5D5 3 >BLACK SEA REGION, EAST PONT!AN RIDGE< 3D9 3 >SLACK SEA SEDIMENT CORES, GEOCHEMISTRy, fACTOR AND TREND•SURfA/ 435 3 >BLACK SEA REGION, EDKIMMER!AN PHASE< 68 3 >aLACK SEA SEDIMENT CORES• ORGANIC ANALYSES• EXPERIMENTAL METHO/ 477 3 >BLACK SEA REGION, EUX!NUS DOME< 91 3 >BLACK SEA SEDIMENT SEQUENCE, ELEMENTS, CONTENT, TABU< 459 3 >BLACK SEA REGION, fAULTING< 1!8 3 >BLACK SEA SEDIMENT SURFACE• ICING SUGAR• COLUMN CHRO�ATOGRAPHY/ 5!8 3 >BLACK SEA REGION, f!LYOS AND KOCA RIVERS, SEDIMENT< 3D9 3 >BLACK SEA SEDIMENT UNITS, MICROGRAPHS< 209 3 >BLACK SEA REGION, GUMISTA SUBMARINE VALLEY< 312 3 >BLACK SEA SEDIMENT UNITS• PHOTOS< 208 3 >BLACK SEA REGION, HISTORY< 575 3 >BLACK SEA SEDIMENT UNITS, URANIUM CONCENTRATIONS< 571 3 >BLACK SEA REGION• JURASSIC• EARLY• MAP< 67 3 >SLACK SEA SEDIMENTATION• DATA AND METHODS< 249 3 >BLACK SEA REGION, KIMMERIAN TECTOGENESIS< 67 3 >BLACK SEA SEDIMENTATION, STUDIES< 249 3 >BLACK SEA REGION• K INTRISHI AND NATANEB! RIVERS• SEDIMENT< 312 3 >BLACK SEA SEDIMENTS• ABRA ALBA< 351 3 >BLACK SEA REGION• KOBULET!• POT! DUNE STRANO< 312 3 >BLACK SEA SEDIMENTS• ABYSSAL PLAIN< 332 3 >BLACK SEA REGION, KDOOR! RIVER DETRITUS< 3!2 3 >SLACK SEA SEDIMENTS• AGES< 365 3 >BLACK SEA REGION• KUBAN RIVER• SEDIMENT< 314 3 >BLACK SEA SEDIMENTS, AGES< 568 3 >BLACK SEA REGION• LANDSLI DES 313 I < 3 >BLACK SEA SEDIMENTS• ALUM NUM< 431 3 .-:: >BLACK SEA REGION, MAGNETIC SAND• POSSIBLE EXTRAC T ION Of< 315 3 >BLACK SEA SEDIMENTS, ALUMINUM CONTENT< 556 3 CD >BLACK SEA REGION• MAYCOPE SERIES< 3!3 3 >SLACK SEA SEDIMENTS• AMINO ACID DISTRIBUTION• GRAPH< 3DD 3 P >BLACK SEA REGION• MEOTIAN• ONTIAN CONGLOMERATES< 313 3 >BLACK SEA SEDIMENTS, AMINO ACID DISTRIBUTION, GRAPH< 301 3 0 >BLACK SEA REGION• MUSSERA HILL< 3!3 3 >SLACK SEA SEDIMENTS• AMINO SUGAR DISTRIBUTION, GRAPH< 300 3 � ., >BLACK SEA REGION• RIVER• SEDIMENT< 3!3 3 >BLACK SEA SEDIMENTS, AMMONIA DISTRIBUTION, GRAPH< 300 3 >BLACK SEA REGION• NEW APHONI LANDSLIDES< 313 3 >BLACK SEA SEDIMENTS• ARAGONITE< 21 3 3 Cl. >BLACK SEA REGION• ODESSA AREA• LANDSLIDES< 3!4 3 >BLACK SEA SED IMENTS, ATOMIC•ASSORPTION ANALYSIS, TABLt:< 557 3 >SLACK SEA REGION, OLIGOCENE• MAP< 7D 3 >BLACK SEA SEDIMENTS• BARITE< :; 437 3 Cl. >BLACK SEA REGION• ORDOVICIAN• DEVONIAN, MAP< 65 3 >BLACK SEA SEDIMENTS, 8AR!UM< 432 3 CD >BLACK SEA REGION, PETROPAVLOWSK!Y LANDSLI DES< 3!3 3 >BLACK SEA SEDIMENTS• BISMUTH< 432 3 >C >BLACK SEA REGION, PONT!AN BLOCK< 91 3 >BLACK SEA SEDIMENTS, BLACK AND GRAY LAYERS< 391 3 >BLACK SEA REGION• PSDU RIVER, SEDIMENT< 313 3 >BLACK SEA SEDIMENTS• BORON< 432 3 >BLACK SEA REGION• RlDN! RIVER• SEDIMENT< 312 3 >BLACK SEA SEDIMENTS• BOTTOM< 389 3 >BLACK SEA REGION, SECTION BASED ON SEISMIC REFLECTION PROfiLES< 163 3 >SLACK SEA SEDIMENTS• BOTTOM• PALYNOPLANKTDLOG!C CONTENT• SOUNC/ 41D 3 > BLACK SEA REGION, SUKHUM! LANDSLIDES< 313 3 >.LACK SEA SEDIMENTS, BUGAZ !AN< 350 3 >BLACK SEA REGION• RIVER• SEDIMENT< 3!2 3 >BLACK SEA SEDIMENTS• CADMIUM< 432 3 > BLACK SEA REGION, VOLCANISM< 68 3 >BLACK SEA SEDIMENTS, CALCITE < 213 3 >BLACK SEA SANDS, DEEP, COMPOSITION< 222 3 >SLACK SEA SEDIMENTS• CALCITE< 285 3 >BLACK SEA SANDS• DEEP, COMPOSITION CHANGES• PHOTOS< 223 3 >BLACK SEA SEDIMENTS, CALCITE• DOLOM ITE RATIO< 213 3 >BLACK SEA SANDS, DEEP, fELDSPAR CONTENT, DISTRIBUTION MAP< 221 3 >BLACK SEA SEDIMENTS• CALCI TE• DOLOMITE RATIO• O!STRIBUT!UN MAP< 218 3 >SLACK SEA SANDS• DEEP• PLAGIOCLASE• K•fELDSPAR RATIO, O!STRIBU/ 221 3 >BLACK SEA SEDIMENTS• CALCIUM< 431 3 >BLACK SEA SANDS, DEEP, QUARTZ• fELDSPAR RATIO, DISTRIBUTION MA/ 221 3 >BLACK SEA SEDIMENTS• CALCIUM CARBONATE< 335 3 > BLACK SEA SANDS• DEEP, QUARTZ CONTENT, DISTRIBUTION MAP< 221 3 >BLACK SEA SEDIMENTS• CALCIUM CAR�ONATE AND CARBON, ORGANIC, 01/ 298 3 >BLACK SEA SANDS, DEEP, QUARTZ•fE�OSPARS•ROCK FRAGMENTS, TR!ANG/ 229 3 >BLACK SEA SEDIMENTS• CALCIU� CARBONATE DISTRIBUTION• GRAPH< 299 3 >BLACK SEA SANDS• OEEP•SEA• PETROLOGY< 226 3 >BLACK SEA SEDIMENTS, CALCIUM CARBONATE DISTRIBUTION• GRAPH< 30D 3 >BLACK SEA SEDIMENT, ASPHALTIC COMPOUNDS< 503 3 >BLACK SEA SEDIMENTS• CARBON< 515 3 >BLACK SEA SEDIMENT• BENZENE• CONCENTRATION< 52D 3 >BLACK SEA SEDIMENTS• CARBON, CARBON DIOXIDE• AND WATER, TOTAL< 433 3 >BLACK SEA SEDIMENT, BLACK AND GRAY LAYERS, DIATOM O!STR!BUTION/ 392 3 >BLACK SEA SEDIMENTS• CARBON• NITROGEN RATIO< 300 3 >BLACK SEA SEDIMENT• DEEP, HYOROTRO!LITE< 469 3 >BLACK SEA SEO!MENTS, CARBON, ORGANIC, DISTRIBUTION• GRAPH< 299 3 >BLACK SEA SEDIMENT, DEEP• PYRITE< 469 3 >BLACK SEA SEDIMENTS• CARBON• ORGANIC• DISTRIBUTION• GRAPH< 30D 3 >BLACK SEA SEDIMENT• O!ETHYL. ETHER, CONCENTRATION< 520 3 >BLACK SEA SEDIMENTS, CARBON O IOXIOE VS LEAD• STRONTIUM RUB!OIU/ 558 3 >BLACK SEA SEDIMENT• HYDROGEN, MOL.ECULAR< 502 3 >BLACK SEA SEDIMENTS• CARBONATE CONTENT, DISTRIBUTION MAPS< 216 3 >BLAC" SEA SEDIMENT • LEAD• I SO TOPE RA TIOS• COMPARI SONS< 56D 3 >BLACK SEA SEDIMENTS, CARBONATE CONTENT, TABLE< 29D 3 >BLACK SEA SEDIMENT• MICROPLANKTON< 402 3 >�LACK SEA SEDIMENTS• CARBONATE CONTENT• TOTAL• DISTRIBUTION HA/ 219 3 >BLACK SEA SEDIMENT• MOLYBDENUM DISTRIBUTION MAP< 545 3 >BLACK SEA SEDIMENTS, CARBONATE CONTENT Of SILT AND CLAY fRACTl/ 219 3 >BLACK SEA SEDIMENT• ORGANIC ANALYSIS Of CORE SAMPLES• TABLE< 503 3 >BLACK SEA SEDIMENTS• CARBONATE DISTRIBUTION< 264 3 >SLACK SEA SEDIMENT• PARAffiNS• GAS CHROMATOGRAMS< 503 3 >SLACK SEA SEDIMENTS• CARBONATE MATERIAL< 250 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA SEDIMENTS• CARBONATE MINERALS< 213 >BLACK SEA SEDIMENTS, GALLIUM< 432 3 >BLACK SEA SEDIMENTS, CARBONATES, TERRIGENOUS, MAPS< 291 >BLACK SEA SEDIMENTS• GASTRANA< 350 3 >BLACI< SEA SEDIMENTS• CARDIUM lOULE LAMARCK!< 350 >BLACK SEA SEDIMENTS, GASTROPODS< 350 3 >BLACK SEA SEDIMENTS, CASPIA CLATHROCASPIA GNELINI< 350 >BLACK SlA SEDIMENTS• GEOCHEMISTRY, ATLANTIS II CORE ANALYSES< 450 3 >BLACK SEA SEDIMENTS• CATIONS, EXCHANGEABLE, TABLE< 173 >BLACK SEA SEDIMENTS, GEOCHEMISTRY, CORE LOCATION MAP< 431 3 >BLACK SEA SEDIMENTS, CELLULAR PROCESSES, DATA ANALYSIS< 298 >BLACK SEA SEDIMENTS• GEOCHEMISTRY• FACTOR SCORES VS 14•ANGSTRD/ 440 3 >BLACK SEA SEDIMENTS• CELLULAR PROCESSES• DEFINITION OF PROBLEM< 296 >BLACK SEA SEDIMENTS• GEOCHEMISTRY, OBLIGUE PROMAX PRIMARY•PATT/ 435 3 >BLACK SEA SEDIMENTS, CELLULAR PROCESSES, ORGANIC MOLECULES, SY/ 302 3 >BLACK SEA SEDIMENTS• GEOCHEMISTRY, OBLIQUE PRDMAX PRIMARY•PATT/ 437 3 LACK SEA SEOIMENTS<>CELLULAR PROCESS 296 430 3 B ES IN I >BLACK SEA SEDIMENTS• GEOCHEMISTRY, PREVIOUS STUDIES< >BLACK SEA SEDIMENTS, CERITHIOIUM< 350 3 >BL ACK SEA SEDIMENTS• GEOCHEMISTRY, PROMAX FACTORS• CORRELATION/ 436 3 >BLACI< SEA SEDIMENTS• CHEMICAL ANALYSIS< 430 3 >BLACK SEA SEDIMENTS, GEOCHEMISTRY, PROMAX FAC TORS, CORRELATION/ 440 3 >BLACK SEA SEDIMENTS, CHEMISTRY, STRATIGRAPHIC VARIATIONS< 441 3 >BLACK SEA SEDIMENTS• GEOCHEMISTRY, TREND SURFACES• CONTOURED< 436 3 >BLACK SEA SEDIMENTS• CHEMOGENIC CALCITE CONCENTRATION• NAP< 292 3 >BLACK SEA SEDIMENTS• GEOCHEMi STRY, TREND SURFACES• CONTOURED< 438 3 >BLACK SEA SEDIMENTS, CHLORITE< 440 3 >BLACK SEA SEDIMENTS• GEOCHEMISTRY, TREND SURFACES• CONTOURED< 439 3 >BLACK SEA SEDIMENTS• CHLORITE VARIANCE< 436 3 >BLACK SEA SEDIMENTS• GRAIN SPECIFIC GRAVITY< 335 3 >BLACK SEA SEDIMENTS, CHROMIUM< 432 3 >BLACK SEA SEDIMENTS• HEAVY MINERALS< 224 3 >slACK SEA SEDIMENTS• CHRONOSTRATIGRAPHY< 365 3 >BLACK SEA SED IMENTS• HYDROCARBONS, AROMATIC< 512 3 >BLACK SEA SEDIMENTS• CLAY• COARSE•, FRACTION< 272 3 >BLACK SEA SEDIMENTS• HYDROGEN SULfiDE ZONE, MOLYBDENUM OISTRIB/ 548 3 >BLACK SEA SEDIMENTS• CLAY• MEDIUM•• FRACTION< 273 3 >BLACK SEA SEDIMENTS, HYDROGEN SULFIDE ZONE• MOLYBDENUM D!STRIB/ 549 3 >BLACK SEA SED IMENTS• CLAY FRACTION, CHLORITE• DISTRIBUTION MAP< 227 3 > BLACK SEA SEDIMENTS• HYDROGEN SUlfiDE ZONE, TRACE ELEMENTS< 456 3 >BLACK SEA SEDIMENTS• CLAY FRACTION, ILLITE, DISTRIBUTION MAP< 227 3 >BLACK SEA SEDIMENTS• ILLITE'< 267 3 >BLACK SEA SEDIMENTS• CLAY FRACTION• KAOLINITE• DISTRIBUT ION MA/ 227 3 >BLACK SEA SEDIMENTS• ION•EXCHANGE CAPACITY< 235 3 >SLACK SEA SEDIMENTS• CLAY FRACTION• MONTMORILLONITE• DISTRIBUT/ 227 3 >BLACK SEA SEDIMENTS• ION•EXCHANGE CAPACITY• TABLE< 233 3 >BLACK SEA SED IMENTS• CLAY MINERALS• DISTRIBUTION MAP< 267 3 >BLACK SEA SEDIMENTS• IONIC ENVIRONMENT, FLUCTUATIONS< 306 3 >BLACK SEA SEDIMENTS• COBALT< 432 3 >BLACK SEA SEDIMENTS• IRON< 431 3 >BLACK SEA SEDIMENTS• COBALT• DISTRIBUTION< 457 3 BLACK SEA SEOIMENTS<>ISDTDPIC AND ELEMENTAL GEOCHEMISTRY OF 554 I >BLACK SEA SED IMENTS• COCCOLITH MUD• GRAIN SIZE AND COMPOSITION/ 219 3 >BLACK SEA SEDIMENTS• KALAMITIAN< 350 3 >BLACK SEA SEDIMENTS• COCCOLITH MUD• SHEAR STRENGTH< 333 3 >BLACK SEA SEDIMENTS• KARKINITIAN< 350 3 >BLACK SEA SEDIMENTS• COHESION< 333 3 >BLACK SEA SEDIMENTS• I.AMINAT!DNS< 356 3 ;Ill: >BLACK SEA SEDIMENTS• COLOR< 524 3 >BLACK SEA SEDIMENTS• LEAD< 432 3 >BLACK SEA SEDIMENTS• COMPOSITION• AVERAGE VALUES AND RANGE, TA/ 435 3 >BLACK SEA SEDIMENTS• LEAO•ISOTDPE DATA, TABLE< 559 3 >BLACK SEA SEDIMENTS• COMPOSITION CHANGES• LATERAL• DIAGRAM< 233 3 >BLACK SEA SEDIMENTS• LEAD ISOTOPES< 559 3 >BLACK SEA SEDIMENTS• COMPUSIT!ONAL•GENET!C TYPES• MAP< 265 3 >BLACK SEA SEDIMENTS• LITHIUM< 432 3 >sLACK SEA SEDIMENTS• CDPEPOO EGG CASES< 365 >BLACK SEA SEDIMENTS• LITHOLOGY< 184 3 3 D. >BLACK SEA SEDIMENTS• COPPER< 432 3 >BLACK SEA SEDIMENTS• LITHOLOGY< 264 3 >BLACK SEA SEDIMENTS• COPPER• DISTRIBUTION< 457 3 >BLACK SEA SEDIMENTS, LITHOSTRATIGRAPHIC UNITS, THICKNESS• TABL/ 366 3 1;­ >BLACK SlA SEDIMENTS• COPPER CONTENT< 558 3 >BLACK SEA SEDIMENTS• LITHOSTRATIGRAPHY OF CORES< 365 3 D. >BLACK SEA SEDIMENTS• CORE LOC ATION MAP< 333 3 >BLACK SEA SEDIMENTS• MAGNESIUM< 431 3 >BLACK SEA SEDIMENTS• CORES, CORRELATION OF< 351 3 >BlACK SEA SEDIMENTS• MAJOR•ELEMENT ANALYSIS• TABLE< 557 3 � >BLACK SEA SEDIMENTS• CORRELATION• PREVIOUS STUDIES< 349 3 >BLACK SEA SEDIMENTS• MANGANESE< 432 3 >BLACK SEA SEDIMENTS, CORRELATION CHART< 351 3 >BLACK SEA SEDIMENTS• MASS CHEMICAL AND PHYSICAL PROPERTIES, DE/ 334 3 >BLACK SEA SEDIMENTS• DANUBE FAN< 332 3 BLACK SEA SEOIMENTS<>MASS PHYSICAL PROPERTIES OF SOME WESTERN 332 1 >BLACK SEA SEDIMENTS, DEEP, DIATOM SCARCITY< 389 3 >BLACK SEA SEDIMENTS• MEMBRANE•L IKE STRUCTURES< 332 3 >slACK SEA SEDIMENTS• DEEP• SILICA DISSOLUTION< 390 3 >BI.ACK SEA SEDIMENTS• MEMBRANES, ORGANIC< 187 3 >SLACK SEA SEDIMENTS, OEEP•BASIN, FLUID LOSS, TABLE< 161 3 BLACK SEA SEOIMENTS<>MEMBRANES• TUBULAR• IN 304 3 >BLACK SEA SEDIMENTS• DENSITY, WET BULK< 334 3 >BLACK SEA SEDIMENTS• MICRDMELANIA CASP!A LINCTA< 350 3 >BLACK SEA SEDIMENTS, DETRITUS< 250 3 >slACK SEA SEDIMENTS• MICROMELANIA ELEGANTULA< 350 3 BLACK SEA SED I MENTS<>O I ATOMS IN PLEISTOCENE DEEP 3B9 213 3 I >BLACK SEA SEDIMENTS• MINERALOGY< >BLACK SEA SEDIMENTS, DIVISIONS OF< 349 3 >BLACK SEA SEDIMENTS• MODERN• ANKERITE< 285 3 >BLACK SEA SEDIMENTS• DOLOMITE< 285 3 >BLACK SEA SEDIMENTS• MODERN• ARAGONITE< 282 3 >SLACK SEA SEDIMENTS, DOLOMITE DISTRIBUTION MAP< 286 3 >BLACK SEA SEDIMENTS• MODERN• CALCITE< 282 3 >BLACK SEA SEDIMENTS• ORE!SSENA POL YMORPJIA< 35D 3 >BLACK SEA SEDIMENTS• MODERN• CALCIUM CARBONATE CONTENT AND GRA/ 287 3 >BLACK SEA SEDIMENTS, DREISSENA ROSTRIFORM!S< 350 3 >BLACK 288 SEA SEDIMENTS• MODERN• CALCIUM CARBONATE DISTRIBUTION, M/ 3 >BLACK SEA SEDIMENTS• OREISSENA ROSTRIFORMIS DISTINCTA< 350 3 >BLACK SEA SEDIMENTS• MODERN• CARBON• ORGANIC• CONTENT• MAP< 266 3 >BLACK SEA SEDIMENTS, DZHEMETINIAN< 350 3 >BLACK SEA SEDIMENTS• MODERN• CARBONATE CONTENT• MAP< 266 3 >BLACK SEA SEDIMENTS• EH• AND PH•DEPENDENT FACTORS< 446 3 >BLACK SEA SEDIMENTS• MODERN• CARBONATE MINERAL CONTENT, TABLE< 284 3 >BLACK SEA SEDIMENTS• ELECTRON MICROSCOPY< 187 3 > BLACK SEA SEDIMENTS• MODERN• CARBONATES• MINERAL AND GENETIC T/ 294 3 >BLACK SEA SEDIMENTS• ELEMENT DISTRIBUTION, FACTOR ANALYTICAL S/ 433 3 >BLACK SEA SEDIMENTS, MODERN, CLAY MINERALOGY< 267 3 >BLACK SEA SEDIMENTS, ELEMENTAL ANALYSIS< 555 3 > BLACK SEA SEDIMENTS• MODERN• COCCOLITHS IN FRACTIONS OF,PHOTO$< 293 3 >BLACK SEA SEDIMENTS• EUXINE ABYSSAL PLAIN< 333 3 >BLACK SEA SEDIMENTS• MODERN• DOLOMITE< 282 3 >BLACK SEA SEDIMENTS, EXCHANGE COEFFICIENTS, TABLE< 173 3 >BLACK SEA SEDIMENTS• MODERN• IRON CONTENT< 267 3 >BLACK SEA SEDIMENTS• FATTY ACIDS• ABUNDANCE, TABLE< 516 3 >BLACK SEA SEDIMENTS• MODERN• MANGANESE CONTENT< 267 3 >BLACK SEA SEDIMENTS• FELDSPAR< 220 3 >BLACK SEA SEDIMENTS• MODERN• PHOSPHORUS CONTENT< 267 3 >BLA CK SEA SEDIMENTS• FINE•GRAINEO, CHEMICAL PROPERTIES< 230 3 >BLACK SEA SEDIMENTS, MODERN, SIDERITE< 285 3 >BLACK SEA SEDIMENTS• FINE•GRAINED, PETROLOGY< 230 3 > BLACK SEA SEDIMENTS• MODIOLUS PHASEOL!NUS< 351 3 BLACK SEA SED!MENTS<>FORMS Dr !RON IN SURFACE LAYER OF 532 >BLACK SEA SEDIMENTS, MOLLUSK SHELLS• ATLANTIS II CORE LOCATION/ 350 3 s I Ul

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA SEDIMENTS• MOLYBDENUM< 432 3 >BLACK SEA SEDIMENTS• SILICA CONTENT< 556 3 >BL�CK SEA SEO!MlNTS• MOLYBDENUM• COPPER• AND COBALT• D!STR ! BUTt 456 3 >BLACK SEA SED I MENTS• SILICON< 431 3 0. >BLACK SEA SEDIMENTS• MOLYBDENUM, DISTRIBUTION< 457 3 >BLACK SEA SEDIMENTS• SILT• COARSE•, FRACTION< 272 3 0 >BLACK SEA SEDIMENTS• MOLYBDENUM• RELATION TO SULriDE CONTENT< 551 3 >BLACK SEA SEDIMENTS• SILT• rtNE•• DISTRIBUTION MAP< 273 3 0. >BLACK SEA SEDIMENTS• MOLYBDENUM AND CARBON• ORGANIC• D!STR!BUTI 544 3 >BI.ACK SEA SEDIMENTS• SILT• FINE•• FRACTION< 272 3 >BLACK SEA SEDIMENTS• MOLYBDENUM CONTENT• TABLE< 549 3 >BLACK SEA SED! MENTS• SILVER< 432 3 >BLACK SEA SEDI MENTS• MOLYBDENUM DISTRIBUTION IN< 544 3 >BLACK SEA SEDIMENTS• SODIUM< 431 3 >BLACK SEA SEDIMENTS, MOLYBDENUM VS CARBON, ORGANIC, GRAPH< 550 3 >BLACK SEA SEDIMENTS• SORTING< 273 3 >BLACK SEA SEDIMENTS• MONODACNA CASPIA< 350 3 >BLACK SEA SEDIMENTS• SORTING COEFFICIENTS, DISTRIBUTION MAP< 274 3 >BLACK SEA SEDIMENTS, MONTMOR ILLON ITE< 267 3 >BLACK SEA SED! MENTS• SOURC l< 249 3 >BLACK SE A SEDIMENTS• MONTMOR iLLONITE CONTENT. VERTICAL CHANGES/ 228 3 >BLACK SEA SEDIMENTS• SOURCE AREA• STRATIGRAPHIC MAP< 280 3 >BLACK SEA SEDIMENTS, MONTMORILLONITE VARIANCE< 436 3 >BLACK SEA SEDIMENTS• STRATIGRAPHIC UNITS< 332 3 >BLACK SEA SEDIMENTS• MYTILID SHELLS< 350 3 >BLACK SEA SEDIMENTS• STRATIGRAPHY< 194 3 >BLACK SEA SEDIMENTS• NEOEUXI NIAN< 3SO 3 >BLACK SEA SEDIMENTS• STRONTIUM< 432 3 >BLACK SEA SEDIMENTS• NEOEUXINIAN• GEOCHEMISTRY< 441 3 >BLACK SEA SEDIMENTS• STRONTIUM• RUBIDIUM ISOTOPE RATIOS• GRAPH/ 563 3 BLACK SEA SEDIMENTS--NEW DATA AND REV!Ef>INTERST!TIAL WATERS OF ISS I >BLACK SEA SEDIMENTS• STRONTIUM CONTENT< 557 3 >BLACK SEA SEDIMENTS• NICKEL< 432 3 >BLACK SE� SEDIMENTS• STRONTIUM ISOTOPES< 562 3 >BLACK SEA SEDIMENTS, NICKEL• DISTR!BUTIONc 457 3 >BLACK SEA SEDIMENTS• STUDIES OF< 183 3 >BLACK SEA SEDIMENTS• NICKEL CONTENT< 3 >BLACK SEA SEDIMENTS• SUBCOLLOIDAL FRACTION< 273 3 sse >BLACK SEA SEDIMENTS, NITROGEN, DISTRIBUTION, GRAPH< 299 3 >BI.ACK SEA SEDIMENTS• SUBCOLLOIOAL FRACTION• DISTRIBUTION MAP< 274 3 >BLACK SEA SEDIMENTS• NITROGEN• ORGAN!C,FORMS Of< 301 3 >BLACK SEA SEDIMENTS• SUGAR DISTRIBUTION• GRAPH< 300 3 >BLACK SEA SEDIMENTS, NITROGEN DISTRIBUTION, GRAPH< 300 3 >BLACK SEA SEDIMENTS• SULFIDE PRODUCTION< 139 3 >BLACK SEA SEDIMENTS• OPAL< 226 3 >BLACK SEA SEDIMENTS• SULFIDES• FORMATION OF< 473 3 >BLACK SEA SEDIMENTS, OPT ICAl. AND X•RAY FLUORESCENCE PROCEDURES/ 433 3 >BLACK SEA SEDIMENTS• SULFUR< 431 3 >BLACK SEA SEDIMENTS• OPTICAL AND X•RAY FLUORESCENCE SPECTROG"RAf 434 3 >BLACK SEA SEDIMENTS• SUMMARY< 581 3 >BLACK SEA SEDIMENTS, OPTICAL EMISSION SPECTROGRAPHY< 432 3 >BLACK SEA SEDIMENTS• TARKHANKUTIAN< 350 3 >BLACK SEA SEDIMENTS• ORGANIC MATERIAL• SHEAR STRENGTH< 333 3 >BLACK SEA SEDIMENTS• TERRIGENOUS• CALCITE• DOLOMITE RATIO< 234 3 >BLACK SEA SEDIMENTS, ORGANIC MATTER, FIBERLIKE< 33S 3 >BLACK SEA SEDIMENTS• TERRI GENOUS• CARBONATE CONTENT< 233 3 > 547 aLACK SEA SEDIMENTS• OXYGENATED ZONE, MOLYBDENUM• VERTICAL DIS/ 3 >BLACK SEA SEDIMENTS• TERRIGENOUS• CHLORITE CONTENT< 235 3 "' >BLACK SEA SEDIMENTS• OXYGENATED ZONE, MOLYBDENUM DISTRIBUTION•/ 546 3 >aLACK SEA SEDIMENTS• TERRI GENOUS• CLAY•MINERAL COMPOS ITION< 234 3 CD >BLACK SEA SEDI MENTS• PALEOSAL INITY AND PALEOECOLOGY• GENERAL< 356 3 >BLACK SEA SEDIMENTS, TERRIGENOus, ILLITE CONTENT< 234 3 >BLACK SEA SEDIMENTS• PETROLOGY< 226 3 >aLACK SEA SEDIMENTS• TERRIGENOUS• KAOLINITE CONTENT< 235 3 >BLACK SEA SEDIMENTS• PHOSPHORUS< 431 3 >BLACK SEA SEDIMENTS• TERRIGENOUS• MINERALOGY< 233 3 �0 >BLACK SEA SEDIMENTS• PHOSPHORUS, TOTAL, DISTRIBUTION• GRAPH< 300 3 >BLACK SEA SEDIMENTS• TERRIGENOUS• MONTMORILLONITE CONTENT< 235 3 "' >BLACK SEA SEOI MENTS• PHYLLDS I L I CATE S< 226 3 >BI.ACK SEA SEDIMENTS, TERRIGENOUS, QUARTZ• FELDSPAR RATIO< 234 3 0. >BLACK sEA SEDIMENTS> PIGMENTS DISTRIBUTION• GRAPH< 300 3 >BLACK SEA SEDIMENTS• THORIUM CONTENT< 557 3 >BLACK SEA SEDIMENTS• PLASTICITY< 336 3 >BLACK SEA SEDIMENTS, TIN< 432 3 5' 0. >BLACK SEA SEDIMENTS• PLASTICITY CHART< 336 3 >BLACK SEA SEDIMENTS• TITANIUM< 431 3 CD >BLACK SEA SEDIMENTS• POROSITY< 335 3 >BLACK SEA SEDIMENTS, TITANIUM CONTENT< 557 3 >< >BLACK SEA sEDIMENTS• POTASSIUM< 431 3 >BI.ACK SEA SEDIMENTS• TRACE•ELEMENT RELATION TO ORGANIC MATERIAl 462 3 >SLACK SEA SEDIMENTS• POTASSIUM CONTENT< SS6 3 >BI.ACK SEA SEDIMENTS, TRACE ELEMENTS AND CARBON, ORGANIC, AERIAl 457 3 >BLACK SEA SEDIMENTS• PREVIOUS RESEARCH< 200 3 >BLACK SEA SEDIMENTS• UNIT I• AGE OF< 184 3 >BLACK SEA SEDIMENTS• PYRITE< 438 3 >BI.ACK SEA SEDIMENTS, UNIT 2< 184 3 >BI.ACK SEA SEDIMENTS• PYRITE• C ONC ENTRATION OF COPPER IN< 471 3 >BLACK SEA SEDIMENTS• UNIT 2• AGE< 187 3 >BLACK SEA SEDIMENTS• PYRITE• CONCENTRATION OF MOLYBDENUM IN< 471 3 >B�ACK SEA SEDIMENTS, UNIT 3< 187 3 >BLACK SEA SEDIMENTS• PYRITE MAXIMUM< 463 3 >B LACK SEA SEDIMENTS• UPPER LAYER• CLAY•MINERA� DISTRIBUTION MAl 268 3 >BLACK SEA SEDIMENTS• PYRITIZATION< 463 3 >BLACK SEA SEDIMENTS, UPPER LAYER, GEOCHEMISTRY< 441 3 >BLACK SEA SEDIMENTS• QUARTZ< 220 3 >BLACK SEA SEDIMENTS• URANIUM CONTENT< 557 3 >BLACK SEA SEDIMENTS• QUARTZ• fELDSPAR GRAIN•S!ZE RELATION, GRAI 218 3 >BLACK SEA SEDIMENTS, VANADIUM< 432 3 >BLACK SEA SEDIMENTS• QUARTZ• FELDSPAR RATIO• DISTRIBUTION MAP< 218 3 >BLACK SEA SEDIMENTS• VANADIUM• DISTRIBUTION< 457 3 >BLACK SEA SEDIMENTS• QUARTZ CONTENTS• DISTRIBUTION MAP< 218 3 >BLACK SEA SEDIMENTS, VITYAZEVIAN< 350 3 >BLACK SEA SEDIMENTS• QUATERNARY• HOLOCENE, MOLLUSCAN ASSEMBLAGI 350 3 >B LACK SEA SEDIMENTS• �ATER CONTENT< 335 3 >BLACK SEA SEDIMENTS• RADIOCARBON DATES< 36S 3 >BLACK SEA SEDIMENTS, WATER C ONTENT, G�APHS< 160 3 >BLACK SEA SEDIMENTS• RADIOCARBON DATING< 190 3 >BLACK SEA SEDIMENTS• WATER DISTRIBUTION• GRAPH< 300 3 >BLACK SEA SEDIMENTS• REDUCING ENVIRONMENT< 297 3 >BLACK SEA SEDIMENTS, WEIGHT• UNIT< 334 3 >BLACK SEA SEDIMENTS• ROCK FRAGMENTS< 213 3 >BLACK SEA SEDIMENTS• X•RAY FLUORESCENCE• TABLE< 432 3 >BLACK SEA SEDIMENTS• ROCK FRAGMENTS• PHOTOS< 214 3 >BLACK SEA SEDIMENTS, X•RAY FLUORESCENCE ANALYSIS< 431 3 >BLACK SE� SEDIMENTS• RUBIDIUM< 432 3 >BLACK SEA SEDIMENTS• X•RAY REfLECTIONS FOR CLAY IDENTIFICAT!DNI 204 3 >BLACK SEA SEDIMENTS• RUBIDIUM CONTENT< 557 3 >BLACK SEA SEDIMENTS, X•RAY SPECTROMETRIC ANALYSES, TABI.E< 5S6 3 >BLACK SEA SEDIMENTS• SAMPLING AND SAMPi.E PREPARATI ON< 204 3 >BLACK SEA SEDIMENTS• YTTRIUM< 432 3 >BLACK SEA SEDIMENTS• SAMPLING OPERATIONS< 183 3 >BLACK SEA SEDIMENTS• ZINC< 432 3 >BLACK SEA SEDIMENTS• SAND FRACTION< 272 3 >BLACK SEA SEDIMENTS• ZINC CONTENT< 558 3 >BLACK SEA SEDIMENTS• SAPROPELIC I.AYER, GEOCHEMISTRY< 441 3 >BLACK SEA SEDIMENTS, ZIRCONIUM< 432 3 >SLACK SEA SEDIMENTS• SAPROPELIC LAYERS< 335 3 >BLACK SEA SEDIMENTS• ZIRCONIUM DISTRIBUTION< 459 3 >BLACK SEA SEDIMENTS• SENSITIVITY< 334 3 BLACK SEA SEDIMENTS AND THEIR PAI.EO•OCE//IN PLEI STOCENE DEEP 524 I >BLACK SEA SEDIMENTS• SHEAR STRENGTH< 333 3 >BLACK StA SEDIMENTS CONTAINING DOLOMITE• OIHRACTOGRAMS< 286 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >BLACK SEA SHELf, EUGEOSYNCLINAL ZONES< 315 >BLACK SEA WATER• ORGANIC• NITRATE, ANO PHOSPHATE COMPOSITION>/ 94 3 >BLACK SEA SHELf• �IOGEOSYNCLINAL ZONES< 315 >BLACK SEA WATER• OXIDATION• REDUCTION POTENTIAL< 537 3 >BL.ACK SEA SHELf• RUMANIAN• AMMONIA COMPACTA, DISTRIBUTION MAP< 417 >BLACK SEA WATER, PROPANE CONCENTRATION< 499 3 >BLACK SEA SHELF'• RUMANIAN• CRIBROELPHIDIUM POEYANUM• DISTR!BUT/ 416 >BLACK SEA WATER• PROPYLENE CONCENTRATION< 499 3 >BLACK SEA SHELf• RUMANIAN• EGGERELLA SCABRA, DISTRIBUTION �AP< >BLACK SE WATER, SALINITIES< 415 A 580 3 >BLACK SEA SHELf• RUMANIAN• LAGENA Cfo L• LAEVIS• DISTRIBUTION/ 416 >BLACK SEA WATER• SUBMARINE DISCHARGE< 161 3 >BLACK SEA SHELf• RUMANIAN• NONION DEPRESSULUM, DISTRIBUTION MAl 415 >BLACK SEA WATER• SUMMARY< 579 3 >BLACK SEA SHELf• RUMANIAN• PROTELPHIDIUM SUBGRANOSUS• OISTRIBU/ 416 >BLACK SEA WATER• TEMPERATURE AND CMLORINITY• TABLE< 93 3 >BLACK SEA SHELF'• RUMANIAN• S!GMOMORPH!NA WILUA�SONI• OISTRIBUI 416 BLACK SEAS, CARBON• PRIMARY PRODUCT ION, MAP<>AZOV AND 258 3 >BLACK SEA SHELF', SUBMERGED BLDCKSc 315 BLACK SEAS, RADIOCARBON AND TRITIUM• SAMPLIN/>MEOITERRANEAN AND 127 3 >BLACK SEA SHElf AND LITTORAL ZONE< 308 >BLYTT• SER NANOER HOLOCENE STRATIGRAPHIC SCALE< 366 3 >BLACK SEA SHELF' AND LITTORAL ZONE, RECOMMENDATIONS fOR STUDY< 315 BOHEMIAN MASSIF• CRYSTALLINE ROCKS<>BLACK SEA AREA• 203 3 BLACK SEA SHORE• PHYSIOGRAPHY<>BULGARIA• 90 BOLNISSIAN BLOCK<>CAUCASUS, WESTERN, ARTVIN• 79 3 >BLACK SEA STAGE• FAUNA< 372 BDRON<>BLACK SEA SEDIMENTS, 432 3 >BLACK SEA STEROL AND STANDARDS• RETENTION TIMES• TABLE< 508 BORON• CARBON ASSOC !AT!ON<>BLACK SEA, 440 3 >SLACK SEA STUDIES IN BULGARIA••A BRIEf SURVEY< 90 BORON, fLUORIDE• AND CALCIUM< •ICH�ORINITY RATIOS OF SU�FATE• 152 3 >BLACK SEA SURfACE SAMPLE• PIGMENTS• CONCENTRATIONS• TABLE< 520 BORON CONTENTc>BLACK SEA CORE S, 572 3 BLACK SEA TURBIDIT£Se•A TEXTURAL APPROA//BEDDING IN RECENT 317 >BOSPORUS, BASIN SLOPE, GEOPHYSICAL PROfiLE< 20 3 >BLACK SEA TURBIOIT£5, CORE LOCATION MAP< 318 >BOSPORUS, BATHYMETRY, MAP< 101 3 >BLACK SEA TURBIDITES, GRADED BEDDING, C•M Ol! PASSEGA DIAGRAMS< 329 >BOSPORUS, BATHYMETRY, SOUTHERN APPROACHES, MAP< 102 3 >sLACK SEA TURBIDITES, GRADED BEDDING• DATA INTERPRETATION< 329 >BOSPORUS, BLACK SEA INFLOW S AND OUTfLOWS< 110 3 >BLAC� SEA TURBIDITES, GRADED BEDDING, PULSATIONS< 329 >BOSPORUS, CLIMATE< 100 3 >BLAC� SEA TURBIDITES• GRADED BEDDING• SEDIMENTATION PROCESS• E/ 329 >BOSPORUS, CONTOUR MAP< 122 3 >B�ACK SEA TURBIDITES, GRADED BEDDING, TRANSPORT AND SEDIMENTAT/ BOSPORUS, CDRIDUS EHECTSc 329 > 107 3 >B�ACK SEA TURBIDITES• GRADED BEDDING• TRENDS< 318 >BOSPORuS, CROSS SECTION< 117 3 >BLACK SEA TURBIDITES, GRADED BEDS, C•M DIAGRAMS< 330 >BOSPORUS, CURRENT SYSTEM• TWO•LAY£Rc 107 3 >BLACK SEA TURBIDITES, GRADED BEDS, GRAIN•SIZE CURVES• SEGMENT/ 325 >BOSPORUS, CURRENTS< 119 3 >BLACK SEA TURBIDITES, GRADED BEDS, GRAIN•SIZE fEATURESc 322 >BOSPORUS, DEPTHS TO BOUNDARY LAYER• CROSS SECTION OF �AYERS< Ill 3 >B�ACK SEA TURBIDITES• GRADED BEDS, GRAIN•SIZE fEATURES< 323 >BOSPORUS, DROWNED STREAM VALLEY< 115 3 >BLACK SEA TURBIDITES, GRADED BEDS, GRAIN•SIZE fEATURES< 324 >BOSPORUS, ETESIAN WINOS< 100 3 >BLACK SEA TURBIDITES• GRADED BEDS, GRAIN•SIZE PARAMETERS< 326 >BOSPORUS, fAULT PATTERN, NDRTH•SOUTH< 117 3 >B�ACK SEA TURBIDITES, GRADED BEDS, GRAIN• SIZE PDPULATIONSc 321 >BOSPORuS, fLOOD fLOWS, P�EISTOCENEc 100 3 >SLACK SEA TURBIDITES, GRADED BEDS, GRAIN SIZE VS KURTOSIS• GRA/ OFc 328 >BOSPORUS, fLOW• DIRECTION 117 3 >B�ACK SEA TURBIDITES, GRADED BEDS, GRAIN S1ZE VS SKEWNESS, GRA/ 328 >BOSPORUS, f�OW OF SURfACE wATER< 102 3 >B�ACK SEA TURBIDITES, GRADED BEDS, KURTOSIS< 326 >BOSPORUS, fROUOE NUMBER• INTERNAL< 112 3 >B�ACK SEA TURBIDITES, GRADED BEDS, MATRIX< 321 >BOSPORuS, GEOGRAPHY• REGIONAL• NAPe 100 3 >B�ACK SEA TURBIDITES• GRADED BEDS, MATRIX < 331 >BOSPORUS, GEOGRAPHY AND PHYSIOGRAPHY< 99 3 :; >BLACK SEA TURBIDITES, GRADED BEDS, MATRIX cONTENT VS GRAIN SIZ/ 326 >BOSPORUS, GEOPHYSICAL PROf iLE< 20 3 t >BLACK SEA TURBIDITES• GRADED BEDS, MATRIX QUANTITY VS GRAIN 51/ 327 >BOSPORUS, GRABEN< 117 3 >C >BLACK SEA TURBIDITES, GRADED BEDS, SANO•SIZE CONTENT• VARIATID/ 325 >BOSPORUS, HYPOTHESES ON ORIGIN OFc 115 3 I >BLACK SEA TURBIDITES• GRADED BEDS, SKEWNESS< 326 >BOSPORUS, ISTANBUL• TEMPERATURES• AIR AND SEA•SURF'ACE• GRAPH< 102 3 >B�ACK SEA TURBIDITES, GRADED BEDS, SORTING< 326 >BOSPORUS, KARANGAT INTERGLAC!A� PHASEc 123 3 >BLACK SEA TURBIDITES, GRADED BEDS, STANDARD DEVIATION< 326 >BOSPORUS, KIATHANE• GOLDEN HORN RIVER< 123 3 >BLACK SEA TUR81DITES, GRADED BEDS, STANDARD DEVIATION VS GRAIN/ 327 >BOSPORUS, KIATHANE RIVER, fLOW Ofc 117 3 >BLACK SEA TURBIDITES• GRADING• TYPES Of< 329 >BOSPORUS, �ETEDROLOG!C AND OCEANOGRAPHIC CONDITIONS• CHARTS< 106 3 >B�ACK SEA TURBIDITES, GRAIN•SIZE DISTRIBUTIONS, VERTICAL VARIA/ 321 >BOSPORUS, MORPHOMETRY AND SAMPLING STATIONS, MAP< 110 3 >BLACK SEA TURBIDITES, �ITHOLOGY Of CORES< 319 >BOSPORUS, NEOEUXINIAN PHASE< 123 3 >B�ACK SEA TURBIDITES, PRESENTATION Of DATA< 318 >BOSPORUS, OLD BLACK SEA PHASE<. 123 3 >BLACK SEA TURBIDITES• SAMPLING METHODS< 317 >BOSPORUS, ORIGIN OF NAME< 99 3 >BLACK SEA TURBIDITES, SAND CONTENT, VERTICAL VARIATION< 318 >BOSPORUS, PLEI STOCENE, �AT£, LONGITUDINAL PROfiLE< 123 3 >BLACK SEA WATER• CARBON MONOXIDE VALUES< 502 >BOSPORUS, PDTHO�ES< 99 3 BLACK SEA HATERC/CHLORINITY AND CONDUCTDMETRIC SALINITY IN 151 >BOSPORUS, PRECIPITATION< 101 3 >BLACK SEA WATER• CHLORINITY RATIOS< 153 >BOSPORUS, RISS G�AC IA� STAGE< 123 3 >BLACK SEA WATER, ETHANE CONCENTRATIONc 499 >BOSPORUS, RO�E SINCE PLEISTOCENE• �ATE< 121 3 >B�ACK SEA HATER, ETHYLENE CONCENTRATION< 499 >BOSPORUS, SALINITIES, SURfACE• GRAPH< 105 3 >BLACK SEA WATER• HYDROCARBON G ASES, SATURATED, TABLE< 500 >BOSPORUS, SALINITY• SURFACE< 105 3 >BLACK SEA WATER, HYDROGEN SULnDE CONCENTRATION< 537 >BOSPORUS, SA�INITY SEcTIONS< 108 3 >BLACK SEA WATER• INTERSTITIAL• BOUNDARY CONDITIONS AND ASSUMPTI 114 >BOSPORUS, SEA �EVE�< 102 3 >BLACK SEA WATER• INTERSTITIAL • MINOR COMPONENTS• TABLE< 168 >BOSPORUS, SILL DEPTH< 149 3 >BLACK SEA WATER• INTERSTITIAL • TRACE ELEMENTS< 168 >BOSPORUS, SILL DEPTH< 195 3 • >BLACK SEA WATER• LAYERS< 93 >BOSPORUS, SPILLWAY' MARINE< 119 3 >BLACK SEA WATER• METHANE CONCENTRATIONS< 499 >BOSPORUS, STRAITS, MARIN£, QUATERNARY< 119 3 >BLACK SEA WATER• MOLYBDENUM• HYDROGEN SULfiDE, AND EH• D!STRIB/ 544 >BOSPORUS, STRUCTURAL CONTROL< 117 3 >BLACK SEA WATER• MOLYBDENUM• VERTICA� DISTRIBUTION< 543 >BOSPORUS, STRUCTURAL TREND, EAST•WESTc 99 3 >BLACK SEA WATER• MOLYBDENUM CONTENT• TAB�[< 543 >BOSPORUS, S TUDIES OF< 99 3 >BLAC� SEA WATER• MOLYBDENUM IN< 542 >BOSPORUS, SUBAERIAL VALLEY< 118 3 s .....

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 BOSPORUS, SUBMARINE CANYDNS<>BLACK SEA AND 124 3 >BULGARIA, BLACK SEA• SCIENTIFIC STUDIES• PUBLICATIONS< 90 3 >BOSPORUS, SURFACE ELEVATIONS, CRDSS•SPECTRA, CHART< 104 3 >BULGARIA• BLACK SEA• ZOOPLANKTON< 95 3 >BOSPORUS, TEMPERATURES< 101 3 >BULGARIA• BLACK SEA AREA• GEOLOGIC MAP< s 93 3 00 >BOSPORUS, TEMPERATURES AND VELOCITIES, LO�ER LAYER< 112 3 >BULGARIA, BLACK SEA BELT• BALKAN GEOSYNCLINE< 91 3 >BOSPORUS, TERRACES< 117 3 >BULGARIA, BLACK SEA BELT• BURGAS DEPRESSION< 91 3 >BOSPORUS, TERT IARY ORIGIN< 117 3 >BULGARIA, BLACK SEA BELT• DOBRUJA MASSif< 91 3 >BOSPORUS, THE< 99 1 >BULGARIA, BLACK SEA BELT, GEOLOGY, GEOGRAPHY, AND GEOPHYSICS< 91 3 >BOSPORUS, TIDES< 103 3 >BULGARIA• BLACK SEA BELT• KAMCHIYAN• LOWER, TROUGH< 91 3 >BOSPORUS, UNDERCURRENT< 107 3 >BULGARI A• BLACK SEA BELT, KAVARNA SYNCLINE< 91 3 >BOSPORUS, UZUNLAR, POST•, GLACIAL STAGE< 121 3 >BULGARIA• BLACK SEA BELT• MOESIAN nATFORM< 91 3 >BOSPORUS, VERTICAL DISTRIBUTIONS Of PROPERTIES, CHART< 110 3 >BULGARIA, BLACK SEA BELT• STRANDZHA MOUNTAINS< 91 3 >BOSPORUS, �AVES, INTERNAL< 112 3 >BULGARIA, BLACK SEA BELT, TYULENDVO BLOCK< 91 3 >BOSPORUS, �URM I GLACIAL STAGE< 121 3 >BULGARIA• BLACK SEA BELT• VARNA DEPRESSION< 91 3 >BOSPORUS, �URM II GLAC!AT !ONc 123 3 >BULGARIA• BLACK SEA COAST• CHAUDINSKA TERRACE< 93 3 > BOSPORUS AND BLACK SEA, INTERA TIONS BETWEEN< 118 3 >BULGARIA• BLACK SEA COAST• EUXINO• UZUNLARSKA TERRACE< 93 3 >BOSPORUS AND MARMARA, SEA Of, CSUBMARINE CANYON< 100 3 >BULGARIA, BLACK SEA COAST• LANDSLIDES< 93 3 >BOSPORUS BASIN SLOPE• SEISMIC PROFILE< 27 3 >BULGARIA• BLACK SEA COA ST• HLADUKARANGATSKA TERRA CE< 93 3 >BOSPORUS CHANNEL• LONGITUDINAL PROFILE< 120 3 >BULGARIA, BLACK SEA COAST• NIMFEISKA TERRACE< 93 3 >BOSPORUS C HANNEL• PREVAILING CONDITIONS< 116 3 >BULGARIA• BLACK SEA COAST• NOVOCHERNONORSKA TERRA CE< 93 3 BOSPORUS C URRENT, LOWER• APPEARANCE Of<>BLACK SEA• 459 3 >BULGARIA• BLACK SEA COAST• STARO• EUX!NSKA TERRACE< 93 3 BOSPORUS D!STRICTc>BLACK SEA, 310 3 >BULGARIA, BLACK SEA COAST• S TARUKARANGATSKA TERRACE< 93 3 BOSPORUS IN BLACK SEA CHEMISTRY AND SEO IHENTATION<>ROLE Of THE 115 I >BULGARIA, BLACK SEA COAST• TERRACES< 93 3 >BOSPORUS REGION• GEOLOGIC MAP< 116 3 >BULGARIA• BLACK SEA SHORE• PHYSI OGRAPHY< 90 3 BOSPORUS SHELF DISTRICT• STRUCTURE AND MORPHOLDGY<>BLACK SEA, 308 3 >BULGARIA, DANUBE RIVER WATER-< 93 3 >BOSPORUS STRAIT< 310 3 >BULGARIA• HEZIY PLATE< 43 3 >BOSPORUS SURFACE ELEVATIONS• CHARTS< 103 3 BULGARIA, MOESIAN PLATFORM<>RUMANIA AND 70 3 >BOSPORUS V ALLEY, QUATERNARy, THEORETICAL CROSS SECTIONS< 118 3 >BULGARIA• SAKAR• ISTRANCA ZONE< 67 3 > BOTHN!A• GULF Of• LINGULODINIUM MACHAERDPHORUM< 375 3 >BULGARIA• SEISMIC RESULTS< 22 3 BOTTOM DEPOSITS<>BLACK SEA, 537 3 >BULGARIA, SREONA GORA AREA• FORMATION OF< 91 3 BOTTOM PHOTO<>BLACK SEA 344 3 >BULGARIA, VARNA LAKE• WATER TEMPERATURE< 93 3 BOTTOM PHOTOGRAPHS, EQUIPMENT AND TECHN IQUES<>BLACK SEA 338 3 >BULM!NA PUPOIDES, MICROGRAPHS< 412 3 > BOTTOM PHOTOGRAPHS OF BLACK SEA< 338 I BURGAS DEPRESSION<>BULGARIA• BLACK SEA BELT• 91 3 BOTTOM PHOTDS<>BLACK SEA 340 3 >BZYB, INGUR·I• AND CORUH RIVERS• CARBONATE•FREE SEDIMENTS< 269 3 BOTTOM PHDTOS<>BLACK SEA 342 3 Z B VB RIVER• SEDIMENT<>BLACK SEA REGION• 313 3 c. BOTTOM PHDTOS<>BLACK SEA 343 3 C • N RAT!OS<>BLACK SEA• 169 3 BOTTOM PHDTOS<>BLACK SEA 3•5 3 C•M OIAGRAMS<>BLACK SEA TURBIDITES, GRAOEO BEDS• 330 3 BOTTOM PHUTOS• BLOBS<>BLACK SEA 341 3 C "M OR PASSEGA O!AGRA�S<>BLACK SEA TURBIDITES, GRADED BEDDING• 329 3 5' BOTTOM P HO TOS• CAMERA ASSEMBLY• DIAGRAM<>BLACK SEA 339 3 C•14 AND TRITIU� CONTENT< .tATOMIC•WEAPONS TESTS, EFFECTS ON 131 3 t BOTTOM PHOTOS• CAMERA•STATIDN LOCATION MAP<>BLACK SEA 339 3 C " 14 OATA<>BLACK SEA• 129 3 f >C BOTTOM PHOTOS, DEBRIS• SMALL<>BLACK SEA 339 3 C•14 DATA• TABLE<>BLACK SEA• 129 3 BOTTOM PHOTOS• LINEAL DARK PATTERNS<>BLACK SEA 341 3 c•I4 DATA• TABLE<>�EO ITERRANEAN SEA AND NORTH ATLANTIC OCEAN• 130 3 BOTTOM PHOTOS• PHYSICAL DISTURBANCE• LACK OF<>BLACK SEA 339 3 C•14 DETERMINATIONS, TABLE<>BLACK SEA, 190 3 BOTTOM PHOTOS, PROTUBERANCES, LOW•REL!H<>BLACK SEA 341 3 CAOMIUM<>BLAC� SEA SEDIMENTS, 432 3 BOTTOM TYPE<>CARUCO TRENCH• 339 3 CALC!DOINELLUM OPERDSUM<>BLACK SEA DINOFLAGELLATES• 366 3 BOTTOM• WATER CDNOITIONS<>BLACK SEA, EUXINIC 364 3 CALC ITE<>BLACK SEA SEDIMENTS, 213 3 > BRAARUODSPHAERA• ABSENT IN MIOOCEAN CORES< 360 3 CALCITE<>BLACK SEA SEDIMENTS, 285 3 BRAARUODSPHAERA<>GULF COAST, 360 3 CALCITE<>BLACK SEA SEDIMENTS, MODERN• 282 3 &RAARUOOSPHAERA• �ERITIC DOMINANCE<>SOUTH ATLANTIC• 360 3 CALCITE• DOLOMITE RATID<>BLACK SEA SEDIMENTS, 213 3 BRAARUDDsPHAERA<>PARl S BASIN, 360 3 CALCITE• DOLOMITE RAT!O<>BLACK SEA SEDIMENTS• TERRIGENOUS, 234 3 > BRAARUOOSPHAERA BIGELO�l• ENVIRONMENTAL TOLERANCE< 358 3 CALCITE• DOLOMITE RATIO, DISTRIBUTION MAP<>BLACK SEA SEDIMENTS, 218 3 BRAARUODSPHAERA BIGELOW], MICROGRAPHS<>BLACK SEA, 359 3 CALCITE CONCENTRATION, MAP<>BLACK SEA SED I MENTS• CHEMDGEN!C 292 3 BRAARUODSPHAERA BIGELOWZ. PHOTO<>BLACK SEA• 186 3 CALCITE INFLUX<>BLACK SEA• 281 3 BRAARUODSPHAERA Bl G[LOWI, SIGN If! CANCE OF <>BLACK SEA, 358 3 CALCIUM< • ICHLOR!NITY RATIOS OF SULFATE• BORON• FLUORIDE• AND 152 3 BROMINE• INTERSTITIAL<>BLACK SEA• 169 3 CALC!UM<>BLACK SEA SEDIMENTS, 431 3 >BRONZE AGE, CLIMATIC EVENT CORRESPONDI NG TO< 374 3 CALCIUM CARBONATE<>BLACK SEA, 583 3 BUG RIVER• SEO!HENT<>BLACK SEA REGION, 314 3 CALCIUM CARBONATE<>BLACK SEA SEDIMENTS, 335 3 BUG RIVERS, SOUTHERN, M!CROELENENTS• CONCENTRATION A/>DNEPR AND 261 3 CALCIUM CARBONATE• INTERSTITIAL<>BLACK SEA• 165 3 BUGAZ!AN<>BLACK SEA SEDIMENTS• 350 3 CALCIUM CARBONATE AND CARBON, ORGAN!C.t/SEA• SEDIMENT CORE, 185 3 BUGAZIAN STAGE<>BLACK SEA• 194 3 CALCIUM CARBONATE AND CARBON, ORGANIC, 01/>BLACK SEA SEDIMENTS• 298 3 >BUGAZIAN SUBSTAGE OR SUBHORIZDN< 373 3 CALCIUM CARBONATE CONCENTRAT!DN<>BLACK SEA CORES• 526 3 BULGARIA••A BRIEF SURVEY<>BLACK SEA STUDIES IN 90 I CALCIUM CARBONATE CONTENT AND GRAIN S!Zt/SEA SEDIMENTS, MODERN• 287 3 >BULGARIA, ALPINE OROGEN< 91 3 CALCIUM CARBONATE DISTRIBUTION• GRAPH<>BLACK SEA SEDIMENTS• 299 3 >BULGARIA, ASSYNTUN OR BAYKALIAN METAMORPHISM< 63 3 CALCIUM CARBONATE DISTRIBUTION• GRAPHoBLACK SEA SEDIMENTS• 300 3 >BULGARIA, BLACK SEA• BENTHOS< 95 3 CALCIUM CARBONATE DISTRIBUTION• MAPBULGARIA, BLACK SEA• BIOLOGY< 94 3 CALCIUM CARBONATE OVERSATURATI ON<>BLACK SEA• 281 3 >BULGARIA, BLACK SEA• PHYTOPLANKTON< 95 3 CALCIUM CARBONATE SUPERSATURATION<>BLACK SEA• WATER• 252 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 CALEDONIAN OROGENESISoCAUCASUS• WESTERN• 80 3 CARBONATE OISSOLUTION<>BLACK SEA> 177 3 >CALIFORNIA, SAN PEDRO BASIN, STEROLS< 509 3 CARBONATE DISTRIBUTION<>BLACK SEA SEDIMENTS, 264 3 CA�BR!AN, MARINE ROCKS<>A�ATOLIA> 64 3 CARBONATE FORMS IN RIVERS> TABLE<>BLACK SEA BASIN> 279 3 CA�BRIAN, �ARINE ROCKS<>CAUCASUS> GREAT> 64 3 CARBONATE IN MODERN SEOIMENTS<>BLACK SEA• 282 3 CAMERA ASSEMBLY> OIAGRAM<>BLACK SEA BOTTOM PHOTOS• 339 3 CARBONATE INFLUX<>BLACK SEA> 279 3 >CAMPESTERUL< 505 3 CARBONATE INFLUX, SUSPENOED<>BLACK SEA, 281 3 CANYONS<>�LACK SEA> SUBMARINE 2 3 CARBONATE LOAD> SUSPENDED<>RIONI R!�ER, 281 3 CAWBON<>BLACK SEA SEDIMENTS• 3 250 3 SIS CARSONATE MATERIAL<>BLACK SEA SEDIMENTS> CARBON, CARBON DIOXIDE, AND WATER, TDTAL<>BLACK SEA SEDI�ENTS> 433 3 CARBONATE MINERAL CONTENT• TABLE<>BLACK SEA SEDIMENTS• MODERN• 284 3 CARSON, INORGANIC> FIXAT!ON<>BLACK SEA, 420 3 CARBONATE MINERALS<>BLACK SEA SEDIMENTS> 213 3 CARBON• NITROGEN RATIO<>BLACK SEA SEDIMENTS, 300 3 CARBONATE PHASE OF TWO CORES FROM BLACK/IDF STRONTIUM IN 566 I CARBON, ORGANIC> AERIAL O ISTRIBUT!ON< ,/TRACE ELE�ENTS ANO 457 3 CARBONATE PROOUCTION<>BLACK SEA• PLANKTON> 281 3 CARBON, ORGAN!C<>�LACK SEA, 441 3 CARBONATE PRODUCTION BY DRGANISMS<>BLACK SEA, 282 3 CARBON, ORGANIC> CHEMOSYNTHETIC FIXAT!ON<>BLACK SEA> 139 3 CARBONATE PRODUCTION BY ZDOBENTHOS, MAP<>BLACK SEA> 282 3 CARBON, ORGAN IC• CONCENTRATION<>BLACK SEA CORES., 526 3 CARBONATE ROCKS> DISTRIBUTION MAPc>BLACK SEA, 215 3 CARBON, ORGANIC• CONCENTRAT!ONS<>BLACK SEA, 533 3 CARBONATE SEDIMENT> B!OGENIC<>BLACK SEA> 251 3 CARBON, ORGANIC, CONTENT, GRAPH< ,/SAPROPELIC MUQS, COBALT AND 465 3 CARBON T SEDIMENTATiON N BLACK S <>SOME CH RACTERISTICS OF 279 A E I EA A I C ARBON, ORGANIC> CONTENT, GRAPH< >ISAPROPEL!C MUOS> COPPER AND 464 3 CARBONATE SEDIMENTS> SAMPLE LOCATIONS<>BLACK SEA, 280 3 CARBON, ORGANIC, CONTENT, GRAPH< ,/SAPROPEliC MUQS, NICKEL AND 464 3 CARBONATE ZONE<>BLACK SEA> 442 3 CARBON• ORGANIC• CONTENT, GRAPH MODERN> 294 3 CARBON, ORGANIC, CONTENT, GRAPH MAP S<>BLACK SEA SEDIMENTS> 291 3 CARBON, ORGANIC> CONTENT, GRAPHBLACK SEA REGION, 66 3 CARBON, ORGANIC, CONTENT, �AP<>BLACK SEA SEDIMENTS, MODERN, 266 3 CARBOXYLIC ACIDS• NORMAL• DISTRIBUTION HISTOG/>BLACK SEA CORES• 497 3 3 350 3 CARBON> ORGANIC> CONTENTBLACK SEA SEDIMENTS, CARBON, ORGANIC> OISTR!BUT!ON, GRAPH< ,/CALCIUM CARBONATE AND 298 3 CARDIUM SIMILE<>BLACK SEA> 252 3 C ARBON, ORGANIC> DISTRIBUTION> GRAPH< •/MOLYBDENUM AND 544 3 >CARIACO TRENCH, BOTTOM TYPE< 339 3 CARBON, ORGANIC, OISTRIBUT!ON, GRAPH<>BLACK SEA SEDIMENTS, 299 3 >CAROTENES• CONVERSION TO HYDROCARBONS< 505 3 CARBON, ORGANIC> DISTRIBUTION> GRAPH<>BLACK SEA SEDIMENTS> 300 3 CAROTENO!D•TYPE PIGMENTSc>BLACK SEA, 427 3 CARBON, ORGANIC, GRAPH<>BLAC K SEA SEDIMENTS, MOLYBDENUM �S 550 3 CAROTEND!DS<>BLACK SEA SEDIMENT CORE> 512 3 CARBON, ORGANIC> GRAPH/HYDROCARBONS, STEROLS, AND 505 I CAR�ON, ORGANIC> IN MICROBIAL SULFUR CYCLE<>BLACK SEA• 424 3 >CARPATHIAN MOUNTAINS• GEOLOGY< 203 3 CARBON, ORGANIC> VERTICAL DISTRIBUTION< >/TRACE ELEMENTS AND 458 3 CARPINUS OR BIRCH POLLEN<>BL ACK SEA> 396 3 >CARBON> OXIDATION IN PLANKTON< 133 3 >CARPINUS OR!ENTAL!S POL�[N, MICROGRAPH< 408 3 CARBON, PRIMARY PRODUCTION> MAP<>AZOV AND BLACK SEAS> 258 3 >CARPINUS P OLLEN> MICROGRAPH< 409 3 CARBON, PRDDUC T I� I TV LE�EL OF<>BLACK SEA, 133 3 CASP!A CLATHROCASPIA GMELINic>BLACK SEA SEDIMENTS> 350 3 CARBON> VAR lANCE DF<>BLACK SEA> 446 3 CASPIAN BASIN<>BLACK SEA AREA> TEREK• 69 3 CARBON ASSOC!ATIDN<>BLACK SEA> BORON• 440 3 >CASPIAN BASIN> SEDIMENTS< 275 3 S" C ARBON DIOXIDE• AND WATER> TDTAL<>BLACK SEA SEDIMENTS> CARBON> 433 3 CASPIAN FAUNA<>BLACK SEA, NEOEUXINIAN STAGE> 372 3 C ARBON DIOXIDE DISTRIBUTION> GRAPH SEDIMENT CORE 1432> 442 3 CASPIAN FAUNA<>PONTIAN RELICTS OR 376 3 CARBON DIOXIDE DISTRIBUTION> GRAPH SEDIMENT CORE 1440> 445 3 >CASPIAN SEA, CONDUCTIVE L AYER< 59 3 I CARBON DIOXIDE DISTRIBUTION• GRAPH SEDIMENT CORE 1452• 444 3 C ASPIAN SEA AREAS, NEOEUXINIAN PALEDGEOGRAPHY<>BLACK AND 156 3 !" C ARBON DIOXIDE DISTRIBUTION> GRAPH SEDIMENT CORE 1462> 443 3 CASPIAN TROUGH<>CAUCASUS, TEREK• 78 3 CAR�ON DIOXIDE DISTRIBUTION• GRAPH 443 3 CATALYSTS AND TEMPLATES IN SyNTHESIS AN/>MINERALS, SEDIMENTARY• 304 3 CARBON DIOXIDE DISTRIBUTION> GRAPH SEDIMENT CORE 1472• 446 3 CATION•EXCHANGE CAPACITY OF SED!MENTS<>BLACK SEA, 172 3 CARBON DIOXIDE DISTRIBUTION> GRAPH SEDIMENT CORE 1484> 446 3 CATIONS• EXCHANGEABLE, TABLEc>BLACK SEA SEDIMENTS, 173 3 CARBON DIOXIDE �S LEAD> STRONTIUM RUB!OIU/>BLACK SEA SEDIMENTS> 558 3 >CAUCACUS MOUNTAINS• GEOLOGY< 203 3 CARBON DISTRIBUTION> GRAPH<>BLACK SEA, SEDIMENT CORE 1432, 442 3 CAUCASIAN CONTINENTAL SLOPE> SEDIMENTS> MOOERN<>BLACK SEA> 269 3 CARBON DiSTRIBUTION> GRAPH<>BLACK SEA, SEDIMENT CORE 1440> 445 3 CAUCASIDN COAST> BIDMASSES> TABLE<>BLACK SEA> 256 3 CARBON DISTRIBUTION> GRAPH<>BLACK SEA, SEDIMENT CORE 1452, 444 3 >CAUCASUS• AOZHARO• TR!ALETSK !Y FO�OEO SYSTEM• CENTRAL ZONE< 78 3 CARBON DISTRIBUTION• GRAPH<>BLACK SEA, SEDIMENT CORE 1462, 443 3 >CAUCASUS, ADZHARO• TRIALETSKIY FOLDED SYSTEM> NORTHERN ZONE< 78 3 CARBON DiSTRIBUTION> GRAPH<>BLACK SEA, SEDIMENT CORE 1470, 443 3 >CAUCASUS, ADZHARO• TRIALETSK!Y FOLDED SYSTEM> SOUTHERN ZONE< 78 3 CARBON DISTRIBUTION> GRAPH<>BLACK SEA, SEDIMENT CORE 1472, 446 3 >CAUCASUS, AKHAL TS I KHE FAULT< 88 3 CARBON DiSTRIBUTION• GRAPH<>BLACK SEA> SEDIMENT CORE 1484, 446 3 >CAUCASUS, AKHALTS!KHE SUBZONE < 78 3 CARBON MONOXIDE �ALUES<>BLACK SEA WATER• 502 3 >CAUCASUS, ALPINE OROGENY< 80 3 CARBON•14 ACTIVITY<>BLACK SEA> 127 3 > CAUCASUS, ASKHA SUBZONE< 78 3 CARBONATE> AUTHIGENIC, ORIGIN<>BLACK SEA> 190 3 >CAUCASUS, ASPINDZA• MANGUS! FAULT< 82 3 CARBONATE> DATA PRESENTATIDN<>BLACK SEA• SEDIMENTATION> 279 3 >CAUCASUS, ASPINDZA• MANGUS! SUBZONE< 78 3 63 CARBONAT[, QUARTZ, ANO FELDSPAR CONTENTS/>BLACK SEA AFFLUENTS, 206 3 >CAUCASUS, ASSYNTIAN OR BAYKALIAN METAMORPHISM< 3 CARBONATE ACCUMULATION, SDURCE<>BLACK SEA• 271 3 >CAUCASUS, ATTIC PHASE< 86 3 CARBONATE CDNTENT<>BLACK SEA SEDIMENTS, TERRIGENOUS, 233 3 >CAUCASUS, AUSTRIAN PHASE< 83 3 CARBONATE CONTENT, DISTRIBUTION MAPS<>BLACK SEA SEDIMENTS, 216 3 >CAUCASUS, BASEMENT, MOVEMENTS OF< 80 3 CARBONA TE CONTENT, MAP<>BLACK SEA SEDIMENTS, MODERN> 266 3 CAUCASUS<>BLACK SEA BASIN> 308 3 CARBONATE CONTENT, TABLE<>BLACK SEA SEDIMENTS, 290 3 >CAUCASUS, CHAKVA• SAlAM[ SUBZONE< 78 3 CARBONATE CONTENT, TOTAL• DISTRIBUTION MAI>BLACK SEA SEDIMENTS• 219 3 >CAUCASUS, CHAUDIAN ROCKS< 86 3 CARBONATE CONTENT OF SILT AND CLAY FRACTI/>BLACK SEA SEDIMENTS• 219 3 >CAUCASUS, CHEGEMIAN PHASE< 82 3 CARBONATE CONTENTS<>BLACK SEA• 446 3 >CAUCASUS, CHERKESSK FAULT< 82 3 s -o

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >CAUCASUS, CHOKRAKIAN• PliOCENE STAGE< 86 3 >CAUCASUS, W ALLACHIAN PHASE< 87 3 >CAUCASUS, CRYSTALLINE CORE THRUST< 81 3 >CAUCASUS, WESTERN , AOZHARD• TRIAI.ETSK!Y fOLDED SYSTEM< 79 3 Oo- >CAUCASUS, OIZA SERIES< 80 3 >CAUCASUS, WESTERN, ALPINE TECTOGENES!S< 77 3 >CAUCASUS, OONETSIAN PHASE< 82 3 >CAUCASUS, wESTERN, ANTICLINORIUM Of MAIN RANGE< 77 3 0 >CAUCASUS, OZHA�AK�ETA ZONE< 78 3 >CAUCASUS, WESTERN, ANT!CLINDRIUMS< 79 3 >CAUCASUS, OZIRULA MASSif< 80 3 >CAUCASUS, WESTERN, ARTV!N• BOLN!SSIAN BLOCK< 79 3 >CAUCASUS, OZlRULA ZONE Or UPLifT< 78 3 CAUCASUS, WESTERN, BASEMENT, AGE AND I.OCATION<>USSR, 8 0 3 >CAUCASUS, GAGRA• OZHAVA ZONEc 78 3 >CAUCASUS, WESTERN• BASEMENT, STRUCTURAl. STAGES< 82 3 >CAUCASUS, GAGRA• �UKHURI FAULT< 81 3 >CAUCASUS, WESTERN, CALEDONIAN OROGENESIS< 8 0 3 CAUCASUSc>GEOLOGY OF WESTERN 77 I CAUCASUS, WESTERN, fAULT SYSTEMS<>USSR, 81 3 >CAIJCASUS, GEORGIAN BLOCK• TILTING< 88 3 >CAUCASUS, WESTERN, fOLDED SYSTEM Of SOUTHERN SLOPE< 71 3 >CAUCASUS, GDDERDZI• KISATIBI SUITE< 86 3 >CAUCASUS, WESTERN, GEORGIAN BLOCK< 19 3 CAUCASUS, GREAT<>BLACK SEA BASIN• 311 3 >CAUCASUS, WESTERN, GEOSYNCLINES< 80 3 >CAUCASUS, GREAT, CAMBRIAN, MARINE ROCKS< 64 3 >CAUCASUS, WESTERN, GEOTECTONIC ZONATION• SKETCH< 78 3 >CAUCASus, GREAT• DEVONIAN GEOSYNCL INE< 66 3 CAUCASUS, WESTERN, GEOTECTONI C ZONAT!ON<>USSR, 77 3 >CAUCASUS, GUDAUTA SUBZONE< 78 3 >CAUCASVS• WESTERN• HERCYNIAN OROGENY< 80 3 >CAUCASUS, GURIAN FAULT< 82 3 >CAUCASUS, WESTERN, LOKI• KARABAKH GENTI. Y FOLDED ZONE< 19 3 >CAUCASUS, GURIAN SUBZONE< 78 3 CAUCASUS, WESTERN• SCYTHIAN EP!HERCYNIAN PLATE<>USSR• 77 3 >CAUCASUS, HERCYNIAN OROGENY• SUOETAN PHASE< 80 3 >CAUCASUS, WESTERN• STRUCTURE HAP< 85 3 >CAUCASUS, INDO• KUBAN TROUGH< 78 3 CAUCASUS, WESTERN• SYNCI.!NORIUMS<>USSR, 79 3 >CAUCASUS, KAZBEK• LAGOOEKHI ZONE< 78 3 CAUCASUS, WESTERN• TECTOGENES!S<>USSR, 82 3 >CAUCASUS, MASSIF< 80 3 CAUCASUS GEOSYNCLINE<>BLACK SEA• OOBRUJA• CRIMEA• 63 3 >CAUCASUS, KOLCHIOAN SUBZONE< 78 3 >CAUCASUS GLACIAL NUCLEUS, NEOEUX!N!AN< 156 3 >CAUCASUS, KREITA SUBZONE< 78 3 >CAUCASUS MOUNTAINS< 1 3 >CAUCASUS, KUBAN• EASTERN, TROUGH< 78 3 CAUCASUS DROGENY<>BLACK SEA• 22 3 >CAUCASUS, KV!SH! fORMATION< 80 3 CAUCASUS SLOPE• FDI.D!NG• FAULT!NGoBI.ACK SEA• 22 3 >CAUCASUS, I.ABA• MAI.KA MONOCLINE< 78 3 >CEORUS, MICROGRAPHS< 384 3 >CAUCASUS, I. ARAMIC OR LARAMIAN PHASE< 83 3 CEDRUS, PERCENT, GRAPH<>BLACK SEA, PDLI.EN, PINUS AND 387 3 >CAUCASUS, LARAMIC OROGENESIS< 82 3 CEDRUS POLLEN• O!STR!BUTIDN IN SEO!HENT<>BLACK SEA• 383 3 >CAUCASUS, LOKI• AGDAM FAULT< 82 3 CEI.LS••A PARALLEL<>SEO!HENTS AND 296 3 >CAUCASUS, MAIN RANGE fAULT< 81 3 >CELLS, PHOSPHORYLATI ON PROCESSES< 296 3 >CAUCASUS, MAYKOP SERIES< 86 3 CELLULAR PROCESSES, DATA ANALYS!So81.ACK SEA SEDIMENTS, 298 3 >CAUCASUS, MEOT!AN STAGE< 87 3 CELLULAR PROCESSES• DEF INITION Dr PRDSLEH<>BLACK SEA SEDIMENTS• 296 3 >CAUCASUS, MEST!YA• TIANETA ZONE< 78 3 CELLULAR PROCESSES, ORGANIC MOLECULES, SY/>BI.ACK SEA SEDIMENTS• 302 3 >CAUCASUS, MTSKHETA• AOZHARSKAYA fAULT< 81 3 CELLULAR PROCESSES ANO SEDIMENTARY SYSTEMS<>REACT!ON RATES IN 296 3 >CAUCASUS, NEOEUXINIAN STAGE< 86 3 >CELLULAR PROCESSES IN BLACK SEA SEDIMENTS< 296 1 >CAUCASUS, NEVINNOMVSSK rAUL T < 82 3 CE�OZD!C CRYSTALLINE ROCKS• MAP<>BI.ACK SEA BASIN• MESOZOIC• 311 3 :r >CAUCASUS, NEV !NNOMYSSK RAMPART< 78 3 CENOZOIC H!STORY<>BI.ACK SEA AND ANATOL!A• 69 3 >CAUCASUS, OO!SHA SUBZONE< 78 3 >CENTRAL ANATOI.!AN BASIN< 70 3 >CAUCASUS, OKRIBA• KHRE!TA ZONE< 78 3 CER ITH 10 I UM<>BLACK SEA SED I HENTS• 35D 3 I >CAUCASuS, OKRIBA SUBZONE< 78 3 CHAKVA• SA!RME SUBZONE<>CAUCASUS• 78 3 t >CAUCASUS, PASAOENAN PHASE< 82 3 CHANNEI,.S<>BLACK SEA• 18 3 >CAUCASUS, PLUNGE, WESTERN ZONE Ofc 78 3 CHAUOIAN ROCKS<>CAUCASUS, 86 3 >CAUCASUS, PONTIAN STAGE< 87 3 CHAUO!NSKA TERRACE<>BULGAR!A, BLACK SEA COAST• 93 3 >CAUCASUS, PDT!• ABEDATI fAULT< 82 3 CHEGEM!AN PHASE<>CAUCASUS, 82 3 >CAUCASUS, PSHEKHA• TYRNYAUZ GEOSUTURE< 78 3 CHEMICAL ANALYS!S<>BLACK SEA SEDIMENTS, 430 3 >CAUCASuS, PSHEKHA• TYRNYAUZ GEOSUTUREc 82 3 CHEMICAL COMPOS!TION<>BLACK SEA, WATER, SAI.!N!TY AND 93 3 >CAUCASUS, PYRENEEAN PHASE> O LD< 83 3 CHEMICAL DATA<>BLACK SEA BASIN• 258 3 >CAUCASUS, RACHA• UCHKHUMSK! Y SUBZONE< 78 3 CHEMISTRY• STRATIGRAPHIC VAR!AT!DNS<>BLACK SEA SEDIMENTS, 441 3 >CAUCASUS, RACHA• SVANETSKIY fAUI.T< 82 3 CHEMISTRY AND SEDIMENTATION<>ROLE Or THE BOSPORUS IN BLACK SEA 115 1 >CAUCASUS, RHOOANIAN PHASE< 87 3 CHEMOGEN!C CALCITE CONCENTRATION• HAPc>BLACK SEA SED IMENTS• 292 3 >CAUCASUS, SACHKHERE• KUTA!SI fAULT< 81 3 >CHlMOSYNTI'IESIS< 420 3 >CAUCASUS, SAHURZAHKANO SUBZONE< 78 3 CHEHOTRDPHIC M!CROORGANISHS<>BI.ACK SEA, 420 3 >CAUCASUS, SCYTHIAN PLATE< 77 3 >CHENOPOD!ACEAE• MICROGRAPHS< 384 3 >CAUCASUS, SOCH! ZONE< 78 3 CHENOPOD!ACEAE• PERCENT• GRAPH<>BLACK SEA, POI.LEN• 388 3 >CAUCASUS, STAVRDPOL UPLIFT< 78 3 CHENOPODIACEAE POLLEN<>BLACK SEA• 385 3 >CAUCASUS, STYR!AN PHASE< 86 3 CHENOPOD!ACEAE POLLEN<>BLACK SEA, 398 3 >CAUCASUS, SUBHERCYNIAN PHASE< 83 3 >CHENOPOD!ACEAE POLLEN, MICROGRAPH< 405 3 >CAUCASUS, SUBSIDENCE, EASTERN ZONE OF< 78 3 CHERKESSK FAULT<>CAUCASUS, 82 3 >CAUCASUS, SUBSIDENCE• WESTERN ZONE Ore 78 3 CHERNO• AHBARSK!Y LANDSL!DE<>BLACK SEA REGION, 313 3 >CAUCASUS, TB!LIS! BASIN< 86 3 CHESTERMERE LAKE, STEROLS<>ALBERTA• 510 3 >CAUCASUS, TEREK• CASPIAN TROUGH< 78 3 CHIASMOL!THUS OAMARUENSIS, MICRDGRAPHSc>BI.ACK SEA, 361 3 >CAUCASUS, TSKHAKAYA• TSA!SHI FAULT< 8 2 3 CHLOR IDE, INTERSTITIAL• DISTRIBUTION, OIAGRAH<>BI.ACK SEA• 160 3 >CAUCASUS, TSKHALTA• LAYLA ZONE< 78 3 CHLORIDE , NTERS TIT l AL, D S TR I BUT! ON, TABLE<>BI.ACK SEA, 174 3 1 1 >CAUCASUS, TUAPSE• NOVOROSS!YSK ZONE< 78 3 CHLORIDE, INTERSTITIAL• DISTRIBUTION VS DEPTH• GRAP/>BLACK SEA• 176 3 >CAUCASUS, UPLIFT• CENTRAl. ZONE Of< 78 3 CHLORIDE, INTERSTITIAl., TRANSPORT, TABLE<>BLACK SEA, 176 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 CHI.OR!OE CONCENTRATION, INTERSTITIAl.• PI.OTS<>BI.ACK SEA, 159 CLIMATIC DPTIMUM<>BLACK SEA• 374 3 CHI.OR!OE RATIO<>B(.ACK SEA• SUI.FATE• 419 CLI�AT!C S HJfT<>BLACK SEA• SUBBOREAL 372 3 CHI.ORINITY, INTERSTITIAl.• ANOMAUES<>B(.ACK SEA• 162 COAST, ACCUMULATIVE<>B(.ACK SEA 315 3 CHI.ORINITY, INTERSTITIAl., DISTRIBUTION MAP<>BI.ACK SEA• 164 COAST, STABLE<>BLACK SEA 315 3 CHI.OR!NITY, SAMPl-ES ANO ANAI.YSIS<>BI.ACK SEA• 151 COAST, HASHED DUT<>BLACK SEA 315 3 CHI.OR!NITY, TABI.E<>BI.ACK SEA WATER, TEMPERATURE AND 93 COAST OYNAMICS<>BLACK SEA• 315 3 CHI.OR!NITY AND CONOUC TOMETRIC SAI.INITY IN BLA/>RELAT!ON BETWEEN 151 COAST STABIUZATION<>BLACK SEA REGION, 316 CHI.OR!NITY CHANGE, INTERSTITIAl.• BULK fLOW<>B(.ACK SEA• 159 COASTAL A BRASION<>BI.ACK SEA• 281 3 CHI.ORIN!TY CHANGE, INTERST ITIAl.• DIHUSION<>BI.ACK SEA• 159 COASTLINES, RETROGRAOING<>BI.ACK SEA 309 3 CHI.ORINITY RAT!OS<>BI.ACK SEA WATER• 153 CDBALT<>BI.ACK SEA SEDIMENTS• 432 3 CHI.ORINITY RATIOS Of SUI.FATE, BORON• FLUORIDE, ANO/>BLACK SEA• 152 COBAl. T, OISSOI.VEO• PROF! LE<>BLACK SEA, 142 3 CHLDRINITY VAI.UES, TABLEBLACK SEA SEDIMENTS, 457 3 >CHLOR !NS, CONVERSION TO PORPHYRINS< 505 COBALT, DISTRIBUTIONFATTY ACIDS• 505 COBALT AND CARBON, ORGANIC• CONTENT• GR//SEA• SAPROPELIC MUDS• 465 3 CH(.OR INS AND PORPHYRINS, ABUNOANCE<>B(.ACK SEA, 519 COBAU CONTENT<>BI.ACK SEA CORES, 572 3 CH(.ORINS AND PORPHYRINS<>BI.ACK SEA SEDIMENT CORE, 516 COBALT CONTENT• GRAPH< •ISAPROPELIC MUDS• SULFUR• TOTAL, AND 465 3 CHI.ORINS AND PORPHYRINS, EXPERIMENTAl. METHOOS<>BI.ACK SEA• 516 COCCOl-iTH ASSEMBLAGES<>REO SEA, 358 3 CHI.ORINS AND PORPHYRINS• HISTOGRAMS OF MASS SPECTRA<>B(.ACK SEA• 521 COCCOLITH"BEAR I NG SED I MENTS<>BLACK SEA, 349 3 CHI.ORtNS ANO PORPHYRINS, SOI.VENT•EXTRACTION SCHEME•/> B I.ACK SEA• 519 >COCCOLITH FORMATION< 360 3 >CHI.ORINS AND PORPHYRINS• SOI.VENT•EXTRACTION SCHEME• DIAGRAM< 518 COCCOLITH MUD• GRAIN SIZE AND COMPOSITION/>BLACK SEA SEDIMENTS• 219 3 CHI.ORJNS AND PORPHYRINS, V!StBI.E SPECTRUM FROM SURF/>BI.ACK SEA• 519 COCCOLITH MUD, SHEAR STRENGTH<>BLACK SEA SEDIMENTS• 333 3 CHI.ORITE<>BI.ACK SEA SEDIMENTS• 440 COCCOl-ITH MUOS<>BLACK SEA• 269 3 CHI.ORITE, DISTRIBUTION MAP<>BLACK SEA SEDIMENTS• C(.AY fRACTION• 227 COCCOLITH OOZE<>BLACK SEA• 184 3 CHI.ORJTE, SIGNIFICANCE<>BLACK SEA, 447 3 COCCOl-iTH OOZE<>BI.ACK SEA• SEOIME�T UNIT 582 3 t. CHl-ORITE CONTENT<>BLACK SEA SEDIMENTS, TERRIGENOUS• 235 3 COCCOL ITH PROOUCTION• AGE<>B(.ACK SEA• 190 3 CHl-ORITE VARIANCEoBI.ACK SEA SEDIMENTS, 436 3 COCCOLITH STRATIGRAPHIC UNITS• DIAGRAM<>BLACK SEA• 354 3 >CHI.OROBIUM CHI.OROPHYUS< 521 3 COCCOl- ITH STRATIGRAPHY<>BLACK SEA, 353 3 >CHI.DROPHYI-1.• DEGRADATION PRODUCTS IN SEDIMENTS OF BI.ACK SEA< 426 1 COCCOL!THUPHORES<>BLACK SEA• 281 3 > CHl-OROPHYLl. A• DEGRADATION PRODUCTS• DIAGRAMS< 517 3 CDCCOLITHUPHORES, EXTRACTION OF UME BY<>BLACK SEA• 299 3 >CHLOROPHYl-l. A, DIAGENESIS< 516 3 COCCOL!THDPHORES, MASSIVE DEVELOPMENToBLACK SEA, 276 3 > CHl-OROPHYl-l. A• STRUCTURE< 517 3 COCCOL!THOPHYCEAE<>BLACK SEA, 353 3 CHI.DROPHYI.(.•OEGRADATION PRODUCTS, METHODS Of STUOY<>BLACK SEA, 426 3 COCCOLITHS, AGE RESTRICT!ON<> BLACK SEA, 353 3 CHLOROPHYLl. IN MARINE SEDIMENTS< •/PORPHYRINS IN• RELATION TO 468 3 COCCOI.ITHS, ATLANTIS II CORE STATIONS<>BLACK SEA• 354 3 CHI.OROPHYI.LS< > C HLOR OBI U M 521 3 COCCOLITHS<>BLACK SEA, 251 3 CHOKRAKIAN• PL IOCENE STAGE<>CAUCASUS• 86 3 COCCOLITHS<>BLACK SEA, 290 3 a. >CHOLESTANE< 505 3 COCCOL!THS<>BI.ACK SEA• 584 3 >CHOl-ESTEROL< 505 3 COCCOLITHS, CRETACEDVS<>BLACK SEA, 353 3 S' CHROMI UM<>BI.ACK SEA SEDIMENTS• 432 3 COCCOLITHS, CRETACEOUS, MICROGRAPHS<>BLACK SEA 359 3 CHROM IUM CONTENT<>BI.ACK SEA CORES, 572 3 >COCCOLITHS, ELECTRON MICROGRAPHS< 304 3 1 CHRONOSTRATIGRAPHY<>BLACK SEA SEDIMENTS• 365 3 COCCOUTHS, EOCENE<>BLACK SEA, 353 3 !" CHRONOSTRATIGRAPHY• TABLE< • tLITHOSTRATIGRAPHIC UNITS• 366 3 COCCOLITHS, EOCENE• MICROGRAPHS<>BLACK SEA 361 3 >CITROSTENDL< 509 3 COCCOLITHS, HOLOCENE <>BLACK SEA, 353 3 Cl. RATIOS<>BLACK SEA, MG• 165 3 COCCO(.JTHS, HOI.OCENE, MICROGRAPHS<>BLACK SEA, 355 3 CL RATIOS• INTERSTITIAL<>BLACK SEA• K• 164 3 COCCOLITHS, HOLOCENE• MICROGRAPHS<>BLACK SEA 357 3 Cl-ASTIC" A RGII.I.ACEOUS MATERIAL• SOURCEc>BLACK SEA• 270 3 COCCOLITHS, HOLOCENE• MICROGRAPHS<>BLACK SEA 359 3 CLATHROCASP!A GMELINI<>BI.ACK SEA SEDIMENTS• CASPIA 350 3 COCCOL!THS<>MAINE• GUI.f Of• 358 3 CLAY, COARSE•, fRACT!ON<>BLACK SEA SEDIMENTS, 272 3 CDCCOL! THS<>NORTH ATLANTIC• 358 3 CI.AY, MEDIUM•• FRACTIO�'<>BLACK SEA SEDIMENTS• 273 3 COCCDLITHS<>PACIFIC OCEAN• 358 3 CI.AY fRACTION, CARBONA (<•fREE, SURFACE SAMPLES, TAB/>BLACK SEA, 2 33 3 COCCOL! THS<>PANAMA• GULf Of, 358 3 CLAY fRA CTION• ILLITE, DISTRIBUTION MAP<>BLACK SEA SEDIMENTS• 227 3 COCCOLITHS, PHOTO<>BI.ACK SEA, 217 3 Cl-AY fRACTION ANALYSIS, TABLE<>BI.ACK SEA• SEDIMENT UNIT 1, 210 3 COCCOUTHS, SAUNITY DISTRIBUTION, TABLE<>BLACK SEA• HOLOCENE 362 3 CI.AY IDENTIFICATION• TABI.EBI.ACK SEA, 566 3 CLAY•MINERAL AND HEAVY•MINERAI. CDNTENTS•I>BLACK SEA Affi.UENTS• 207 3 >COCCOLITHS AS PALEOSAl-INITY INOICATDRS••EVIDENCE FROM BLACK SE/ 353 I CLAY•MINERAL COMPOSITION<>BLACK SEA SEDIMENTS, TERRIGENOUS, 234 3 COCCOLITHS AS SAUNITY INOICATORS<>BLACK SEA• 362 3 CLAY•MINERAL DISTRIBUTION MAPBLACK SEA SEDIMENTS• MODERN• 293 3 C(.AY MINERALOGY<>BLACK SEA SEDIMENTS• MODERN• 267 3 COHESION<>BLACK SEA SEDIMENTS• 333 3 CLAY MINERALSBLACK SEA, 398 3 CI.AY MINERALS, DISTRIBUTION MAP<>BI.ACK SEA SEDIMENT$, 267 3 >COMPOS!TAE POI.LEN, MICROGRAPH< 409 3 C LAY RATIOS• OIAGRAM<>BLACK SEA• SEDIMENT CORES• SAND• SILT• 212 3 COMPOSITION CHANGES• LATERA(., DIAGRAM<>BLACK SEA SEDIMENTS, 233 3 CLAYS<>B(.ACK SEA, SAPROPEL!C 374 3 COHPRESSION<>BLACK SEA BASIN, II 3 CLAYS• ORIGIN<>BLACK SEA, NEOEUXINIAN SEDIMENTS• HYDROTRDILITE 551 3 CONCRETIONS<>BI.ACK SEA, IRON• MANGANESE ?.65 3 CL MATE<>BOSPORUS, I 100 3 CONCRET IONS, IRON• MAt.IGANESE, AGE<>BI.ACK SEA• 171 3 Cl-IMATE CHANGES<>BLACK SEA, 387 3 CONCRETIONS, IRON• MANGANESE, GROWTH RATE<>BLACK SEA, 171 3 CLIMATE VARIATION<>BLACK SEA AREA, 249 3 CONCRETIONS, IRDN•MANGANESE<>BLACK SEA, MOLYBDENUM IN 545 3 CUMATE ZDNES<>BI.ACK SEA AREA, 202 3 CONCRETIONS, MICROGRAPH<>BLACK SEA, GREIGITE AND MACKINAWITE 527 3 -0. CLIMATIC EVENT CORRESPONDING TO<>BRONZE AGE• 374 3 CONCRETIONS AND SEDIMENTS• COMPOSITION,//SEA, SEVASTOPOL BAY• 172 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 CONDUCTIVE LAYERc>BLACK SEA• 59 3 CRUSTAl. CROSS SECTIONS<>BLACK SEA BASIN• 45 3 CONDUCTIVE LAYER<>CASPIAN SEA, 59 3 CRUSTAL SlRUCTURE<>BI.ACK SEA, 36 3 -0. CONDUCTIVE LAYERoHUNGARIAN BASIN, 59 3 CRUSTAL S TRUCTURE<>B�ACK SEA AND ANATOL IA• 71 3 CONDUCTO�ETRIC SAt.INITY IN BLACK SEA WA/IBETWEEN CHLORINITY AND 151 1 CRUSTAL STRUCTURE• TRANSITIONA�<>BLACK SEA• 58 3 � CONTINENTAL, GRAN!TIC<>BLACK SEA, CRUST, 72 3 C RUSTAL TH!CKNESS<>BLACK SEA, 3 ONTINENTAL CRUST<>BLACK SEA II C , 57 3 CRYSTA��INE CORE THRUST<>CAUCASUS, 81 3 C DNTINENTAL•R !SE H!LLS<>LOWER• 3 3 >CRYSTALS, ORGANIC• INTERPRETATION OF MICROGRAPHS, DIAGRAMS< 306 3 CONTINENTAL SHELF OF BLACK SEA OFF RUMAIIFORAM!N!FERA ON 411 I >CRYSTALS, ORGANIC, MICROGRAPHS SHOWING SUBUN ITS< 305 3 CONTINENTAL SLOP E<>BLACK SEA, 308 3 CURRENT SYSTEM, MAP<>BLACK SEA• 262 3 N CONVECTIO CELL<>8LACK SEA• 74 3 CURRENT SYSTEM, TWD•LAYER<>BOSPORUS• 107 3 COOKING LAKE, STEROLS<>ALBERTA, 510 3 CURRENT S<>BOSPORUS, 119 3 COPEPOD E GG CASES<>BLACK SEA SEDIMENTs, 365 3 CURRENTS, LONGSHME BOTTOM, SEDIME NT OISTRIBUTION<>BLACK SEA, 259 3 COPPER, AND COBALT• O!STRIBUTIONBLACK SEA, 202 3 COPPER<>BLACK SEA SEDIMENTS, 432 3 CURRENTS, SURFACE, SEDIMENT DISTRtBUTION<>BLACK SEA• 259 3 COPPER, DISSOLVED, PROFILE<>BLACK SEA, 141 3 CYCLOCOCCOLITHINA FORMOSA• MICROGRAPHS<>BLACK SEA• 361 3 COPPER, DISTRIBUTION<>BLACK SEA SEDIMENTS, 457 3 C YC�QCQCCOLI TH INA GAMMA TI DN• M I CRQGRAPHS<>BLACK SEA• 361 3 C OPPER AND CARBON, ORGANIC• CONTENT• GR//SEA1 SAPROPELIC MUOS• 464 3 CYCLOCOCCOLITHINA LEPTOPORA• ABSENCE OF<>BLACK SEA, 362 3 >COPPER BONDING BY HUMIC ACIDS AND FUI.VIC AC IDS• DEPENDING ON P/ 465 3 >CYCLOGYRA• MICROGRAPHS< 412 3 COPPER CONTENT<>BLACK SEA CORES, 572 3 CYCLONIC CIRCULATION, SEDIMENT DISTRIBUTION<>BLACK SEA, 259 3 COPPER CONTENT<>BI.ACK SEA SEDIMENTS• 558 3 >C Y C LOPENTE NOPHE NAN T HRENE< 511 3 < COPPER IN >BLACK SEA SEOIHENTS• PYRITE, CONCENTRATION OF 471 3 >CYMATIOSPHAERA• MICROGRAPHS< 368 3 >COROOSPHAERIOIUM POLLEN, MICROGR APH< 407 3 >CYMATIOSPHAERA POLLEN, MICROGRAPH< 405 3 CORES, CORRELATION DF<>BLACK SEA SEDIMENTS, 351 3 >CYMATIOSPHAERA POLLEN, MICROGRAPH< 409 3 CORESoGEOCHEM!STRY OF SEDIMENTS FROM ELEVEN BLACK SEA 430 I CYPERACEAE POLLEN<>BLACK SEA, 398 3 CDRES<>PALYNOPLANKTOLOGIC ANALYSIS OF SOME BLACK SEA 396 I >DANUBE, BLACK SEA• AND OCEAN, WATER COMPOSITION• TABLE< 94 3 CDR!OL!S EHECTSc>BDSPORUS, 107 3 DANUBE AND DNEPR RIVERS, DRA INAGE<> BI.ACK SEA REGION• 107 3 >CORONENE< 510 3 D ANUBE D!STRICT<>BLACK SEA• DNEPR• 310 3 W CORRELA TION<>BLACK SEA, DEEP• ATER AND SHALLOW•WATER DEPOSITS• 349 3 DANUBE F AN<>BLACK SEA, 20 3 CDRRELATION<>BLACK SEA, SEDIMENT UNIT I• 373 3 DANUBE F AN<>BLACK SEA• 191 3 B CORRELATION, PREVIOUS STUOIES<> LACK SEA SEDIMENTS• 349 3 DANUBE FAN<>BLACK SEA BASIN• 3 3 CORRELAT ION CHARTc>BLACK SEA SEOI MENTS1 351 3 DANUBE FAN<>BLACK SEA SEDIMENTS• 332 3 CORUH RIVER, SED!MENT<>BLACK SEA REGION• 309 3 DANUBE OR OANUREA FAN<>BLACK SEA, 8 3 CURUH RIVERS, CARBONATE•FREE SEDIHENTS<>BZYB• INGURI• AND 269 3 DANUBE RIVER, SED!MENT<>BLACK SEA REGION• 314 3 CORYLUS OR HAZEL POLLEN<>BLACK SEA• 396 3 >DANUBE RIVER, SEDIMENT DISCHARGE TO BLACK SEA< 205 3 >CDSC!NODISCUS ARGUS, MICROGRAPH< 390 3 DANUBE RIVER WATER<>BUI.GARIA, 93 3 >COSC!NOO!SCUS DECRESCENS, MICROGRAPH< 394 3 DANUBE SHE LF DISTRICT• STRUCTURE AND MORPHOI./>BLACK SEA• DNEPR• 314 3 >COSCINODISCUS OBSCURUS, MICROGRAPH< 394 3 OANUREA FAN<>BLACK SEA, DANUBE OR 8 3 S" >COSCINOO!SCUS POLLEN, MICROGRAPH< 405 3 >DARDAN(LLES< 99 3 >COSC I NOO I SCUS POLLEN, MI CROGRAPH< t 408 3 >DARDANELLES, GREEK NAME FOR< 576 3 > >C COSCINOD!SCUS RADIATUS• MICROGRAPH< 394 3 DEAD SEA<>BLACK SEA• COMPARISON WITH 589 3 f >CRANE KEY EMERGENCE< 374 3 DECARBOXYLATION DIAGENETIC PROCESS<>BI.ACK SEA, 4 9 4 3 CRETACEOUS<>BI.ACK SEA, COCCOLITHS, 353 3 DEEP<>BLACK SEA 313 3 S CRETACEOU , M ICROGRAPHS<>BLACK SEA COCCOLITHS, 359 3 OEEP• WATER SEDIMENTS OF BLACK SEABI.ACK SEA REGION, 68 3 DEEP BLACK SEA SED I MENTS<>D I A TOMS IN PLEI STOCENE 389 I CRETACEOUS SEDIMENTARY ROCKS MAP<>BLACK SEA BASIN, , 311 3 DEEP SEISMIC SOUNDING OR DSS, RESUL TSc>BLACK SEA, 35 3 CRIBROELPHIO!UM POEYANUM, DISTRIBUTION//SEA SHELF• RUMANIAN• 416 3 >DEEP STRUCTURE OF BLACK SEA BASIN< 35 I >CRISROELPH!DIUM POEYANUM, MICROGRAPHS< 412 3 OEEP•WATE R SEDIMENTS OF BLACK SEA<>�DLLUSCAN SHELLS IN 349 I >CRIMEA, ASSYNTIAN OR BAYKALIAN METAMORPHI SM< 63 3 oEEP•WATER SEDIME�TS OF BLACK SEABLACK SEA BASIN• 308 3 DEEP•WATER STRATIGRAPHY AND I.OCAL STRATI/SEA, MOLLUSCAN FAUNAS• 367 3 CRIMEA• CAUCASUS GEOSYNCI.INEc>BLACK SEA• OOBRUJA• 63 3 DEGRADATION PRODUCTS I� SEDI�ENTS OF BLACK SEA<>CHLOROPHYLL• 426 I CRIMEAN OISTR!CT<>BLACK SEA• GORNO• 310 3 OEHYDROCHDLANTHRENECRIMEAN MEGA•ANTICLINORIUM< 43 3 OENITR!F!CAT!ON<>BLACK SEA• 422 3 >CRIMEAN MEGA•ANT!CLINORIUM< 314 3 OENSITIES<>BLACK SEA, TURBIDITY CURRENTS• LUTUM 331 3 CRIMEAN MEGA•ANTICLINORIUM<>BLACK SEA BASIN• 310 3 DENSITY• WET BUI.K<>BLACK SEA SEDIMENTS, 334 3 >cRIMEAN MOUNTAIN BELT, JURASSIC• LATE, LIMESTONE• KARST GROUND/ 162 3 DENSITY CHANGES<>BLACK SEA• MANTLE• 58 3 >CRIMEAN MOUNTAINS OR KRYMSKIYE GORY> GEOLOGY< 204 3 DENSITY PROFILES<>BLACK SEA, SALINITY, TEMPERATURE, AND 138 3 < >CRIMEAN PENINSULA• SLUMP ING 22 3 DENUDATION AND EROSION<>BLACK SEA AREA, 202 3 >CRIMEAN REGION, ARTESIAN BASIN< 162 3 >OEOXOPHY�LOERYTHRI N• STRUCTURE< 517 3 CRIMEAN SHE�F OISTR!CT, STRUCTURE ANO MORPHO/>BI.ACK SEA, GORND• 314 3 >DEOXOPHYI.LDERYTHROET IOPORPHYR I N• STRUCTURE< 517 3 CRUST<>BLACK SEA, OCEANIC 11 3 OEPDSITION, RATE OF<>BLACK SEA, SEDIMENT 72 3 CRUST, CONTINENTA�, GRANITIC<>B�ACK SEA, 12 3 DEPOSITION RATES• REI.ATIVE<>BLACK SEA, SEDIMENT CORES• 193 3 CRUST, OCEANIC• BASA�TIC<>BLACK SEA, 71 3 DEPOSITIONAL ENVIRONMENT<>BL ACK SEA• 332 3 CRUST, RE�AXATION AND EXTENSION<>BLACK SEA• 579 3 DEPOSITIONAl. ENVIRONMENTS<>BLACK SEA• 537 3 CRUST, SPREADING OF<>ANATOLIA• 3 DEPOSITIONAL RATES<>BLACK SEA, Tl 529 3 CRUST, SUBDCEANIC<>B�ACK SEA, 71 3 DESALINIZATION<>BLACK SEA• 119 3 CRUSTAl. CROSS SECTIDN<>BI.ACK SEA BASIN, 46 3 OESULFOTOM ACULUM, COUNTS<>BLACK SEA• 421 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 DESIJLFOVIBR!O, CDUNTS<>BLACK SEA• 421 3 DINOFLAGELLATES AND ACRITARCHS PER GRAM Of SEDIMENT<>BLACK SEA• 3B2 3 D!.VON!AN, MAP<>BLACK SEA REGION, ORDOVICIAN• 65 3 > DINOFL.AGELLATES AND HYSTRICHOSPHAER!OS• USED AS INDICATORS Of/ 364 3 64 >OI�OfLAGELLATES IN LATE QUATERNARY DEEP• WATER SEDIMENTS OF BL/ 364 DEVO�!AN, TRANSGRESSIDN<>TURKEY• ANATOL!A• SILURIAN AND 3 I DEVO�!AN GEOSYNC L!NE<>CAUCASUS, GREAT, 66 3 DINOfLAGELLATES PER GRAM OF SEDIMENT, GRAPH<>BLACK SEA, 386 3 DIAG!.NES!S<>BLACK SEA, 172 3 OINOPHYCEAE CYSTS<>BLACK SEA, DINOfLAGELLATE OR 402 3 D!AGENES! S<>BLACK SEA, FATTY ACIDS, 515 3 DISCDASTER SAIPANENS!S, MlCROGRAPHS<>BLACK SEA• 361 3 OlAGENES !S<>BLACK SEA, !RON• 538 3 DISCOASTER TAN! NODIFER, M!CROGRAPHS<>BLACK SEA• 361 3 OIAGENES!S<>BLACK SEA, !RON SULFIDES• 527 3 OISCOL!THINA• HICRDGRAPH<>BLACK SEA• 357 3 DlAGENES!S<>BLACK SEA, ORGANIC COMPOUNDS• 522 3 DISJUNCTIVE, MAP<>BLACK SEA BASIN• fOLDS• 311 3 I A GENES S<>CHLOROPHYLL A• DISSOLVED AND PARTICULATE PHASESSEO!MENT GENESIS AND 457 3 >DISTRIBUTION OF SOME TRACE E LEMENTS IN BLACK SEA AND THEIR FLU/ 137 I DIAGENESIS IN BLACK SEAD S TR I BUT! ON PATTERN Of B ENTHON! C FORAM IN FERA ON CONT INENTAL/ 411 1 I 1 1 DIAGENETIC DEVELOPMENT<>BLAC K SEA, SULFIDES• 446 3 DIVISIONS Of<>BLACK SEA SEDIMENTS, 349 3 DIAGENETIC POLYMERIZATION PROCESS<>BLACK SEA• 494 3 DIZA SER!ES<>CAUCASUS, 80 3 DIAGENETIC PROCESS<>BLACK SEA• DECARBOXYLATION 494 3 D NEPR• DA N UBE D!STR!CT<>BLACK SEA, 310 3 DIAGENETIC PROCESSES<>BLACK SEA• 308 3 O NEPR• D A N UBE SHELF DISTRICT, STRUCTURE AND MDRPHOL/>BLACK SEA, 314 3 DIAGENETIC REO!STR!BUTIONQNEPR AND BUG RIVERS• SOUTHERN• MICROELEMENTS, CONCENTRATION A/ 261 3 DIAGENETIC REO!STR!BUT!ONBLACK SEA REGION, 314 3 UlAPIR!C STRUCTURES<>BLACK SEA, 1 9 3 >ONEPR RIVER, SEDIMENT DISCHARGE TO BLACK SEA< 205 3 OIATOM<>BLACK SEA• 376 3 O NEPR RIVERS, ORA INAGE<>BLACl< SEA REGION, DANUBE ANO 107 3 DIATOM DISTRIBUTION, TABLESBLACK SEA REGION• 314 3 DIATOM DISTRIBUTION IN CORES, TABLE<>BLACK SEA• 392 3 >DNESTR RiVER, SED IMENT DISCHA RGE TO BLACK SEA< 205 3 DIATOM SAMPLES<>BLACK SEA• ZINC IN 559 3 OOBRU.JA" CRIMEA• CAUCASUS GEOSYNCLINEoBLACK SEA• 63 3 DIATOM SCARCI TY<>BLACK SEA SEDIMENTS, DEEp, 389 3 OOBRU.JA MASS!f<>BLACK SEA BASIN• 308 3 DIATOM SPEC IES• DISTRIBUTION I N CORES, TABLE<>BLACK SEA• 393 3 OOBRU.JA MASSif<>BULGAR!A• BLACK SEA BELT• 91 3 D IATOM THANATOCOENOSES<>BLACK SEA, 391 3 OOBRU.JA MASS!f<>HERCYNIAN 314 3 DIATOMACEOUS MUO, D!STR!BUTION<>BLACK SEA, 265 3 DOGGER TROUGH• MAP<>TURKEY• ANATOLIA• LIAS• 65 3 DIATOMS• E LEMENT CONCENTRATION• TABLE<>BLACK SEA• 261 3 OOLOM!TE<>BLACK SEA SEDIMENTS• 285 3 DIATOMS• METHODS OF STUDY<>BLACK SEA• 389 3 OOLOM!TE<>BLACK SEA SEDIMENTS• MODERN, 282 3 >DIATOMS• PALEOECOLOGIC INDICATORS< 394 3 DOLOMITE, OlffRACTOGRAMS<>BLACK SEA SEDIMENTS CONTAINING 286 3 DIATOMS• PAUC ITY Of<>BLACK SEA, 390 3 DOLOMITE 0 ISTR I BUTI ON MAP<>BLACK SEA SED! MENTS• 2B6 3 DIATOMS• PHOTO<>BLACK SEA• 217 3 DOLOMITE INfLUX<>BLACK SEA, 281 3 DIATOMS• PHDTOS<>BLACK SEA• 189 3 OOL.OMITE HATIO<>BLACK SEA SEDIMENTS• CALCITE• 213 3 DIATOMS• S ALINITY TOLERANCESc>SLACK SEA• 391 3 ODL.DMITE RATIO<>BLACK SEA SEDIMENTS• TERRIGENOUS• CALCITE• 234 3 > D IATOMS IN PLEISTOCENE DEEP BLACK SEA SEDIMENTS< 389 DOLOMITE R ATIO, DISTRIBUTION MAP<>BLACK SEA SEDIMENTS, CALCITE • 218 3 a. I O !ETHYL ETHER• CONCENTRATIONc>BLACK SEA SEDIMENT• 520 3 D ON RIVER• SEDIHENT<>BLACK SEA REGION, 314 3 5" O!ETHYL ETHER• VISIBLE SPECTRUM• GRAPHDON RIVER• SEDIMENT DISCHARGE TO BLACK SEA< 205 3 >D !HYDROCHDLESTEROL< 507 3 ODNETS!AN PHASE<>CAUCASUS• 82 3 t DINOFLAGELLATE• FRESHWATER<>BLACK SEA, WURM INTERVAL• 377 3 >DONNAN EffECT< 306 3 f >C DINOFLAGELLATE ASSEMBLAGES, LITHOSTRATIGRAPHI C UNITS/>BLACK SEA 3 66 3 ODSPAO OAGH, METAMORPHIC ROCKS<>TURKEy, RHOODPE OR 63 3 DINOFLAGELLATE BIOSTRATIGRAPHY<>BLACK SEA, 366 3 OOWNM!XING<>BLACK SEA, 149 3 >DINOFLAGELLATE CYST, MICROGRAPH< 409 3 DOWNWARPS<>BLACK SEA BASIN• NORTHERN• 43 3 >DINOFLAGELLATE CYSTS• MICROGRAPHS< 3B4 3 DRAINAGE AREA<>BLACK SEA, 200 3 DiNOfLAGELLATE OR D!NOPHYCEAE CYSTS<>BLACK SEA, 402 3 D RAINAGE AREA• GEOLOGY<>BLACK SEA, 202 3 DINOFLAGELLATE PALEOECOLOGY<>BLACK S[A, 375 3 DRAINAGE AREA• MAP<>BLACK SEA• 202 3 OINOfLAGELLATES<>BLACK SEA• 584 3 O REISSENA PDLYMDRPHA<>BLACK SEA SEDIMENTS• 350 3 DINOfLAGELLATES• CALC! OO!NELLUM OPERDSUM<>BLACK SEA 366 3 OREISSENA ROSTRlfORMIS<>BLACK SEA SEDIMENTS• 350 3 DINOfLAGELLATES• COMPAR ISON wiTH OTHER REG!ONS<>BLACK SEA, 377 3 OREISSENA ROSTR!FORMIS D!STINCTA<>BLACK SEA SEDIMENTS• 350 3 DINOfLAGELLATES• CORE LOCATIONS• TABLE<>BLACK SEA 365 3 oss, RESULTS<>BLACK SEA• DEEP SEISMIC SOUNDING OR 35 3 DINOfLAGELLATES• GRAVIMETRIC ABUNDANCE, GRAPH<>BLACK SEA 369 3 O SS DATA• RWM DATA• COMPARISON<>BLACK SEA• 43 3 0 !NOFLAGELLATES<>MEO !TERRANE AN SEA • 377 3 O SS PROfiLES• MAP<>BLACK SEA, 36 3 0 INOfLAGELLATES<>NEOEUX IN I AN 376 3 DUNE STRANO<>BLACK SEA REGION, KDBULETI• POT! 312 3 DINOFLAGELLATES• PERIDINIUH CLAUD!CANS<>BLACK SEA 366 3 DUNES Of<>KARABURUN• 309 3 O!NDfLAGEL.LATES• PERIOIN!UH LEDN!S<>BLACK SEA 366 3 O YNAM!CS<> BLACK SEA• COAST 315 3 DINOfLAGELLATES• PE RID!NIUM TROCHO !OEUM<>BLACK SEA 366 3 OZHAVA ZONE<>CAUCASUS, GAGRA• 78 3 DINOFLAGELLATES• QUATERNARY• METHODS Of !NVESTIGAT ID/>BLACK SEA 365 3 OZHAVAKHET A ZONE<>CAUCASUS, 78 3 OINOfLAGELLATES<>REO SEA• 377 3 OZHEMETINIAN<>BLACK SEA SEDhENTS, 350 3 NOFLAGELLATES<>RUMAN lA• PL 1 OCENE OZHEMETINIAN• KALAMIT!AN BOUNDARY<>BLACK SEA• 349 3 0 1 376 OINOfLAGELLATES, SPECIES OISTRIBUTIONc>BLACK SEA 367 3 DZHEMETINIAN STAGE<>BLACK SEA• 194 DINOFLAGELLATES• SPECIES LIST<>BLACK SEA 366 3 >OZHEMETINIAN SUBSTAGE, I!EGINNING Of< 373 3 0 I NDfLAGELLA TES• SPEC !MEN ABUNOANCE<>BLACK SEA 367 3 OZIRUL.A HASS!f<>CAUCASUS• 80 3 DINOfLAGELLATES• SYSTEMATIC TREATMENT<>BLACK SEA 365 3 OZIRULA ZONE OF UPLi fT<>CAUCASUS, 78 3 OINOFLAGELLATES<>TERTIARY AND QUATERNARY DEPOSITS, 364 3 EARTHQUAKE ACTIVITY<>BLACK SEA• 578 3 DINOFLAGEL.LATES• VERT ICAL DISTRIBUTION, GRAPH<>BLACK SEA 370 3 EARTHQUAKE ACTIVITY<>BLACK SEA BASIN AREA, 11 3 371 P 46 3 DINOFLAGELLATES• VERTICAL DISTRIBUTION, GRAPH<>BLACK SEA 3 EAST EURO EAN PLATrDRMc>BLACK SEA, -0< DINOfLAGELLATES• VERTICAL DISTRIBUTION• GRAPH<>BLACK SEA 372 3 E AST PONT!AN RIDGE<>BLACK SEA REGION, 309 3 c.»

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 EAST PONTIAN SYNCL!NORIU�<>BLACK SEA BASIN, 309 3 ETES!AN WINDS<>BDSPORUS, 100 3 EAST PONTIAN SYNCLINORIU�<>BLACK SEA BASIN, 311 3 ETHYLENE RATIOS RELATIVE TO OXYGEN•ZERO• GR/>BLACK SEA• ETHANE• 501 3 0.- EGGERELLA SCABHA, OISTRIBUTION MAP<>BLACK SEA SHELF• RUMANIAN• 415 3 ETHANE, UPWARD O!HUSION<>BLACK" SEA• 499 3 >EGGERELLA SCABRA, �ICROGRAPHS< 412 3 E THANE CONCENTRATION<>BLACK SEA WATER, 499 3 olio EH• AND PH•OEPENOENT FACTORS<>BLACK SEA SEDIMENTS• 446 3 ETHANE PLUS ETHYLENE DISTRIBUTION RELATIVE TO OXYGE/>BLACK SEA• 501 3 EH, DISTRIBUTION, GRAPH< •/MOLYBDENU�, HYDROGEN SULFIDE, AND 544 3 ETHER, CONCENTRATION<>BLACK SEA SEDIMENT• OIETHYL 520 3 EluEN VALUES<>FACTOR ANALYSIS• 434 3 E THER, CONCENTRATION<>BLACK SEA SEO!MENT• PETROLEUM 520 3 ELECTRON M !CROSCOPY<>BLACK SEA SEDIMENTS, 187 3 ETHER• D!ETHYL ETHER• VISIBLE SPECTRUM• Gt>BLACK SEA• PETROLEUM 520 3 E LECHON TRANSFER OR HYOROLYS I S<>AOENOS I NE•TR I PHOSPHATE, 306 3 ETHER•D !ETHYL ETHER• CONCENTRATIONBLACK SEA• DIATOMS• 261 3 ETHYLENE C ONCENTRATION<>BLACK SEA WATER, 499 3 ELEMENT CONCENTRATION, TABLEc>BLACK SEA• ZOOPLANKTON, 261 3 ETHYLENE DISTRIBUTION RELATIVE TO OXYGEI>BLACK SEA, ETHANE PLUS 501 3 ELEMENT CONCENTRATION IN ORGANIC FRACTI//SEA, SAPROPEL !C MUDS• 467 3 ETHYLENE HATIOS RELATIVE TO OXYGEN•ZERO, GR/>BLACK SEA, ETHANE• 501 3 ELEMENT DISTRIBUTION, FACTOR ANALYTICAL S/>BLACK SEA SEDIMENTS• 433 3 >ETIOPORPHYRIN< 520 3 ELEMENTAL ANALYSIS<>BLACK SEA SEDIMENTS• 555 3 EUGEOSYNCL !NAL ZONES<>BLACK SEA SHELF, 315 3 ELEMENTAL ANALYSIS, TABLE<>BLACK SEA CORE SA�PLES, 479 3 EUGEOSYNCL I NES<>TURKEY, ANA TOLl A, MIDGEOSYNCL tNES AND Tl 3 ELEMENTAL GEOCHEMISTRY, ANALYTICAL HETHI>BLACK SEA• ISOTOPIC ANQ 555 3 >EURASIA N, AFRICAN, AND ARABIAN PLATES, JUNCTION OF< VIII 3 ELEMENTAL GEOCHEMISTRY, CORE LOCATION H/>BLACK SEA, ISOTOPIC ANO 556 3 EURASIAN PLATES• CONVERGENCE OF<>ArRICAN AND 59 3 ELEMENTAL GEOCHEMISTRY OF BLACK SEA SEDIMENTS<>ISOTOPIC AND 554 I >EUROPE, PDNTIAN AGE< 376 3 £LEMENTS, ANALYSIS OF PARTICULATE MATTER<>BLACK SEA• TRACE 137 3 EUX!NE ABYSSAL PLA!N<>BLACK SEA BASIN, 3 3 ELEMENTS, BIOGENIC•SUPPLY• TABLE<>BLACK SEA• AFFLUENTS, 260 3 EUX!NE ABYSSAL PLA!N<>BLACK SEA SEDIMENTS, 333 3 ELEMENTS<>BLACK SEA SEDIMENTS• HYDROGEN SULFIDE ZONE• TRACE 456 3 >EUXINIC• MEANING AND USAGE OF TERM< 57T 3 ELEMENTS<>BLACK SEA wATER• INTERSTITIAL• TRACE 168 3 EUX!NIC BOTTOM CONOITIONS<>B LACK SEA• 119 3 ELEMENTS, COLLECTION OF SAMPLES AND ANALYSIS<>BLACK SEA• TRACE 137 3 EUXIN!C BDTTOM•WATER CONDITIONS<>BLACK S[A, 364 3 ELEMENTS, CONTENT• TABLE<>BLACK SEA SEDIMENT SEQUENCE, 459 3 EUXINO• UZUNLARSKA TERRACE<>BULGARIA, BLACK SEA COAST• 93 3 ELEMENTS, DISTRIBUTION IN SAPROPELIC HUDS<>BLACK SEA• 462 3 EUXINSKA T ERRACEc>BULGARIA• BLACK SEA COAST• STARO• 93 3 ELEMENTS, DISTRIBUTION IN VERTICAL SECTION<>BLACK SEA• 458 3 ,E UXINUS D0ME<>BLACK SEA REGION, 91 3 ELEMENTS, HALOCL!NE• VERTICAL TRANSPORT THROUGH• TA/>BLACK SEA• 142 3 EVAPOR!TES<>ANATOL !A• 70 3 ELEMENTS, MINOR AND TRACE, TABLE<>BLACK SEA CORES, 572 3 EVAPORITES AND STROMATOLITES, MIOCENE, LATE<>MEDITERRANEAN• 124 3 ELEMENTS• ORGANIC CONCENTRATION OF<>BLACK SEA, 259 3 >EVOLUTION OF ANOXIC CONDITIONS IN BLACK SEA DURING HOLOCENE< 133 I ELEMENTS, RARE AND TRACE, TABLE<>BLACK SEA, AFFLUENTS, 260 3 EXCHANGE COEFFICIENTS; TABLE<>BLACK SEA SEDI MENTS• 173 3 ELEMENTS, STUDIES<>BLACK SEA, TRACE 456 3 >EXPEDITION ODYSSEUS 65, RADIOCARBON AGE OF BLACK SEA DEEP WATE/ 127 I ELEMENTS IN BLACK SEA AND THEIR FLUX BE//OF SOME TRACE 137 I >EX TRATR I POROPOLLEN ITES, M !CROGRAPHS< 384 3 ELEMENTS I N DEEP•wATER SEDIMENTS OF BLAIIOF SOME TRACE 456 I >FACTOR ANALYSIS• EIGEN VALUES< 434 3 ELM POLLEN<>BLACK SEA, ULMUS OR 398 3 >FACTOR ANALYSIS• PRINCIPLE•COMPONENTS SOLUTION< 433 3 >ELPHID!UM ADVENUM PONTICA• MICROGRAPHS< 412 3 >FACTOR ANALYSIS• PROMAX SOLUTION< 434 3 a. >ELPH!OIUM CF, Eo INCERTUM• MICROGRAPHS< 412 3 >FACTOR ANALYSIS• VARIMAX ROTATION< 434 3 >ELPHIO!UM CRISPUM• MICROGRAPHS< 414 3 FACTOR ANALYTICAL STUO!EsCRANE KEY 374 3 FACTOR AND TREND•SURFACE ANALYSESctCORES, GEOCHEMISTRY• 435 3 EM!LIANIA HUXLEY!<>AZOV• SEA OF• 360 ,3 FACTOR SCORES VS 14•ANGSTROM PEAK HEIGH//GEOCHEM!STRY• 440 3 f EMILIAN!A HUXLEYI<>BLACK SEA, 290 3 FAGUS OR BEECH POLLEN<>BLACK SEA• 396 3 EM!LIANIA HUXLEYI<>BLACK SEA, 353 3 FATTY•AC!D METHYL ESTERS, GAS CHROMATOGRAMS<>BLACK SEA CORE• 515 3 !" EMILIAN!A HUXLEY!<>BLACK SEA, 566 3 FATTY ACIDS• ABUNDANCE<>BLACK SEA COR[, 514 3 >EMILIANIA HUXLEY!• ENVIRONMENTAL TOLERANCE< 360 3 FATTY ACIDS, ABUNDANCE• TABLE<>BLACK SEA SEOI�ENTS• 516 3 >EMILIANIA HUXLEY!, MICROGRAPH< 304 3 FATTY ACIDS<>BLACK SEA CORES, ORGANIC ANALYSIS, 489 3 E MILIANIA HUXLEY!• M!CROGRAPHS<>BLACK SEA• 355 3 FATTY ACIDS<>BLACK SEA SEDIMENT CORE, 514 3 EM!LIANIA HUXLEYI<>NORWAY• 360 3 >FATTY ACIDS, CHLOR!NS, HYDROCARBONS, STEROLS, AND CAROTENOIOS/ 505 I EMILIANIA HUXLEY!• PHOTO<>BLACK SEA• 186 3 >FATTY ACIDS, CONVERSION TO HYDROCARBONS• PARAFFINIC< 505 3 EMIL!ANIA HUXLEY!, SIGNIFICANCE OF<>BLACK SEA, 360 3 FATTY ACIDS, DIAGENES!S<>BLACK SEA, SIS 3 >ENGELHAROTIA, MICROGRAPHS< 384 3 >FATTY A CIDS, ESTERIFICAT!Ok REACTIONS OF, INDUCED BY CLAY MINE/ 303 3 ENVIRONMENT<>BLACK SEA, OEPOSITIDNAL 332 3 FATTY ACIDS, STUDY PROCEOUREc>BLACK SEA CORE, 514 3 ENVIRONMENT, CHANGES IN<>BLACK SEA, 301 3 FAULT PATTERN• NORTH•SDUTH<>BOSPORUS• 117 3 E NVIRONMENT, ESTABLI SHMENT OF<>BLACK SEA• REDUCING 297 3 FAULT SYSTEMS<>USSR, CAUCASUS, WESTERN, 81 3 >ENVIRONMENTAL AND GEOPHYSICAL INTERPRETATION OF HEAT•FLOW MEAS/ SD I FAUL TING<>BLACK SEA• CAUCASUS SLOPE• FOLDING, 22 3 ENVIRONMENTS<>BLACK SEA• DEPOSITIONAL 537 3 FAULTING<>BLACK SEA• FRACTURING AND TO 3 EDCENE<>BLACK SEA, COCCOLITHS, 353 3 FAULTING<>BLACK SEA REGION, 118 3 EOCENE, MICROGRAPHS<>BLACK SEA COCCOLITHS, 361 3 FAUNA, FRESHWATER<>BLACK SEA, 123 3 EDKIMMER!AN PHASE<>BLACK SEA REGION, 68 3 FELOSPAR<>BLACK SEA• ILLITE OR 447 3 EPIHERCYNIAN PLATE<>USSH, CAUCASUS• WESTERN• SCYTHIAN 11 3 FELDSPAR<>BLACK SEA SEDIMENTS• 220 3 E QUILIBR I UM CONCENTRATIONS, OBSERVED AND CALCULATEU<>BLACK SEA• 142 3 FELDSPAR CONTENT, DISTRIBUTION MAP<>BLACK SEA SANDS• DEEP, l21 3 >ERGOSTANE< sos 3 FELDSPAR C ONTENTS OF, TABLEERGOSTEROL< 505 3 FELDSPAR GRAIN•SIZE RELATION, GRAPHBLACK SEA AREA, DENUDATION AND 202 3 FELDSPAR RAT!O<>BLACK SEA SEDIMENTS• TERRIGENOUS, QUARTZ• 234 3 EROSION HATE<>ANATOL!A• 234 3 FELDSPAR RATIO• DISTRIBUTION MAP<>BLACK SEA SEOIMENTS• QuARTZ• 218 3 ESTERIFICATION• CLAY•CATALYZEO<>BLACK SEA• 494 3 FELDSPAR RATIO• DISTRIBUTION MAPrATTY ACIDS• 303 3 FlNNOSC AND I AN ICE SHEET oW ! SCONS IN OR NEOEUX I Nl AN TIME, 156 3 ESTERIFIED ACID FRACTION<>BLACK SEA CORES, ORGANIC ANALYSIS• 479 3 FILYOS AND KOCA RIVERS, SEOIMENT<>BLACK SEA REGION• 309 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >r!SSURINA LUCIDA, MICROGRAPHS< 412 3 GEOCHEMISTRY Of BLACK SEA<>HYDROCARBON 499 FLOOD FLOWS, PLEI S TDCENE<>BDSPORUS• 100 3 GEOCHEMISTRY Of BLACK SEA SED!MENTS<>ISOTOPIC AND ELEMENTAL 554 FLOW, DIRECT ION Of<>BOSPORUS, 117 3 >GEOCHEMISTRY Of SEDIMENTS FROM ELEVEN BLACK SEA CORES< 430 FLOW OF SURFACE wATER<>BOSPORUS• 102 3 GEOGRAPHY AND HYDROGRAPHY<>BLACK SEAo 200 rLUURESCE�CE ANALYSI S<>BLACK SEA SEDIMENTS, X•RAY 431 3 GEOGRAPHY AND PHYSI OGRAPHY<>BOSPORUSo 99 FLUORioE, ANO CALCIUM< •/CHLORINITY RATIOS Of SULFATE, BORON• 152 3 >GEOLOGIC RELATIONS BETWEEN BLACK SEA AND ANATOLIA< 63 fLUORITEc>BLACK SEA• 169 3 GEOLOGICAl. AND GEOPHYSICAL SETTING<>BLACK SEA, 577 FLUX BETWEEN DISSOLVED AND PARTICULATE/liN BLACK SEA AND THEIR 13T I >GEOLOGY Of WESTERN CAUCASUS< 77 FOLD BELTS<>ALPINE I 3 GEOPHYSICAL EXPLORAT!ONo HETHODS<>BLACK SEA• 12 FOLO BELTS<>BLACK SEA BASIN AREA• ALPINE II 3 GEOPHYSICAL INTERPRETATION OF HEAT•fLOW MEAS/>ENVIRO�MENTAL AND 50 FOLDED SYSTEM Of SOUTHERN SLOPE<>CAUCASUS, WESTERN• 7T 3 GEOPHYSICAL PRDFI LE<>BOSPORUS• 20 FOLDING• FAULTI NG<>BLACK SEA, CAUCASUS SLOPE, 22 3 GEOPHYSICAL PROf !LE<>TURKEYo NORTHWEST COASTo 15 FOLDS, D ! SJUNCTIVEo MAP<>BLACK SEA B ASIN• 311 3 GEOPHYSICAL SETTING<>BLACK SEAo GEOLOGICAL AND 517 FORAMINIFERAo NERITICo DISTRIBUTION<>BLACK SEA, 411 3 • HERCYNIAN ROCKS<>USSR; 80 FORAMINIFERA, NERITIC, FAUNAL LIST<>BLACK SEAo 415 3 GEORGIA• RIONI• BASIN<>USSR• 64 FORAMINIFERAo SPECIES Ofc>BLACK SEA• 4 11 3 GEORGIA• TRANSCAUCAS!AN GEANTICLINE<>USSRo 47 FORAMINIFERA ON CONTINENTAL SHELf Of BL//PATTERN Of BENTHONIC 411 I GEORGIA• TRANSCAUCASIAN TECTONIC OEPRESSIONS<>USSR• 47 FORAMINIFERA TESTo PHOTOc>BLACK SEA• 189 3 GEORGIAN BLOCK<>BLACK SEA BASINo 30B >FORMS Of IRON IN SURFACE LAYER OF BLACK SEA SEDIMENTS< 532 I GEORGIAN BLOCK<>CAUCASUS, WESTERN, T9 FRACTURING, DEEP<>BLACK SEAo 45 3 GEORGIAN BLOCK, TILTING<>CAUCASUSo 88 FRACTURING AND fAUL TING<>BLACK SEA• TO 3 GEORGIAN BLOCK<>USSR• 47 FRAMBOIDS• ORIGIN<>PYRITE IB7 3 GEOSYNC L I NES<>CAUC A SUS, WES TERNo 80 FRAMBOIOS• PHOTO<>BLACK SEA• PYRITE 189 3 GEOTECTONIC ZONATION• SKETCHc>CAUCASUS, WESTERN• 78 GEOTECTONIC ZONATION<>USSRo CAUCASUS• WESTERNo FRANCOLITE<>BLACK SEAo 169 3 n FRAXINUS DR ASH POLLEN<>BLACK SEAo 398 3 >GIBRALTAR STRAITS• CLOSING• EFFECT Of< 124 FRESHWA TER•LAKE PHASE<>BLACK SEA o 195 3 GLACIAL NUCLEUS• NEOEUXINIAN<>CAUCASUS 156 FROUDE NUMBERo INTERNAL<>BOSPORUS, 112 3 GLACIAL STAGE<>BOSPORUSo WURM I 121 FULVIC ACID CONTENTBLACK SEAo WURM GLACIATION• 228 FULVIC AC IQS, DEPENDING ON PH• GRAPHBLACK SEA, 215 >FUNGAL SP0R[, MICROGRAPH< 409 3 GLOBAL TECTONICS<>BLACK SEA• PLATE OR 50 GAGRA• DZHAVA ZONE<>CAUCASUSo 78 3 >GI.YCERIDES, SYNTHESIS< 303 GAGRA• MUKHUR! fAULT<>CAUCASUS, 81 3 GOUERDZI• KISATIBI SUITE<>CAUCASUSo 86 GAiiRA OISTRICT<>BLACK SEA• 310 3 GOLDEN HORN<> TURKEY • 99 GAGRA SHELF DISTRICT• STRUCTuRE AND MORPHOLOGY<>BLACK SEAo 313 3 GOLDEN HORN RIVER<>BOSPORUS> KIAT E• 123 • !j.AN it GALLIUM<>bLACK SEA SEDIMENTS, 432 3 GONYAULAX DIGITALIS<>BLACK SEA . 404 GARNET, 0 IS TR I BUT! ON MAP<>BLACK SEA• 225 3 GONYAULAX POLYEORA<>BLACK SEAo � 375 I GARTNERAGO COSTATUM COSTATUMo MICROGRAPHSoBLACK SEA• 359 3 >GONYAULAX POLYEDRAo REO TIDES< 375 :i GAS ANALYSISo TABLE<>BLACK SEA SEDIMENT CORE• 502 3 GONYAULAX POLYHEDRA• PHOTO<>BLACK SEA, 188 GAS CHROMATOGRAPHY•MASS• SPECTRAL ANALYSES, TOT/>BLACK SEA COREo 486 3 GONYAULAX SPINIFERA<>BLACK SEAo 375 GASES, SATURATEOo TABLE<>BLACK SEA WATERo HYDROCARBON 500 3 GORNO• C RIMEAN OISTRICT<>BLACK SEAo 310 GASTRANAc>BLACK SEA SEDIMENTS, 350 3 GOHNO• CRIMEAN SHELf DISTRICT• STRUCTURE AND MORPHQI>BLACK SEA• 314 !" GASTROPDOS<>BLACK SEA SEDIMENTS• 350 3 GRABEN<>BOSPORUS• liT GENETIC TYPES, MAPBLACK SEA TURBIDITES• 329 GEOCHEMISTRY• ATLANTIS II CORE ANALYSES<>BLACK SEA SEDIMENTS• 450 3 GRADED BEDDING• DATA INTERPRETATION<>BLACK SEA TURBIDITES, 329 GEOCHEMISTRY<>BLACK SEA• 429 3 GRADED BEDDING• PULSATIONS<>BLACK SEA TURBIOITESo 329 GEUCHEMISTRY<>BLACK SEA• EAST AND NORTHEAST• SEDIMENT CORES• 445 3 GRADED BEDDING• SEDIMENTATION PROCESS, E/>BLACK SEA TURBIDITES• 329 GEOCHEMISTRY<>BLACK SEA• SOUTH A�O SOUTHWEST• SEDIMENT CORES• 444 3 GRADED BEDDING• TRANSPORT ANO SED!MENTAT />BLACK SEA TURBIDITES• 329 GEOCHEMISTRY<>BLACK SEAo WEST AND NORTHWEST• SEDIMENT CORES• 443 3 GRADED BEDDING, TRENDS<>BLACK SEA TURBIDITES, 318 GEOCHENISTRY<>BLACK SEA sEDIMENTSo NEOEUX INIAN• 441 3 >GRADED BEDDING IN RECENT BLACK SEA TURBIDITES••A TEXTURAL APPR/ 317 GEOCHEMISTRY<>BLACK SEA SEDIHENTSo SAPROPELIC LAYER• 441 3 GRADED BEDS, C•M OIAGRAMS<>BLACK SEA TURBIDITES, 330 GEOCHEMISTRY<>BLACK SEA SEDIHENTSo UPPER LAYER• 441 3 GRADED BEDS, GRAIN•SIZE CURVESo SEGNENT/>BLACK SEA TURBIOITESo 325 GEOCHEMISTRY• CORE LOCATION NAP<>BLACK SEA SEDIMENTS, 431 3 GRADED BEDS, GRAIN•SIZE FEATURES<>BLACK SEA TURBIDITES, 322 GEOCHEMISTRY, fACTOR AND TRENO•SURfACE/ISEA SEDIMENT CORES, 435 3 GRADED BEDSo GRAIN•SIZE FEATURES<>BLACK SEA TURBIDITES, 323 GEOCHEMISTRY• FACTOR scORES VS 14•ANGSTRD/>BLACK SEA SEDIMENTS• 440 3 GRADED BEDS, GRAIN•SIZE FEATURES<>BLACK SEA TURBIDITES, 324 GEOCHEMISTRY• OBLIQUE PRDMAX PRIMARY•PATT/>BLACK SEA SEDIMENTS• 435 3 GRADED BEDS, GRAIN•SIZE PARAMETERS<>BLACK SEA TURBIDITES• 326 GEOCHEMISTRY• OBLIQUE PROMAX PRIMARY•PATT/>BLACK SEA SEDIMENTS• 43T 3 GRADED BEDS, GRAIN•SIZE PDPULATIONS<>BLACK SEA TURBIDITES, 321 GEDCHEH IS TRY, PREVIOUS STUD I ES<>BLACK SEA SEO I MENT s, 430 3 GRADED BEDS, GRAIN SIZE US KURTOSIS• GRA/>BLACK SEA TURBIDITES• 328 GEOCHEMISTRY• PROMAX FACTORS, CORRELATION/>BLACK SEA SEDI MENTS• 436 3 GRADED BEDS, GRAIN SIZE V S SKEWNESS, GRAI>BLACK SEA TURBIDITES, 328 GEOCHEMISTRY• PROMAX FACTORS, CDRRELATION/>BLACK SEA SEDI MENTS• 440 3 GRADED BEDSo KURTOSIS<>BLACK SEA TURBIDITES• 326 GEOCHEMISTRY, SEOIMENT COLUMN<>BLACK SEAo HYDROCARBON 502 3 GRADED BEDs, MATRIX<>BLACK SEA TURBIDITES, 321 GEOCHEMISTRY• SUMMARY<>BLACK SEA• 586 3 GRADED BEDS, MATRIX<>BLACK SEA TURBIDITESo 331 GEOCHEMISTRY, TREND SURFACES, CONTOUREO<>BLACK SEA SEDIMENTS, 436 3 GRADED BEDS, MATRIX CONTENT US GRAIN SIZ/>BLACK SEA TURBIDITES, 326 GEOCHEMISTRY• TREND SURFACES, CONTOURED<>BLACK SEA SEDIMENTS, 438 3 GRADED BEDS, MATRIX QUANTITY US GRAIN SI/>BLACK SEA TURBIDITES• 327 GEOCHEMISTRYo TREND SURFACES, CONTOUREO<>BLACK SEA SEDIMENTS, 439 3 GRADED BEOS, SAND•SIZE CONTENTo VARIATIO/>BLACK SEA TURBIDITESo 325 GEOCHEMISTRY• WATER COLUMN<>BLACK SEA, HYDROCARBON 499 3 GRADED BEDS, SKEWNESS<>BLACK SEA TURBIDITES• 326 0.- GEOCHEMISTRY IN BLACK SEA<>URANIUM 570 GRADED BEDs, SORTING<>BLACK SEA TURBIDITESo 326 I "'

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 GRADED BEDS, STANDARD OEVIAT!ON<>BLACK SEA TURBIDITES• 326 3 HILLS<>LOWER• CONTI NENTAL•R I SE 3 3 D 327 3 50 3 GRADED BE S, STANDARD DEVIATION VS GRA!N/>BLACK SEA TURBIDITES• HIMALAYAN GEOSYNCLINE, HEAT•fLOW OATA<>MED!TERRANEAN• o-- GRADING• T YPES OF<>BLACK SEA TURBIDITES• 329 3 HIMALAYAN REGION, EDGE Dr, MAP<>BLACK SEA, ALPINE• 5 1 3 GRAIN SIZE, GRAPH< •/GRADED BEDS, STANDARD DEVIATION VS 327 3 HOLOCENE<>BLACK SEA• COCCOLITHS> 353 3 o- GRAIN SizE, GRAPHc/TURB!DITES• GRADED BEDS, MATRIX CONTENT VS 326 3 HOLOCENE<>EVOLUTION Of ANOXIC CONOITIONS IN BLACK SEA DURING 133 I GRAIN SIZE, GRAP"GRENZHOR!ZON OF 374 3 GRAIN•SIZE ANALYSIS<>BLACK SEA• 272 3 HOLOCENE, MICROGRAPHS<>BLACK SEA> COCCOLITHS• 355 3 >GRAIN•SIZE ANALYSIS• SIEVING AND SETTL ING METHODS• COMPAR ISON•/ 320 3 HOLOCENE, MICROGRAPHS<>BLACK SEA COCCOLITHS• 357 3 GRAIN•SIZE CURVES• SEGMENT L!NESBLACK SEA COCCOLITHS• 359 3 GRAIN•SIZE DISTRIBUTIONS, VERTICAL VARIA/>BLACK SEA TURBIDITES• 32 1 3 HOLOCENE, MIDDLE• CHARACTERISTICS Of<>RUSSIA> 374 3 GRAIN•SIZE rEATURES<>BLACK SEA TURBIDITES, GRADED BEDS• 322 3 HOLOCENE, MOLLUSCAN A SSEMBLAGES> TABLE QUATERNARY• 350 3 GRAIN•SIZE FEATURES<>BLACK SEA TURBIDITES, GRADED BEDS, 323 3 HOLOCENE, SHORELINE LEVElS<>BLACK SEA, REGRESSION• 312 3 GRAIN•SIZE HATURES<>BLACK SEA TURBIDITES, GRADED BEDS, 324 3 >HOLOCENE, SUBDIVISION BY NEUSTADT< 366 3 GRAIN•SIZE PARAMETERS<>BLACK SEA TURBIDITES, GRADED BEDS• 326 3 HOLOCENE C OCCOL ITHS• SALINITY DISTRIBUTION• TABLE<>BLACK SEA> 362 3 GRAIN•SIZE POPULATIONSoBLACK SEA TURBIDITES, GRADED BEDS, 321 3 >H OLOCENE PEATS> EMERGENCE OF < 374 3 GRAIN SIZE VS KURTOSIS, GRAPH PREDOMINANCE Of<>BLACK SEA• 356 3 GRAIN SIZE VS SKEWNESS, GRAPHBLYTT• SERNANDER 366 3 GRAIN SPEC!r!C GRAVITY<>BLACK SEA SEDIMENTS, 3 35 3 HOLOCENE STRATIGRAPHY<>BLACK SEA• QUATERNARY• 194 3 >GRAMINEAE• MICROGRAPH< 405 3 HORIZONS• REFLECTING<>BLACK SEA BASIN, 43 3 GRAMINEAE POLLEN<>BLACK SEA• 398 3 H UMIC ACID CONTENTc/SAPROPEL!C MUDS, TRACE•ElEMENT RELATION TO 466 3 GRANITE•FREE AREA, EXPLANATION Df<>BLACK SEA BASIN> 47 3 H UMIC ACIDS AND FULVIC ACIDS, DEPENDING ON P/>CDPPER BONDING BY 465 3 GRANITIC<>BLACK SEA• CRUST• CONTINENTAL• 72 3 HUMIC SUBSTANCESoBLACK SEA, MOLYBDENUM IN 550 3 GRANITIC L AYER<>BLACK SEA• 58 3 HUNGARIAN AND WALACHIAN LOWLANDS> QUATERNARY R/>BLACK SEA AREA• 203 3 GRANITIC I. AYER<>BLACK SEA BASIN> RISES• 40 3 >HUNGARIAN 8ASIN> CONDUCTIVE LAYER< 59 3 GRAPTOLITE SHALES<>TURKEY• TAURUS OR TOROS DAGLARI> SILURIAN 64 3 HYDROC ARBON GASEs, SATURATED, TABLE<>BLACK SEA WATER• 500 3 GRAVITY• RESUL TS<>BLACK SEA• 22 3 HYORDCARBON GEOCHEMISTRY> SEDIMENT COLUMN<>BLACK SEA• 502 3 GRAVITY ANOMALY<>BLACK SEA• 12 3 HYDROCARBON GEOCHEMISTRY> WATER COLUMNc>BLACK SEA> 499 3 GRAVITY OBSERVATIONS> MAP<>BLACK SEA• 31 3 >HYDROCARBON GEOCHEMISTRY Of BLACK SEA< 499 I >GREECE, MELANGES• TECTONIC• AND OPHIOLITES< 59 3 HYDROCARBONS• AROMAT!Cc>BLACK SEA SEDIMENTS• 512 3 GREIGITEc>BLACK SEA• 527 3 HYDROCARBONS<>BLACK SEA CORES• ORGANIC ANAL YSIS• 487 3 >GREIGITE A ND MACKINAWITE> TRANSFORMATIDN TO PYRITE< 527 3 HYOROCARSDNSoCAROTENES> CONVERSION TO 505 3 GREIGITE AND MACKINAWITE CONCRETIONS• MICROGRAPH<>BLACK SEA• 527 3 HY DROCARBONS• PARAHINIC<>FATTY ACIDS, CONVERSION TO 505 3 374 3 510 >GRENZHDRIZON Of HOLOCENE< >HYDROCARBONS, POLYCYCL I Cc 3 GROUNDWATER RESERVDIRSFATTY ACIDS• CHLDRINS• 505 I GUDAUTA oiSTRICT<>BLACK SEA• 310 3 HYDRODYNAMIC REGIME> INFLUENCE Ofc>BLACK SEA> 460 3 >GUDAUTA FLEXURE• UPLIFT< 313 3 HYDROGEN> MOLECULAR<>BLACK SEA SEDIMENT> 502 3 GUDAUTA SHELF DISTRICT• STRUC TURE AND MORPHOLOGY<>BLACK SEA• 313 3 HYDROGEN A cCEPTORS< •/ORGANIC MATTER, ANAEROBIC DEGRADATION, 422 3 S" GUDAUTA SUBZONE<>CAUCASUS> 78 3 HYDROGEN SULFIDE> AND EH• OISTRIBUTION,//SEA WATER> MOLYBDENUM• 544 3 >GULF COAST, BRAARUDOSPHAERA< 360 3 HYDROGEN SULFIDE, EFFECT ON BIOGENIC PRDDUCTION<>BLACK SEA, 250 3 GUMISTA SUBMARINE VALLEY<>BLACK SEA REGION, 312 3 HYDROGEN SULF IDE, EFFECT ON CARBONATE ACCUMULATI ON<>BLACK SEA• 281 3 f GURIAN fAUL T<>CAUCASUS, 82 3 HYDROGEN SULF IDE, EFfECT ON TRACE•ELEMENT CONCENTRA/>BLACK SE A• 461 3 t GURIAN SUBZONE<>CAUCASUS, 78 3 HYDROGEN SULFIDE, SOURCE DF<>BLACK SEA• 419 3 >HALISTAS!S, OEFINITION< 533 3 HYDROGEN SULFIDE, SOURCES<>BLACK SEA DEEP W ATER> 93 3 HALDCLINE> DEPTH Df<>BLACK S[A, 147 3 HYDROGEN SULFIDE CONCENTRATION<>BLACK SEA �ATER• 537 3 HALOCLINE• VERTICAL TRANSPORT THROUGH• TA/>8LACK SEA• ELEMENTS> 142 3 HYDROGEN SULFIDE O!STRIBUT!ON• G RAPH< ,/SALINITY> OXYGEN• AND 147 HAZEL POLLEN<>BLACK SEA• CORYLUS OR 396 3 HYDROGEN SULFIDE INTERFACE<>BLACK SEA, OXYGEN• 419 3 HEAT FLDW> INTERPRETATIDN<>BLACK SEA• 57 3 HYDROGEN SuLFIDE PRODUCT!ON<>BLACK SEA, 528 3 HEAT FlOW> MEASUREMENT TECHNIQUE AND DATA REDUCTION<>BLACK SEA• 51 3 HYDROGEN SULFIDE ZONE> MOLYBDENUM DISTRIB/>BLACK SEA SEDIMENTS• 548 3 HEAT•FLDW OATA• TABLE<>BLACK SEA• 52 3 HYDROGEN SULFIDE ZONE• SEDIMENT UNITS<>BLACK SEA• 297 3 HEAT•FLOW MEASUREMENT, ENVIRONMENTAL CORRECTIONS<>BLACK SEA> 54 3 HYDROGEN SULFIDE ZONE• TRACE ELEMENTS<>BLACK SEA SEDIMENTS, 456 3 HEAT•HOW MEASUREMENT, LOCATION MAP<>BLACK SEA• 53 3 HYDROGRAHP!C HISTORY<>BLACK SEA BASIN, 156 3 HEAT•FLOW MEASUREMENT, RESULTS<>BLACK SEA, 53 3 HYDROGRAPHIC OBSERVATIONS AND VERTICAI.•MIXING MODEL<>BLACK SEA, 138 3 HEAT•FLDW MEASUREMENT, TOPOGRAPH IC EFFECTS<>BLACK SEA• 56 3 HYDROGRAPHY<>BLACK SEA, GEOGRAPHY AND 200 3 HEAT•fLOW MEASUREMENT> WATER•TEMPERATURE VARIAT IONS<>BLACK SEA> 56 3 HYDROL YS I SoADENDSI NE•TR I PHOSPHATE, ELECTRON TRANSFER DR 306 3 HEAT•FLOW MEASUREMENTS IN BLACK SEAHYDROTRO IL I TE< HEAVY•M!NERAL CONTENTS, TABLEBLACK SEA, 441 3 HEAVY•M INERAL PROVINCES, MAPc>BLACK SEA> 225 3 HYDRDTROILITE<>BLACK SEA SEDIMENT, DEEP• 469 3 HEAVY MINERALS<>BLACK SEA SEDIMENTS> 224 3 HYDRDTROILITE AND PYRITE, DISTRIBUTION//SEA, IRON SULFIDES, 537 3 >HERCYNIAN DOBRUJA MASSIF< 314 3 HYORDTROILITE CLAYS• ORIGIN<>BLACK SEA, NEOEUX!N!AN SEDIMENTS> 551 3 HERCYNIAN OROGENY<>CAUCASUS> WESTERN> 80 3 HYDROTROILITE ZONE<>BLACK SEA• 551 3 HERCYNIAN OROGENY, SUDETAN PMASE<>CAUCASUS, 8 0 3 >HYSTRICHOSPHAERA BENTDRI POLLEN• MICROGRAPH< 407 3 HERCYNIAN ROCKS<>USSR, GEORGIA• 80 3 >HYSTR I CHOSPHAERA MEMBRANACEA POLLEN> M !CRDGRAPH< 405 3 HERCYNIAN TECTOGENESISoVARISCAN DR 64 3 >HYSTRICHDSPHAERA RAMOSA POLLEN> MICROGRAPH< 405 3 HETEROTROPH!C<>BLACK SEA, BACTERIA, AEROB IC 421 >HYS 407 3 3 TR!CHOSPHAERID!UM TUB!FERUM POLLEN, MICROGRAPH< HETEROTROPHIC BACTERIA<>BLACK SEA, AEROBIC 424 3 HYSTRICHOSPHAERIDS<>BLACK SEA• 402 3 HILLS<>BLACK SEA, BASIN• APRON 3 3 H YSTRICHOSPHAERIDS• USED AS INDICATORS OF/>DINOFLAGELLATEs AND 364 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 H2S INTERFACE, DEPTH VS TIME, GRAPH<>BLACK SEA, 02• 135 3 ISOSTATIC IMBALANCE<>BLACK SEA• 59 3 H2S ZONE<>BLACK SEA• 196 3 >ISOTOPE COMPOSITION OF STRONTIUM IN CARBONATE PHASE OF TWO COR/ 566 1 ILLITE<>BLACK SEA SEDIMENTS• 267 3 ISOTOPIC AND ELEMENTAL GEOCHEMISTRY, ANALYTICAL METI>BLACK SEA• 555 3 ILLITE, DISTRIBUTION MAP<>BLA CK SEA SEDIMENTS, CLAY FRACTION• 227 3 ISOTOPIC AND ELEMENTAL GEOCHEMISTRY• CORE LOCATIONI>BLACK SEA• 556 3 ILLITE CONTENT<>BLACK SEA SEDIMENTS• TERRIGENOUS• 234 3 >ISOTOPIC AND ELEMENTAL GEOCHEMISTRY OF BLACK SEA SEDIMENTS< 554 I ILLITE DR FELDSPAR<>BLACK SEA• 447 3 ISTANBUL• SILURIAN ROCKS<>TURKEY• 64 3 IMERETIN SKIY RIDGE<>BLACK SEA REGION, AOZHARO• 309 3 ISTANBUL, TEMPERATURES, AIR AND SEA•SURFACE• GRAPH<>BDSPDRUS, 102 3 >INCERTAE SEO!S POLLEN, MICROGRAPH< 405 3 ISTRANCA ANTICLINORIUM<>BLACK SEA BASIN• 308 3 >INCERTAE SEOIS POLLEN, MICROGRAPH< 407 3 ISTRANCA ANTICLINORIUM<>BLACK SEA BASIN• 310 3 INDO• KUBAN BASIN<>BLACK SEA AREA, 69 3 !STRANCA ZONE<>BULGARIA• SAKAR• 61 3 INDO• KUBAN TROUGH<>BLACK SEA BASIN• 311 3 I ZMIT SAY<>TURKEY, 99 3 INDO• KUBAN TROUGH<>BlACK SEA BASIN• 314 3 JDRDISITE<>MOLYBOENUMo PRESENT AS MOLYBDENITE OR 472 3 INDO• KUSAN TRDUGH<>CAUCASUS, 78 3 JUGLANS OR WALNUT POLLEN<>BLACK SEA• 400 3 >iNFLUENCE ORGANIC MATERIA AND PROCESSE 456 61 3 Of l S Of SULFIDE fORMAT!/ I JURASSIC, EARLY' MAP<>BLACK SEA REG ION, INGURI, ANO CORUH RIVERS, CARBONATE•FREE SEDIMENTS<>BZYB• 269 3 JURASSIC, LATE• LIMESTONE• KARST GROUNDI>CRIMEAN MOUNTAIN BELT• 162 3 >INTERSTITIAL WATERS OF BLACK SEA SEDIMENTS••NEW DATA AND REVIEI 1 203 3 ISS JURASSIC ROCKS<>BLACK SEA AREA• SWABIAN ALB• INTRUSIONS, SYNDROGEN!C<>MED!TERRANEAN GEOSYNCLINE , 203 3 JURASSIC SEDIMENTARY•VOLCANIC ROCKS• MAP<>BLACK SEA BASIN, 311 3 !ON•EXCHANGE CAPACITY<>BlACK SEA SEDIMENTS, 235 3 K• CL RATIOS• INTERSTITIAL•>BLACK SEA, 164 3 !ON•EXCHANGE CAPACITY, TABLE<>BLACK SEA SEDIMENTS, 233 3 K•FELOSPAR RATIO, DISTRIBUTION MAPBLACK SEA, 164 3 KAFAN ZDNE<>TRANSCAUCASIA• SOMKHET• 61 3 IONIC ENVIRONMENT, FLUCTUATI ONS<>BLACK SEA SEDIMENTS, 306 3 KALAMITIAN<>BLACK SEA SEDIMENTS• 350 3 !HON<>BLACK SEA SEDIMENTS• 431 3 KALAMITIAN• VITYAZEVIAN BDUNDARY<>BLACK SEA, 349 3 I RON, CLAST!C<>BlACK SEA, 533 3 KALAMITIAN BOUNOARY<>BLACK SEA• DZHEMETINIAN• 349 3 IRON, DATA PRES ENTATION<>BLACK SEA• 532 3 KALAMITIAN STAGE<>SLACK SEA, 194 3 I RON, OIAGENESIS<>BLACK SEA• 538 3 >KALAMITIAN SUBSTAGE• BASE• A GE OF< 373 3 IRON, OISSOLVED<>BLACK SEA, 139 3 �AMCHIYAN• LOWER, TROUGH<>BULGARIA, BLACK SEA BELT, 9 1 3 IRON, DISSOLVED, PROFILE<>BLACK SEA, 140 3 KAOLINITE• DISTRIBUTION HAPBLACK SEA• 534 3 K AOLINITE<>PHOSPHOLIPID MONDLAYERS, SYNTHESIZED ON 303 3 >IHON, IN AUTHIGENIC MINERALS< 532 3 KAOLINITE CONTENT<>BLACK SEA SEDIMENTS• TERRIGENOUS• 235 3 IRON• MANGANESE• AGE<>BLACK SEA• CONCRETIONS• 171 3 >KAOLINITE USED IN MOLECULAR SYNTHESIS, MICROGRAPHS< 303 3 !RUN• MANG ANESE• GRONTH RATE<>BLACK SEA• CONCRETIONS• 171 3 KARABAKH GENTLY FOLDED ZONE<>CAUCASUS, WESTERN• LOKI• 19 3 IRON• MAN GANESE CONCRETIONS<>BLACK SEA, 265 3 >KARABURUNo DUNES OF< 309 3 !RUN, PARTICULATE• PROfiLE<>RLACK SEA• 140 3 KARANGA T I NTERGLACIAL PHASE<>BOSPORUSo 123 3 IRON• PREVIOUS STUOI ES<>BLACK SEA, 532 3 KARKINIT BASIN<>BLACK SEA AREA• 69 3 IRON• PYR ITE• AND MANGANESE O ISTRIBUTIOIISEOIMENTS• MOLYBDENUM• 547 3 KARKIN!TIAN<>BLACK SEA SEDIMENTS• 350 3 A. !RON, REACTIVE• CONCENTRATIDN<>BLACK SEA CORES• 526 3 KARKINITIAN STAGE<>BLACK SEA, 194 3 !RUN, REACTIVE• OISTRIBUTION<>BLACK SEA• 533 3 >KARK"IN!TSKIY• GULF OF< 310 3 ;' !RON, REACTIVE• DISTRIBUTION MAP<>BLACK SEA• 536 3 >KARKINITSK!Y, GULF OF< 314 3 IRON• REACTIVE• FORMS QF, TABLE<>BLACK SEA, 539 3 KARST GROUNDWATER RESERVDIRSc/BELT• JURASSIC• LATE• LIMESTONE• 162 3 1 IRON, REACTivE, GRAPH<>BLACK SEA CORES, SULFUR, REDUCED, VS 526 3 KAVA RNA SYNCLINE<>BULGARIA• BLACK SEA BEL T• 91 3 >IRON, REDUCTION• ROLE OF ORGANIC MATTER< 538 3 KAZBEK• LAGODEKHI ZDNE<>CAUCASUS, 78 3 t >IRON, REDUCTION AND SULFIDIZAT ION, EVALUATION OF< 538 3 KERCH CONTINENTAL SLOPE• SEDIMENTS, MODERN<>BLACK SEA• 270 3 I RON, SAMPLE LOCATION MAP<>BLACK SEA• 533 3 KERCH DISTRICT<>BLACK SEA, AZOV• 310 3 IRON, TOTAL, DISTRIBUTION<>BLACK SEA, 535 3 KERCH SHELF OISTRICT• STRUCTURE AND MORPHOLOGI>BLACK SEA• AZOV• 314 3 IRON, TOT AL, DISTRIBUTION MAP<>BLACK SEA• 536 3 KHRAMI MASSIF<>CAUCASUS• 80 3 iRON CONTENT<>BLACK SEA CORES, 572 3 KHREITA ZONE<>CAUCASUS, OKRIBA• 78 3 IRON CONTENT<>BLACK SEA SEDIMENTS, MODERN, 267 3 K IATHA NE• GOLDEN HORN R I VER<>BOSPORUS, 123 3 IRON IN SURFACE LAYER OF BLACK SEA SEO!MENTS<>FORMS OF 532 1 KIATHANE RIVER• FLOW Df<>BOSPORUS, 117 3 I RON MONOSULFIOES<>BLACK SEA, 525 3 KIMMER IAN AND ALPINE FOLOINGc>MEDITERRANEAN GEOSYNCLINE , 203 3 IRON MONOSULFIOES, CONCENTRATION<>BLACK SEA CORES, 526 3 KIMMERIAN MOUNTAINS<>BLACK SEA• 71 3 IRON NODULES<>BLACK SEA• MANGANESE DR MANGANESE• 437 3 KIMMERIAN TECTOGENES!S<>BLACK SEA REGION, 67 3 I RON SULFIOATIDN<>BLACK SEA• 528 3 KINTRISHI AND NATANEBI RIVERS• SEOINENT<>BLACK SEA REGION, 312 3 I RON SULFIDE, FACTORS CONTROLLING AMOUNT<>BLACK sEA, 530 3 KISATIBI SUITE<>CAUCASUS• GOOERDZI• 86 3 >IRON SULFIDE, FORMS OF< 187 3 KDBULETI• POT! DUNE STRAND<>BLACK SEA REGION• 312 3 IRON SULrlDES• CHEMICAL ANALYSES<>BLACK SEA• 525 3 KDCA RIVERS, SED!MENT<>BLACK SEA REGION• FILYOS AND 309 3 IRON SULF I DES• DIAGENESIS<>BLACK SEA• 527 3 KDDORI RIVER OETRITUS<>BLACK SEA REGION• 312 3 IRON SULFIDES, HYDROTROILITE AND PYRITE• DISTRIBUTII>BLACK SEA• 537 3 KOLCHIDAN SUBZONE<>CAUCASUS, 78 3 !HON SULFIDES• METASTABLE<>BLACK SEA• 300 3 KOLKHIDA DISTRICT<>BLACK SEA, 310 3 I RON SULFIDES, ROLE IN ACCUMULATION OF TRACE ELEMEN/>BLACK SEA• 469 3 KDLKHIOA DISTRICT• SUBMARINE VALLEYS<>BL•C' •EA• 312 3 IRON SULFIDES, SAMPLE PREPARHIDN<>BLACK SEA, 524 3 KOLKRIDA SHELF DISTRICT, STRUCTURE AND MORPHOLOGY<>BLACK SEA, 312 3 IRON SULFIDES FROM NEOEUXINIAN DEPOSITSIIMICROELEMENT CONTENT IN 471 3 KREI TA SUBZONE<>CAUCASUS, 78 3 >IRON SULFIDES IN PLEISTOCENE DEEP BLACK SEA SEDIMENTS AND THEil 524 204 I KRYMSKIYE GORY, GEDLOGY<>CRIMEAN MOUNTAINS OR 3 ISLAND ARC•L IKE STRUCTURE<>BLACK SEA, 59 3 KUBAN• EASTERN• TROUGH<>CAUCASUS• 78 3 ISOALKANES<>BLACK SEA CORES, ORGANIC ANALYSIS• 479 3 KUBAN BASIN<>BLACK SEA AREA, INDO• 69 3 479 3 !SOPRENO IDS<>BLACK SEA CORES, ORGANIC ANALYSIS, KUBAN RIVER, SEDIMENT<>BLACK SEA REGION• 314 3 -Oo ISOSTATIC EQUILIBRIUM<>BLACK SEA• 75 3 >KUBAN RIVERo SEDI MENT DISCHARGE TO iiLACK SEA< 205 3 �

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 KUBAN TROUGH<>BLACK SEA BASIN• INDO• 311 3 MACKINAWITE<>BLACK SEAo 527 3 314 3 HACK INAWITE, TRANSFORMATION TO PYRITEoGRE!GITE AND 527 3 KUBAN TROUGH<>BLACK SEA BASIN• INDO• 0.- KUBAN TROUGH<>CAUCASUS, I NOD• 78 3 HACKINAWITE CONCRETIONS, MICRDGRAPH<>BLACK SEA• GREIGITE ANO 527 3 KU�A BASIN<>USSR, GEORGIA• RIONI• 64 3 MACROMOLECULES• POL YELECTROLYTES <>M INERALS ANO 296 3 co K UHTOS!S<>BLACK SEA TURBIDITES, GRADED BEDS• 326 3 MACROHOLECULES<>POLYHERIZATION IN MINERALS AND 296 3 KURTOSIS, GRAPHWATER, fUNCTION IN MINERALS AND 296 3 KUTAIS! FAULT<>CAUCASUS, SACHKHERE• 81 3 MACRDZOOBENTHDSo DENSITY AND BIOMASS• T/ISEA• NORTHWESTERN, 256 3 KUlEY ANADOLU OAGLARI, GEOLOGY<>PONTIC MOUNTAINS OR 203 3 MACROZODBENTHDSo TOTAL BIOMASSo TABLE<>BLACK SEA, 256 3 KVISHI FORMATION<>CAUCASUS, 80 3 MAGNESIUM<>BLACK SEA SEDIMENTS, 431 3 KYANITE• O!STRIBUT!ON MAP<>BLACK SEA, 225 3 MAGN ETIC ANOMALIES• MAP<>BLACK SEAo 32 3 LABA• MALKA MDNOCUNE<>CAUCASUS• 78 3 MAGNETIC ANOMALIES, MAP<>BLACK SEA, 44 3 LAGENA CFo L, LAEV IS• DISTRIBUTION MAPBLACK SEA• 12 3 >LAGENA CF• L, LAEVIS• MICROGRAPHS< 412 3 MAGNETIC F IELO<>BLACK SEA• 44 3 LAGODEKH I ZONE<>C AUCASUS, KAZBEK• 78 3 MAGNETIC SAND• POSSIBLE EXTRACTION OF<>BLACK SEA REGION• 315 3 LAMINATIONS<>BLACK SEA SEDIMENTS• 356 3 MAGNETICS• RESULTS<>BLACK SEA• 25 3 LANDSUDE S<>BLACK SEA REGION, 313 3 MAGNETOMETER AND SEISMIC DATA• ANALYSIS<>BLACK SEA• 45 3 LANOSL!OES<>BLACK SEA REGION, ODESSA AREA• 314 3 MAIN RANGE rAULT<>CAUCASUS• 81 3 L ANDSLIDE S<>BULGARIA• BLACK SEA CQASTo 93 3 >MAINE, GuLF Of• COCCOLITHS< 358 3 >LANOSTEROL< 507 3 >MAINE• GULf DFo SALINITIES< 358 3 LANTHANUM CONTENT<>BLACK SEA CORES, 572 3 MALKA MOND CLINE<>CAUCASUS• LABA• 78 3 L ARAMIAN PHASE<>CAUCASUSo LARAMIC OR 83 3 MANGANESE• AGE<>BLACK SEA• C ONCRETIONS. IRON• 171 3 LARAMIC OR LARAMIAN PHASE<>CAUCASUS• 83 3 MANGANESE<>BLACK SEA SEDIMENTS• 432 3 LARAMIC OROGENES!SCAUCASUS, 82 3 MANGANESE• DISSDLYED<>BLACK SEA• 139 3 LAYLA ZONE<>CAUCASUS, TSKHALTA• 78 3 MANGANESE• DISSOLVED• PROF"ILE<>BLACK SEAo 140 3 LEAD<>BLACK SEA SEDIMENTS• 432 3 MANGANESE• GROWTH RATEoBLACK SEA, CONCRETIONS• IRON• 171 3 LEADo STRO NTIUM RUBIDIUM• GRAPHBLACK SEA• 461 3 LEAD CONTENT<>BLACK SEA CORESo 572 3 MANGANESEo PARTICULATE, PROfiLE<>BLACK SEA, 140 3 LEAD•I SOTOPE DATA, TABL[<>BLACK SEA SEOIMENTSo 559 3 MANGANESE ANO PHOSPHORUS IN PORE WATER,//SEA• SEVASTOPOL BAY• 171 3 LEAD•I SOTOPE RATIOSo COMPARISONS<>BLACK SEA SEDIMENT, 560 3 MANGANESE CDNCRETIDNS<>BLACK SEAo IRON• 2 65 3 L EAD•ISOTDPE RATIOS• GRAPHBLACK SEA CORES• 572 3 LEAD ISDTOPES<>BLACK SEA SEDIMENTS, 559 3 MANGANESE CDNTENT<>BLACK SEA SEDIMENTS, MODERN, 267 3 >LEAD ISDTOPESo USE IN DETERMINING GEOLOGIC PROVENANCE< 554 3 MANGANESE DISTRIBUTION< •/MOLYBDENUM• IRON• PYRITE• ANO 547 3 LECHKHUMSK Y SUBZDNE<>CAUCASUS, RACHA 78 3 MANGAN SE NDOULESo L AD• SOTOPE RAT!DS,/>BLACK SEA S ED MENT AND 561 3 I • E E I I LIAS• DOGGER TROUGH• MAP<>TURKEYo ANATOLIA• 65 3 MANGANESE OR MANGANESE• IRON NODULES<>BLACK SEA• 437 3 >L IESEGANG BANDING< 529 3 MANGANESE OXIDE<>BLACK SEA• 447 3 a. LIMAN MUDS<>BLACK SEAo 170 3 NANGLISI FAULT<>CAUCASUSo ASPINDZA• 82 3 LIME BY<>BLACK SEA• CDCCQLITHOPHORESo EXTRACTION OF 299 3 MA•GL IS I SUSZONE<>CAUCASUSo A SP INDZA• 78 3 ;- >LIMNEA STAGE OF BALTIC REGION< 374 3 MA•TLE<>BLACK SEAo 578 3 LINDEN PQLLEN<>BL ACK SEA, TILIA DR 398 3 MANTLEo DENSITY CHANGES<>BLACK SEA, 58 3 f >LINGULODIN!UMo MICROGRAPH< 405 3 MAPLE PDLLENoBLACK SEA• ACER OR 398 3 f >LINGULOOINIUM CF, MACHAERDPHORUM POLLEN• MICROGRAPH< 408 3 >MARMARA• SEA OF< 310 3 LINGULOD!NIUM MACHAEROPHORUM<>BLACK SEAo 366 3 >MARMARA• SEA DFo SASINe 100 3 LINGULDDINIUM MACHAEROPHORUM<>BLACK SEA• 375 3 >MARMARAo SEA OF, BATHYMETRY< 99 3 LINGULDDINIUM MACHAERDPHORUM<>BDTHNIA, GULF DFo 375 3 >MARMARA• SEA OFo GREEK NAME FOR< 576 3 > L I NGULOO IN I UM MACHAEROPHORUM, MI CROGRAPHS< 368 3 >MARMARA• SEA OFo MILAZZIAN TE RRACE< 121 3 >L INGULODINIUM POLLEN• MICROGRAPH< 409 3 >MARMARA• SEA OFo SALINITY < 119 3 LITHIUM<>BLACK SEA SEDI�ENTSo 432 3 >MARMARA• SEA or, SHELVES< 100 3 LITHOLOGY<>BLACK SEA SEDIMENTS• 184 3 >MARMARA• SEA OF• SICILIAN TERRACE< 121 3 LITHOLDGY<>BLACK SEA SEDIMENTS, 264 3 MARMARA• SEA QF, SUBMARINE C ANYON<>BDSPORUS AND 100 3 L ITHOS TRAT I GRAPH! C UNITS• CHRONDS TRA Tl G//ASSEMBLAGES• 366 3 >MARMARA• SEA OF• TERRACES< 118 3 Ll THOS TRA Tl GRAPHIC UN ITS• TH I CKNESS• TABL/>BLACK SEA SEOI MENT S• 366 3 >MARMARA• SEA or, TYRRHENIAN TERRACE< 121 3 365 3 332 LITHOSTRATI GRAPHY OF CDRES<>BLACK SEA SEDIMENTS• >MASS PHYSICAL PROPERT IES Of SOME WESTERN BLACK SEA SEDIMENTS< I LITTOR Z 308 HATRIX<>BLACK SEA TURBIDITES, GRADED BEQS, 321 3 AL DNE<>BLACK SEA SHELF AND I LITTORAL ZONEo RECOMMENDATIONS FOR STUOY<>BLACK SEA SHELF AND 315 3 MATRIX<>BLACK SEA TURBIDITES, GRADED BEDS• 331 3 LITTORAL•ZONE DYNAMICS<>BLACK SEA, 309 3 >MATR!Xo DEFINITIONS OF< 321 3 LOADo GRAIN SIZE, TABLE<>AZOV• BLACK SEA BASINo SUSPENDED 252 3 MATRIX CONTENT YS GRAIN SIZE, GRAPHAZOV• BLACK SEA BASIN• TRACTION 251 3 MATRIX QUANTITY VS GRAIN SIZEo GRAPHBLACK SEA BASINo SUSPENDED 2 51 3 HAYCOPE SERIES<>BLACK SEA REGION, 313 3 LOADo TABLE<>BLACK SEA• AffLUENTS, SUSPENDED 253 3 MAYKOP SERIES<>CAUCASUS• 86 3 LOKI• AGQAM FAULT<>CAUCASUSo 82 3 >MEUITERRANEANo EASTERNo SUBDUCTION ZONE< 59 3 LOKI• KARABAKH GENTLY FOLDED ZONE<>CAUCASUS• WESTERN, 79 3 >MEDITERRANEAN• EVAPORITES AND STROMATOL ITES• MIOCENE• LATE< 124 3 >LO WER• CONTINENTAL•RISE HILLS< 3 3 >MEDITERRANEAN, GREEK NAME FOR< 575 3 >LUTEOL< 513 3 >MlOITERRANEAN• HIMALAYAN GEOSYNCLINE• HEAT•FLOW DATA< 50 3 LUTITEo BANDEO<>BLACK SEA• SEDIMENT UNIT 3, 582 3 >MEDITERRANE.AN AND BLACK SEAS, RADIOCARBON AND TRITIUMo SAMPLIN/ 127 3 LUTUM OENS!T IES<>BLACK SEAo TURBIDITY CURRENTS, 331 3 >MEDITERRANEAN BASINo SAPROPELIC MUDS• MASS PHYSICAL PROPERTIES< 337 3 >LYCOPENE< 513 3 >MEDITERRANEAN GEOSYNCLINE, INTRUSIONS, SYNOROGENIC< 203 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >MEDITERRANEAN GEOSYNCLINE• KIMMERIAN AND ALPINE FOLDING< 203 3 �ICROMELAN!A ELEGANTULA<>BLACK SEA SEDIMENTS• 350 3 MEDITERRANEAN INFLOW<>BLACK SEA• 138 3 MICROORGANISM COUNTS, MAP<>BLACK SEA• 421 3 >MEDITERRANEAN LEVEL• DROP INc 124 3 MICROORGAN!SMS<>BLACK SEA• CMEMOTROPH!C 420 3 >MEDITERRANEAN MOLLUSCAN FAUNAe 123 3 MICROPLANKTON• ABUNDANCEc>BLACK SEA• 406 3 >MEDITERRANEAN PROVINCE• BLACK SEA AND ANATOLIA REGIONS< 63 3 MICROPLANKTON<>BLACK SEA SEDIMENT, 402 3 >MEDITERRANEAN SEA, DINOFLAGELLATES< 377 3 MICROPLANKTON, REWORKEO<>BLACK SEA, POLLEN• SPORES• ANO 406 3 MEDITERRANEAN SEA• LOCATION MAP<>BLACK SEA• 115 3 MICROTOPOGRAPHY<>BLACK SEA> 7 3 >MEDITERRANEAN SEA, MOLYBDENUM CONCENTRATION< 54 3 3 MICROTOPOGRAPHY<>BLACK SEA B ASIN• 3 3 > MEDITERRANEAN SEA AND ATLANTIC OCEAN• WATER SAMPLING STATIONS,/ 128 3 MICROTOPOGRAPHY OF BLACK SEAoBATHYMETRY AND I I >MEDITERRANEAN SEA AND NORTH ATLANTIC OCEAN, C•l4 DATA• TABLE< 130 3 >MIO•ATLANTIC RIDGE SEDIMENT• RUBIDIUM• STRONTIUM DATA< 562 3 >MEDITERRANEAN SEA SEDIMENTS, MOLYBDENUM• IRON• PYRITE• AND MAN/ 547 3 MILAZZIAN TERRACE<>MARMARA, SEA Qf, 121 3 >MEDITERRANEAN SEA SEDIMENTS, MOLYBDENUM VS CARBON• ORGANIC• GR/ 550 3 294 3 MINERAL AND GENETIC TYPES• MAPMEDITERRANEAN SEDIMENTS< 275 3 MINERAL EXPLOITATIONoBLACK SEA• SHELF• 316 3 MEDITERRANEAN WATER<>BLACK SEA• INFLUX OF 373 3 MINERALOGY<>BLACK SEA SEDIMENTS• 213 3 MEDITERRANEAN •ATER• INFLUX OF<>BLACK SEA• 301 3 >MINERALOGY AND PETROLOGY OF BLACK SEA BASIN SEDI MENTS< 200 I MEDITERRANEAN WATER !NFLUXBLACK SEA SEDIMENTS• HEAVY 224 3 MEGA•ANT !CLI NOR I UMe>CRI MEAN 43 3 >MINERALS, REACTIONS, EQUILIBR IUM, LDW TEMPERATURE< 296 3 MELANGES• TECTONIC• AND OPHIOL!TES<>GREECE• 59 3 >M INERALS• SEDIMENTARY• CATALYSTS AND TEMPLATES IN SYNTHESIS AN/ 304 3 MELANGES, TECTONIC• AND OPHIOL!TES<>TURKEY• 59 3 >MINERALS, SOLIO•STATE BOUNDARIES< 297 3 MEMBRANE•LIKE STRUCTURES<>BLACK SEA SEDIMENTS, 332 3 >MINERALS A ND MACROMOLECULES• POLYELECTROLYTE$< 296 3 MEMaRANES<>B I CLOG I C 297 3 MINERALS AND MACROMDLECULES<>POLYMER!ZAT!ON I N 296 3 MEMBRANES• MOLECULAR OIMENSIONSWATER, FUNCTION IN 296 3 MEMBRANES• ORGANIC<>BLACK SEA SEDIMENTS• 187 3 MIOCENE• LATE<>MEDITERRANEAN, EVAPORITES AND STROMATOLITES, 124 3 >MEMBRANES• TUBULAR• IN BLACK SEA SEDIMENTS< 304 3 MIOGEOSYNCL!NAL ZONES<>BLACK SEA SHELF• 315 3 >MEMBRANES• TUBULAR• MICROGRAPHS< 305 3 MIOGEOSYN C LINES AND EUGEOSYNCLINES<>TURKEY, ANATOLIA• 11 3 MEDT!AN• PONTIAN CONGLDMERATES<>BLACK SEA REGION• 313 3 >M 1 TOCHONOR I AL SWELL! NG, MECHAN l SM< 306 3 MEDTIAN STAGE<>CAUCASUS, 87 3 HLAOOKARANGATSKA TERRACE<>BULGARIA• BLACK SEA COAST• 93 3 MESOZOIC• CENOZOIC CRYSTALLINE ROCKS• MAP<>BLACK SEA BASIN• 311 3 MOBILE REGION• EDGE DF<>BLAC K SEA, 50 3 MESOZOIC HISTORY<>BLACK SEA AND ANATOL !A, 66 3 >MODERN SEDIMENTATION IN BLACK SEA< 249 I MESTIYA• T!ANETA ZDNE<>CAUCASUS• 78 3 MOOIOLA PHASEOLINAc>BLACK SEA, 251 3 METAL CONCENTRATION IN SEDIMENTS<>BLACK SEA, TRACE• 259 3 MDUIDLUS PHASEOLINUS<>BLACK SEA SEO!MENTS, 351 3 METAL !ONS<>PDLYELECTRDLYTES, INTERACTIONS WITH 306 3 MOESIAN PLATFORMoBULGARIA• BLACK SEA BELT• 91 3 >METAL STAINING IN ORGANIC REMAINS< 304 3 3 MOESIAN PLATFORM<>RUMANIA AND BULGARIA, TO METALS• DISSOLVED• ANALYSIS<>BLACK SEA, TRACE 137 3 MOHOROVICIC OISCONTINUITY<>BLACK SEA1 72 3 METAMORPHIC REACTIONS, HEAT•FLDW VALUES<>BLACK SEA• 57 3 MOHOROVICIC DISCONTINU!TY<>BLACK SEA, 578 3 METAMORPHIC ROCKS• DISTRIBUT ION MAP<>BLACK SEA• 215 3 MDHUROVICIC SURFACE<>BLACK SEA BASIN• 42 3 METEOROLOGIC AND OCEANOGRAPHIC CONDITIONS• CHARTS<>BOSPORUS, 106 3 MOLECULAR OIMENSIONSBLACK SEA• 499 3 MOLECULAR SYNTHESIS, M!CRDGRAPHS<>KAOLINITE USED IN 303 3 METHANE BACTERIA<>BLACK SEA• 423 3 >MOLECULES• ORGANIC• SYNTHESIS AND POLYMERIZATION< 297 3 METHANE BUBBLES<>BLACK SEA BOTTOM PHOTOS• 346 3 M OLLUSCAN ASSEMBLAGES, TABLEc/SEO!MENTS, QUATERNARY• HOLOCENE, 350 3 f METHANE CDNCENTRATION<>BLACK SEA• 423 3 MOLLUSCAN FAUNA<>BLACK SEA• NEOEUXINIAN STAGE, 376 3 f METHANE CDNCENTRATIONS<>BLACK SEA WATER• 499 3 MOLLUSCAN FAUNA<>MEOITERRANEAN 123 3 METHANE DISTRIBUTION RELATIVE TO OXYGEN•ZERO• GRAPH<>BLACK SEA• 500 3 MOl-LUSCAN fAUNAS• DEEP•WATER STRATIGRAPHY AND LOCAL/>BLACK SEA• 367 3 >METHANE FORMATION AND OXIDATION• MICROBIAL< 500 3 W R S S Of BLACK S < 349 >MOLLUSCAN SHELLS IN OEEP• ATE EDIMENT EA I METHANE•PRODUC lNG PROCESSES<>BLACK SEA, 423 3 MOLLUSK SHELLS• ATLANTIS II CORE LOCATIONI>9LACK SlA SEOIMENTSi 350 3 METHYL ESTER ANALYSIS<>BLACK SEA CORE, 486 3 MOLLUSKS, DIFfRACTOGRAMS OF SHELLS<>BLACK SEA 283 3 METHYL ESTER FRACTION, MAJOR COMPONENTS• TABLE<>BLACK SEA CORE• 487 3 MDLYBOENITE OR JOROISITE<>MDLYBOENUMI PRESENT AS 472 3 METHYL ESTERS, GAS CHROMATOGRAMS<>BLACK SEA CORE, FATTY•ACID 515 3 MDLYBOENUM<>BLACK SEA SEDIMENTS• 432 3 MEZIY PLATE<>BULGARIA• 43 3 MOLYBDENUM, COPPER• AND COBALT, D!STRIBUT/>BLACK SEA SEDIMENTS• 456 . 3 >MEZIY PLATFORM< 314 3 MOLYBDENUM, DIAGENETIC REOISTRIBUTIONBLACK· SEA BASIN• 308 3 MOLYBDENUM, DIAGENETIC REO!STR!BUTIONc/SEA, REDUCING ZONE• 548 3 MEZIY PLATFORM<>BLACK SEA BASIN• 3!0 457 3 3 MOl-YBDENUM, OISTRIBUTION<>BLACK SEA SEDIMENTS, MEZ IY SHIELD<>RUMANIA• 43 3 >MOLYBDENUM, GEOCHEMICAL MOBILITY< 543 3 MG• CL RAT!OSc>BLACK SEA, 165 3 MDLYBOENUM, HYDROGEN SULFIDE, AND EH1 DISTRIB/>BLACK SEA WATER• 544 3 MICR ANTHOLITHUS• NICROGRAPHSc>BLACK SEA• 361 3 MOLYBDENUM, IRON, PYRITE, AND MANGANESE//SEA SEDIMENTS, 547 3 M ICROBIAL• DIAGRAM<>BLACK SEA, SULFUR CYCLE, 423 3 > MDLYBOENUM, PRESENT AS MOLYBDENITE OR JDRO!SITE< 412 3 MICROBIAL• METHODS OF STUDY<>BLACK SEA, SULFUR CYCLE• 421 3 MOLYBDENUM, RELATION TO SULFIDE CONTENT<>BLACK SEA SEDIMENTS, 551 3 MICROB IAL SULFUR CYCLE<>BLACK SEA, CARBON, ORGANIC, IN 424 3 MOLYBDENUM, SAMPLE MATER! AL<>BLACK SEA, 542 3 >MICROBIAL SULfUR CYCLE IN BLACK SEA< 419 543 3 I MOLYBDENUM, VERTICAL OISTRIBUTION<>BLACK SEA WATER• MICROBIOLOGY, PROBLEMS<>BLACK SEA, 420 3 MOLYBDENUM, VERTICAL D!STRIBUTIONc/SE OIMENTS• OXYGENATED ZONE• 547 3 MICROELEMENT CONTENT IN IRON SULF IDES FROM NEOEUXIN/>BLACK SEA1 471 3 MOLYBDENUM AND CARBON, ORGANIC, CONTENT//SEA1 SAPROPELI C MUDS• 464 3 MICROELEMENT CONTENT I N PYRITE FROM MODERN OEEP•SEA/>BLACK SEA• 470 3 MOLYBDENUM AND CARBON, ORGANIC• OISTRIBUT />BLACK SEA SEDIMENTS• 544 3 MICROELEMENT CONTENT IN SAPROPELIC MUOS//BLACK SEA SEDIMENTS• 463 3 MOLYBDENUM CONCENTRATION<>MEOITERRANEAN SEA• 543 3 MICROELEMENTS, ANNUAL SUPPLY, TABLEPACIFIC OCEAN• 543 3 468 3 572 MICROELEMENTS<>SAPROP£LS, BITUMENS• OCCURRENCE OF MDL YBOENUM CONTENT<>BLACK SEA CORES• 3 0.- MICROMELANIA CASPIA LINCTA<>BLACK SEA SEDIMENTS, 350 3 MOLYBDENUM CONTENT• TABLE<>BLACK SEA SEDIMENTS• 549 3 10

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 MO"YBDENUM CONTENT, TABLE<>BLACK SEA WATER, 543 3 NEOEUXIN!AN STAGE<>CAUCASUS, 86 3 MOLYBDENUM CONTENTS<>BLACK SEA, OLD BLACK SEA DEPOSITS, 548 3 NEuEUXIN!AN STAGE• MOLLUSCAN FAUNA<>BLACK SEA, 376 3 0. MOLYBDENUM DISTRIBUTION• GRAPH<>BLACK SEA, SEDIMENT CORE 1432> 442 3 NEOEUX!N!AN T!ME<>BLACK SEA BASIN, PALEOSALINITY IN 174 3 1.) MOLYBDENUM DISTRIBUTION, GRAPH<>BLACK SEA• SEDIMENT CORE 1440• 44S 3 NEOEUXIN!AN TIME, FENNOSCANDIAN ICE SHEEToWISCONSIN OR IS6 3 0 MOLYBDENUM DISTRIBUTION, GRAPH<>BLACK SEA, SED IMENT CORE 14S2> 444 3 NEOEUXINIAN TIME, SALINITY<>BLACK SEA, 458 3 MOLYBDENUM DISTRIBUTION, GRAPH<>BLACK SEA• SEDIMENT CORE 1462• 443 3 NEOGENE SEDIMENTARY ROCKS• MAP<>BLACK SEA BASIN• 310 3 MOLYBDENUM OISTRI�UT!QN, GRAPH<>BLACK SEA, SEDIMENT CORE 1470• 403 3 NEOKIMMERIAN PHASE• MOUNTAIN BUILD! NGoBLACK SEA• 68 3 MOLYBDENUM DISTRIBUTION• GRAPH<>BLACK SEA, SEDIMENT CORE 1472• 406 3 NEPHELO IO LAYER<>BLACK SEA BOTTOM PHOTOS• 346 3 MOLYBDENUM DISTRIBUTION, GRAPH<>BLACK SEA, SEDIMENT CORE 1484• 446 3 NERITIC• O!S TRIBUTION<>BLACK SEA• FORAMINIFERA• 411 3 MOLYBDENUM OISTRIRUTION• TABLE< •/HYDROGEN SULFIDE ZONE, So8 3 NEUSTAOT<>HOLOCENE• SUBOIVIS!ON BY 366 3 MOLYBDENUM DISTRIBUTION, TABLEBLACK SEA CORES• 496 3 MDL YBDENUM 0 IS TR BUT I ON GRAPH< • /HYDROGEN SULr! DE ZONE, S49 3 O C YCLIC, MAJOR 494 " 3 I NEUTRAL FR ACTION, BRANCHE • COMPO/>BLACK SEA CORE, MOLYBDENUM DISTRIBUTION IN<>�LACK SEA SEDIMENTS, S44 3 NEVI NNOMYSSK F AULT<>CAUCA SUS, 82 3 HDLYBDENUM DISTRIBUTION MAP<>BLACK SEA SEDIMENT• S45 3 NEV!NNOMYSSK RAMPART<>CAUCASUS, 78 3 MOLYBDENUM !N<>BLACK SEA SEDIMENTS, PYRITE• C ONCENTRATION OF 471 3 NE� APHONI LANOSL!DES<>BLACK SEA REGION• 313 3 MOLYBDENUM IN<>BLACK SEA WATER• S42 3 >NE� BLACK SEA TR ANSGRESSION< 374 3 MOLYBDENUM IN CONCRE TIONS• IRON•MANGANESE<>BLACK SEA• S4S 3 NICKEL<>SLACK SEA SEDIMENTS• 432 3 MOLYBDENUM IN HUMIC SUBSTANCES<>BLACK SEA• S50 3 NICKEL, DISSOLVED, PROF!LE<>BLACK SEA, 142 3 MOLYBDENUM IN PROCESSES OF SEDIMENT FORMATION ANO/>BEHAVIOR O F S42 I NICKEL• OISTRIBUT ION<>BLACK SEA SEDIMENTS• 457 3 MOLYBDENUM VS CARBON, ORGANIC• GRAPH<>BLACK SEA SEDIMENTS, 550 3 NICKEL ANO CARBON, ORGANIC, CONTENT, GR//SEA, SAPROPEL !C MUDS• 464 3 MOLYBDENUM VS CARBON• OR GANIC• GRAPMBLACK SEA CORES• S72 3 MDNODACNA CASPIA<>BLACK SEA SEDIMENTS, 3SO 3 N ICKEL CONTENT<>BLACK SEA SEDIMENTS, 558 3 MONTMORILLON!TE<>BLACK SEA SEDIMENTS• 267 3 NIMFEISKA TERRACE<>BULGARIA• BLACK SEA COAST• 93 3 MONTMORILLONITE, DISTRIBUTION HAP 94 3 MONTMOR IUONITE CONTENT<>BLACK SEA SEDIMENTS• TERRIGENOUS• 23S 3 NITROGEN, DISTRIBUTION• GRAPH<>BLACK SEA SEDIMENTS• 299 3 tBLACK SEA SEDI�ENTS, 228 3 NITROGEN, DRGAN!C.FORMS Q F<>BLACK SEA SEDIMENTS• 301 3 MONTMORIL"ON!TE VARIANCE<>BLACK SEA SEDIMENTS, 436 3 NITROGEN COMPOUND DISTRIBUTION• TABLE<>BLACK SEA CORE• 496 3 MDRPHDLDGY<>BLACK SEA BASIN, STRUCTURE AND 308 3 NITROGEN 0 ISTR I BUT I ON, GRAPH<>BLACK SEA SED I MENTS• 300 3 MOUNTAIN BU I LO I NG<>BLACK SEA, NEDKI MMERIA N PHASE• 68 3 NITROGEN RAT!O<>BLACK SEA SEDIMENTS• CARBON• 300 3 MOIJNTAIN• BU!LOING PER!OO<>TETHYS SEA AREA, 63 3 >NOilOSARIA• MICROGRAPHS< 412 3 MTSKHETA• AOZHARSKAYA fAULT<>CAUCASUS, 81 3 >NONION CF, N, STELLIGERUM• MICROGRAPHS< 012 3 MUD, SHEAR STRENGTH<>BLACK SEA SEDIMENTS, COCCOLHH 333 3 NON!ON DEPRESSULUM• DISTRIBUTION HAPBLACK SEA• ELEMENTS• DISTRIBUTION IN SAPROP ELIC 462 3 >NONION DEPRESSULUM, MICROGRAPHS< 412 3 MUDS<>BLACK SEA• LIMAN 170 3 >NORTH ATLANTIC• COCCOLITHS< 358 3 MUOS• ELEMENT CONCENTRATION IN ORGANIC F/>BLACK SEA• SAPROPELIC 467 3 NORTH ATLANTIC OCEAN, C•l 4 DATA, TABLEc>MEOITERRANEAN SEA AND 130 3 MUDS• TABLENORWAY• EMILIANIA HUXLEY!< 360' 3 MUDS, THERAPE UTICoAlOV• SEA OF• 155 3 NOVOCHERNOMORSKA TERRACE<>BULGARIA, BLACK SEA COAST, 9 3 3 Ei' MUUS, THERA PEUTIC<>BLACK SEA, ISS 3 N D VOROSS!YSK O!STRICT<>BLACK SEA• SOCH!• 310 3 MUKHURI FA UL T<>CAUCASUS• GAGRA• 81 3 NOVOROSS!YSK SHELF DISTRICT, STRUCTURE AND M/>BLACK SEA, SDCHI• 313 3 MUSSERA H I LL<>BLACK SEA REGION, 3i 3 3 >NOVOROSS I YSK S YNCLI NOR I UM< 313 3 it >MYRIOPHYLLUM POLLEN• MICROGRAPH< 409 3 NO�OROSSI YSK ZONE <>CAUC ASUS, TUAPSE• 78 3 MYT!LIO SHELLS<>BLACK SEA SEDIMENTS• 350 3 NUTRIENT �ALTS• INTERSTITIAL<>BLACK SEA• 169 3 MYTILUS GALLOPROV!NC!ALIS<>BLACK SEA• 2S2 3 NYMPHAEAN TRANSGRESSIVE PHA SE<>BL ACK SEA• 374 3 MZYMTA RIVER, SlOIMENT<>SLACK SEA REGION, 313 3 OAK PDLLEN<>BLACK SEA, QUERQUS DR 396 3 N•A"KANES• DISTRIBUTION HISTOGRAMS<>BLACK SEA CORES, 497 3 O AK POLLEN, DISTRIBUTION I N SEDIMENT<>BLACK SEA• QUERQUS OR 383 3 N RATIOS<>BLACK SEA• C• 169 3 OCEAN• ORGANIC MATERIAL> TABLE<>BLACK SEA AND WORLD 258 3 NATANEBI RIVERS, SEO!MENT<>BLACK SEA REGION, KINTRISHI AND 312 3 OCEAN• W ATER COMPOSITION• TABLE<>DANUBE> BLACK SEA• AND 94 3 NEOEUX!NIAN<>BLACK SEA, OXYGENATION• PERIODIC• 177 3 OCEANIC• BASALTIC<>BLACK SEA, CRUST• 71 3 NEOEIJX!NIANoBLACK SEA, TURBIDITY CURRENTS, 351 3 OCEANIC C RUST<>BLACK SEA• 11 3 NEOEUXIN!AN<>BLACK SEA SED I MENTS• 350 3 OCEANIC CRUST<>BLACK SEA• 57 3 NEOEUXINIAN<>CAUCASUS GLACIAL NUCLEUS, IS6 3 OCEANilATION HYPOTHESES<>BLACK SEA• 58 3 NlOEUXINIAN.e END Of, OATE<>BLACK SEA1 372 3 >OCEANOGRAPHER CRUISE IN 1967< 499 3 NEOEUX!N !AN, GEOCHEM!STRY<>BLACK SEA SEDIMENTS, 441 3 OCEANOGRAPHIC CONDITIONS• CHARTS<>BOSPORUS• METEOROLOGIC AND 106 3 NEUEUX!N!AN DEPOSITS• TA8LEBLACK SEA, 93 3 >NEOEUX!NIAN DINOFLAGELLATES< 376 3 ODESSA AREA, LANOSLIOES<>BLACK SEA REGION, 314 3 NEUEUXINIAN LAKE•SEA<>BLACK SEA• 376 3 00 I SHA SUBZONE<>CAUCASUS, 78 3 NEOEUXIN!AN LAY£RS<>AZOV, SEA QF, 314 3 ODYSSEUS 6S, RAOIOCARBDN AGE OF BLACK SEA DEEP WATE/>EXPEDIT!ON 127 I NEOEUXINIAN PALEOr.EOGRAPHY<>BLACK AND CASPIAN SEA AREAS, IS6 3 OKRIBA• KHREITA ZONE<>CAUCASU S• 78 3 NEUEUXINJAN PHASE<>BOSPORUS, 123 3 QKR!SA SU BZONE<>CAUCASUS, 78 3 NEOEUXI'BLACK SEA• 195 3 NEOEUXINIAN SEDIMENTS, COMP ARISONS<>BLACK SEA, MODERN ANO 472 3 >OLD BLACK SEA DEPOSITS• AGE OF< 276 3 NEOEUXIN!AN SEDIMENTS, GEOCHEM!STRY<>BLACK SEA• 4S8 3 O LU SLACK SEA DEPOSITS, MOLYBDENUM CDNTENTS<>BLACK SEA, S48 3 NEUEUXINIAN SED IMENTS, HYDRDTROILITE CLAYS• OR!GIN<>BLACK SEA• S51 3 >OLD BLAC K SEA DEPOSITS, TRACE ELEMENTS IN< 4S9 3 NEUEUXINIAN SHELL HATER!AL<>BLACK SEA, 349 3 >OLD BLACK SEA DEPOSITS, TRACE ELEMENTS IN SAPROPELS, SOURCE OF< 468 3 NEOEUX!NIAN STAGE<>BLACK SEA, 194 3 O LD BLACK SEA PHASE<>BDSPDRUS• 123 3 NEOEUX!N!AN STAGE• CASPIAN FAUNA<>BLACK SEA• 372 3 OLD BLACK SEA SEDIMENTS, MICROELEMENT CONTENT IN SA/>BLACK SEA, 463 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >O"D B"ACK SEA TRANSGRESSION< 374 3 OXIDATION• REDUCTION POTENT!AL<>BLACK SEA WATER• 537 3 O"EF IN RAT!DS<>BlACK SEA, PARAFFIN• 501 3 OXIDATION PROCESSES<>BLAC� SEA• 424 3 O"EF!NS<>B"ACK SEA CORES, ORGANIC ANA"YSIS• 479 3 OXYGEN, AND HYDROGEN SULF IDE DISTRIBUTI//PHOSPHORuS, SALINITY• 147 3 >O.EIC ACID< 515 3 O XYGEN, OIFrUSION Or<>BLACK SEA• 133 3 o•IGOCENE• MAP<>B.ACK SEA REGION• 70 3 OXYGEN• HYDROGEN SULF IDE INTERFACE<>BLACK SEA• 419 3 OPAL<>S"ACK SEA SEDIMENTS• 226 3 OXYGEN DEP LET ION, CAUSE OF<>BLACK SEA, 133 3 OPERCU"OOINIUM CENTRDCARPUM<>B"ACK SEA• 366 3 OXYGEN DEPLETION, TIME SCALE<>BLACK SEA• 134 3 >OPERCULOO INIUM CF, ISRAELI ANUM PO""EN, MICROGRAPH< 407 3 OXYGEN•ZERD<>B"ACK SEA, 138 3 OPHIO.ITE ZDNES<>TURKEY• ANATDllA• RAOIO"ARITE• 66 3 OXYGENATED LAYER<>BLACK SEA• WATER• 127 3 OPHIO"!TES<>GREECE, MEUNGES, TECTONIC, AND 59 3 OXYGENATED ZONE<>BLACK SEA• 422 3 OPHIO"!TES<>TURKEY, ME"ANGES, TECTON IC, AND 59 3 OXYGENATED ZONE• MOLYBDENUM• DIAGENETIC REOISTRIBUT!>BLACK SEA• 545 3 OPTICAL AND X•RAY FLUORESCENCE PRDCEDURES/>B"ACK SEA SEDIMENTS• 433 3 OXYGENATED ZONE• MOLYBDENUM OlSTRIBUTION•/>BLACK SEA SEDIMENTS• 546 3 OPTICA" AND X•RAY FLUORESCENCE SPECTROGRA/>BLACK SEA SEDIMENTS• 434 3 OXYGENAT!UN, PERIODIC, NEOEUXINIAN<>BLACK SEA, 177 3 OPTICAL EMISSION SPECTRDGRAPHY<>B"ACK SEA SEDIMENTS, 432 3 02• H2S INTERrACE, DEPTH VS TIME� GRAPH<>BLACK SEA, !35 3 ORDOVICIAN• DEVONIAN• MAP<>S"ACK SEA REGION• 65 3 >PACIFIC OCEAN, COCCOL.ITHS< 356 3 ORDOVICIAN ROCKS<>ANATDL!A, 64 3 >PAClr!C OCEAN, MO"YBDENUM CONCENTRATION< 543 3 ORGAN!C<>B"ACK SEA SEDIMENTS, MEMBRANES• 187 3 PALEO•DCEANOGRAPHIC SIGNIFICANCEB"ACK SEA• CARBON, 424 3 PAL.EGECOLOG l C !NO I CATORS<>O I ATOMS• 394 3 ORijANlC• INTERPRETATION OF MICROGRAPHS• DIAGRAMS<>CRYSTALS• 306 3 PA"EOECOLDGY<>BL.ACK SEA, DINOFLAGELLATE 375 3 ORGANIC• M ICROGRAPHS SHOWING SUBUN!TS<>CRYSTALS• 305 3 PALEOECOLOGY• GENERAL<>BLACK SEA SEDIMENTS• PALEOSALINITY AND 356 3 ORGANIC• NITRATE, AND PHOSPHATE CDMPDSITIDN•/>B"ACK SEA �ATER• 94 3 PAL.EDGENE SEDIMENTARY ROCKS, MAP<>BLACK SEA BASIN, 310 3 ORGANIC• SYNTHESIS AND POLYMERIZATIDN<>MDLECU"ES• 297 3 PALEOGENE VOLCANOGENIC•SEDIMENTARY ROCKS• MAP<>BLACK SEA BASIN• 311 3 ORGANIC ANA"YSES, EXPERIMENTA" METHDDSBLACK SEA SEDIMENTS• 356 3 >ORGANIC ANALYSES OF B"ACK SEA CORES< 477 I >PA"EOSALINITY DETERMINATION< 362 3 ORGANIC ANALYSIS, ACID• ALKANE RATIDSoBLACK SEA CORES, 494 3 PALEOSALINITY GRAO!ENT<>BLACK SEA, 364 3 ORGANIC ANALYSIS, CARBOXYL IC ACIDS<>B"ACK SEA CORES• 467 3 PALEOSALINITy IN NEOEUXINIAN TIMEoBL.ACK SEA SASIN• 174 3 ORGANIC ANALYSIS, ESTERIFIED ACID FRACTION<>BLACK SEA CORES, 479 3 PALEOSALINITY INDICATORS••EV!OENC E rROM BLACK SE/>COCCOLITHS AS 353 I ORGANIC ANALYSIS• FATTY ACIDS<>BLACK SEA CORES• 489 3 PAL.EDZOIC CRYSTALLINE ROCKS• MAP<>BLACK SEA BASIN• ARCHEAN• 311 3 ORGANIC A NALYSIS, HYORDCARBONS<>B"ACK SEA CORES, 467 3 PALEOZOIC SEDIMENTARY ROCK S• MAP<>BLACK SEA BASIN• 311 3 ORGANIC ANALYSIS, ISOA"KANES<>B"ACK SEA CORES• 479 3 PALEOZOIC SEDIMENTS• SOuRCE<>TURKEY• ANATO"IA• 57 3 ORGANIC ANALYSIS, ISOPRENO!OS<>B"ACK SEA CORES, 479 3 >PAL.MITIC ACID< 514 3 ORGANIC ANALYSIS, OLEFINS<>BLACK SEA CORES• 479 3 >PALYNOL.OGIC INVESTIGATION Or TWO BLACK SEA CORES< 381 I ORGANIC ANALYSIS, PERYLENE OR OEHYOROCHOL ANTH/>BLACK SEA CORES, 479 3 PA.YNDLOGY , CORE L.OCATION MAp<>BLACK SEA 381 3 ORGANIC A NALYS!So PHTHALATE ESTERS<>BLACK SEA CORES• 479 3 PALY�OLOGY• CORE LOCATION MAP<>BLACK SEA• 396 3 ORGANIC ANALYSIS, PHYTAOIENES<>BLACK SEA CORESo 491 3 >PALYNOLOGY, STUDIES< 381 3 a. ORGANIC ANALYSIS, SEPARATION PROCEDURE AND YIE/>BLACK SEA CORE• 476 3 PALYNOLOGY STUDY• METHOOS<>BLACK SEA• 396 3 f ORGANIC ANALYSIS, STEROIDAL COMPOUNDSoBLACK SEA CORES, 479 3 >PALYNOMORPHS< 381 3 :; ORGANIC ANALYSIS, STRUCTURES<>BLACK SEA CORES, 465 3 >PAL YNOMDRPHS• Ml CROGRAPHS< 384 3 t ORGANIC AN ALYSIS, TR ITERPENO ! OAL COMPOUNDS<>BLA CK SEA CORES, 479 3 >PALYNDPLANKTOLOGIC ANALYSIS Or SOME BLACK SEA CORES< 396 I >< ORGANIC ANALYSIS OF CORE SAMPLES• TABLE<>BLACK SEA SEDIMENT• 503 3 PALYNOPLANKTOLOGIC CONTENT• SOURCEc/SEA SEDIMENTS• BOTTOM• 410 3 O RGANIC COMPOUNDS, O!AGENES!S<>BLACK SEA• 522 3 PALYNOPLANKTOLOGIC CONTENT OF CORE 1461<>BLACK SEA• 404 3 ORGANIC COMPOUNDS, SUHMARY<>BLACK SEA, 565 3 PAL YNOPLANKTDLDGIC CONTENT O F CORE 61o8LACK SEA• 402 3 ORGANIC CONCENTRATION Dr<>BLACK SEA• ELEMENTS• 259 3 PALYNOPLANKTOLDGIC CONTENT Or CORE 72<>BLACK SEA, 400 3 ORGANIC MATERIAL• BALANCE• TABLE<>BLACK SEA• 258 3 PALYNOPLANKTOLOGIC CONTENT Or CORE 66<>BLACK SEA• 396 3 OKGANIC MATER!AL.<>BLACK SEA BASINo 252 3 >PANAMA, GULF OF• COCCOLITHS< 356 3 ORGANIC MATERIAL, DISCHARGE• TABLE<>BLACK SEA, ArFL\IENTS• 256 3 >PANAMAo GULF OF• SAL!NlTIES< 358 3 ORGANIC MATERIAL.• MIGRATION• TABLE<>BLACK SEA• AHL\IENTS• 256 3 PARAFFIN• OLEFIN RA TIOS<>BLACK SEA, 501 3 ORGANIC MATERIALBLACK SEA SEDIMENT• 503 3 ORGANIC MATERIAL.• SHEAR STRENGTH<>BLACK SEA SEDIMENTS• 333 3 >PARIS BASIN, BRAARUOOSPHAERA< 360 3 ORGANIC MATERIAL, TABLEoBLACK SEA AND WORLD OCEAN, 258 3 PARTICULATE MATTER• RIVER INPUT<>BLACK SEA• , 1 42 3 ORGANIC MATERIAL• TERRESTRIAL<>BLACK SEA• 496 PARTICULATE PHASESBLACK SEA, 460 PASAOENAN PHASE<>CAUCASUS• 62 3 ORGANIC MATERIAL AND PROCESSES OF StiL.r iOE FORMATI/>lNrLUENCE OF 456 PASSEGA OIAGRAMS<>BLACK SEA TURBIDITES, GRADED BEDDING, C•M OR 329 3 ORGANIC MATTER, ANAEROBIC DEGRADATION, HYDROGEN ACC/>BLACK SEA, 422 PEATS• EMERGENCE OF<>HOLOClNE 374 3 ORGANIC MA TTER<>B"ACK SEA• SEA�ATER• 94 >PEO!ASTRUM BORYANUM POLLEN• MICROGRAPH< 407 3 ORGANIC MATTER, r!BERLIKE<>BLACK SEA SEDIMENTS, 335 PERIO!NluM CLAUOICANS<>BLACK SEA DINOFLAGELLATES, 366 3 >ORGANIC MATTER• PRESERVATION UNDER REDUCING CONDITONS< 301 PERIDINIUH COMPRESSUM<>BLACK SEA• 366 3 ORGANIC MATTER• ROLE OF<>BLACK SEA• SuLFUR CYCLE, 419 PEHIDINIUM CDNICD!OES<>BLACK SEA• 366 3 ORGANIC MATTER• SOURCE<>BLACK SEA, 2i'l PERIDINIUH LEONIS<>BLACK SEA DINDrLAGELLATES• 366 3 ORGANIC MDLECU"ESBLACK SEA• 366 3 ORGANIC MOL.ECULES, SYNTHESISPERIOINIUH SP, Cr, CL.AUOICANS• MICROGRAPHS< 368 3 ORGANIC PROOUCTIVITY<>BLACK SEA• 249 PERIOINIUM SUB! NERME<>BLACK SEAo 366 3 ORGANIC REMA!NS<>METAL STAINING IN 304 PERIOINIUM TROCHOIDEUM<>BLACK SEAo 375 3 OVERSATUR ATION<>B"ACK SEA• CALC IUM CARBONATE 261 PERIOINIUM TROCHDIDEUM<>BLACK SEA OINDrLAGELLATES, 366 3 OXIDATION• BIOLOGIC AND CHEM!CAL<>BLACK SEA• SULFIDE 420 PERIOINIUM TRDCHO!OEUM• PHOTO<>BLACK SEA• 186 3 0. OXIOATION<>BLACK SEA• SULFIDE 423 PERIO!N!UM TROCHOIOEUM, PHOTO<>BLACK SEA, 166 3 �

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 PERMEABll!TY<>BLACK SEA• SEDIMENT UNIT 2• 337 3 PHYSIOGRAPHIC PROVINCES, AREA orc>BLACK SEA, 3 3 PERMIAN• MAP<>BLACK SEA REGION, C ARBONIFEROUS• 66 3 PHYSIOGRAPHIC PROVINCES<>BLACK SEAo 6 3 0. >PERU, PHAEO•PIGMENTS• VERTICAL DISTRIBUTION• GRAPH< 428 3 PHYSIOGRAPHIC PROVINCESoBL.ACK SEA, 13 3 � >PERYLENEc 510 3 PHYSIOGRAPHIC PROVINCES<>BLACK SEA BASIN• 2 3 � PERYLENE DR OEHYOROCHDLANTHRENEBDSPORUS, GEOGRAPHY AND 99 3 PETROLEUM• ORIG!N<>STERANES IN 506 3 PHYTAO!ENES<>BLACK SEA CORES, ORGANIC ANAL.YSIS, 491 3 >PETROLEUM• PERYLENES ore 510 3 PHYTOPLANKTON, BIOMASS, GRAPH<>BL.ACK SEA, 255 3 >PETROLEUM• PORPHYRINS IN, RELATION TO CHLOROPHYLL IN MARINE SE/ 468 3 PHYTOPLANKTON<>BLACK SEAo 252 3 PETROLEUM ETHER• CONCENTRATION<>BLACK SEA SEDIMENT• 520 3 PHYTOPL.ANKTON<>BULGARIAo BLACK SEA, 95 3 PETROLEUM ETHER• DIETHYL ETHER• VISIBLE SPECTRUM, G/>BLACK SEA• 520 3 PHYTOPL.ANKTON PROOUCTIONc>BLACK SEA• 271 3 PETROLEUM ETHER•O !ETHYL ETHER• CONCENTRATI />BLACK SEA SEDIMENT• 520 3 PICEA OR SPRUCE POLLENc>BL.AC K SEA, 396 3 PETROLOGY<>BLACK SEA SEDIMENTS• 226 3 P I GMENT CONTENT OF SEDIMENT• REL.ATIONS< •/SOUTHWESTERN COAST• 427 3 PETROLOGY or BLACK SEA BASIN SEDIMENTSe>MINERALOGY AND 200 I PIGMENTS, ABSORPTION SPECTRA, GRAPH<>BL.ACK SEA, 427 3 PETROPAVLDWSKIY LANDSUOES<>BLACK SEA REGION• 313 3 PIGMENTS<>BL.ACK SEA• CAROTENOIO•TYPE 427 3 PH•DEPENDENT rACTORSe>BLACK SEA SEDIMENTS, EH• AND 446 3 PIGMENTS, CONCENTRATIONS, TABLE<>BLACK SEA SURHCE SAMPLEo 520 3 PHAEO• PIGMENTS,; VERTICAL DISTRIBUTIONo GRAPH<>BLACK SEA• 427 3 PIGMENTS, CONCL.USIONS REGARDING<>BLACK SEA• 428 3 PHAEO•PIGMENTSo VERTICAL DISTRIBUTION, GRAPHoPERUo 428 3 PIGMENTS• VERTICAL. DISTRIBUTION• GRAPH<>BLACK SEA• PHAEO• 427 3 PHAEDPHORBIDE<>BLACK SEA• 426 3 PIGMENTS DISTRIBUTION, GRAPHc>BLACK SEA SEDIMENTS• 300 3 PHAEOPHYTIN<>BLACK SEA, 426 3 PINUS AND CEDRUS, PERCENT• GRAPH<>BLACK SEA• POLLEN• 387 3 PHANAGORIAN REGRESSION<>BLACK SEA, 373 3 PINUS PDLLEN<>BLACK SEA• 396 3 PHANAGORIAN REGRESSIONc>BLACK SEA, 3 74 3 PINUS POLLEN, DISTRIBUTION IN SEOIMENT<>BL.ACK SEA• 383 3 >PHEOPHORBIOE A< 516 3 >PINUS SILVESTRI$ POLLEN• MICROGRAPH< 405 3 >PHEOPHORBIOE A, STRUCTURE< 517 3 >PITSUNOA C APE< 311 3 >PHEOPHYTIN A< 516 3 PlAGIOCLASE• K•HLDSPAR RATio, DISTRIBU/>BLACK SEA SANDS, DEEP, 221 3 >PHEOPHYT!N A, STRUCTURE< 517 3 PLANKTON<>CARBON, OXIDATION IN 133 3 >PHEOPORPHYR!No STRUCTURE< 517 3 PLANKTON, CARBONATE PROOUCTIONc>BL.ACK SEA, 281 3 PHOSPHATE COMPOSITION, TABL.Ec/SEA WATERo ORGANIC, NITRATE, AND 94 3 PLANT GROUPS<>BLACK SEA• 252 3 PHDSPHATE"PHOSPHORUS• SILl CA, ALKALI NIT1/I NTERST IT IAL AMMON lA• 169 3 PLASTICITY<>BLACK SEA SEDIMENTS• 336 3 >PHOSPHQL.!P!O COMPOUNDS AND B!OL.OG!C MEMBRANES• MQL.ECUL.AR D!MEN/ 303 3 PLASTIC ITY CHART<>BLACK SEA SEDIMENTS, 336 3 >PHOSPHOL.IP!O MONOLAYER&• SYNTHESIZED ON KAOLINITE< 303 3 PLATE OR GLOBAL TECTONICS<>BLACK SEA, 50 3 PHOSPHORUS• ATLANTIS II CRUISE RESUL.TS<>BLACK SEA• 144 3 PLEI STOCENE<>BDSPORUSo FLOOD FLOWS• 100 3 PHOSPHORUS, BIDL.OGIC ACTIV!TYoBL.ACK SEA• 146 3 PLEI STOCENE, D IAGRAM<>BLACK SEA• SEA•LEVEL rL.UCTUATIONS, 157 3 PHOSPHORUS<>BLACK SEA SEDIMENTS• 431 3 PLEI STOCENE, LATE<>BOSPORUS• ROL.E SINCE 121 3 PHOSPHORUS, COMPARISON WITH EARLIER MEASUREMENTS<>BLACK SEAo 144 3 PlEI STOCENE• LATE• LONGITUDINAL PROrilE<>BOSPORUSo 123 3 PHOSPHORUS, ORGANIC• TABLE<>BLACK SEA, P04•P AND 145 3 PLEI STOCENE DEEP BL.ACK SEA SEOIMENTS<>DIATOMS IN 389 1 A. PHOSPHORUS, SAL.INITY, OXYGEN, AND HYDROGEN SUL.FIDE/>BLACK SEA, 147 3 PLEI STOCENE DEEP BLACK SEA SEDIMENTS AND THEII>IRON SULrJDES IN 524 I PHOSPHORUS, SAMPL lNG AND ANALYTI CAL. METHOOS<>BLACK SEAo 144 3 PLENIGLACIAL STAGE<>BLACK SEAo 194 3 5" PHOSPHORUS, TOTAL., DISTRIBUTION, GRAPH<>BL.ACK SEA SEDIMENTS, 300 3 PLIOCENE 0 I NOrL.AGELLATES<>RUMANIAo 378 3 t PHOSPHORUS BAL.ANCE<>BLACK SEAo 147 3 PLIOCENE STAGE<>CAUCASUSo CHOKRAKIAN• 86 3 f >C PHOSPHORUS BALANCE, MODEL<>BLACK SEA, 148 3 PlUNGE, WESTERN ZONE Or<>CAUCASUSo 78 3 PHOSPHORUS COMPONENTS, MEAN VAL.UEs, GRAPH<>BL.ACK SEA• 145 3 POLLEN, ALNUS• PERCENT, GRAPH<>BLACK SEA• 387 3 PHOSPHORUS CDNTENT<>BL.ACK SEA SEDIMENTS, MODERN, 267 3 PDLLENo ARTEMISIA• PERCENT, GRAPH<>BLACK SEA• 388 3 PHOSPHORUS OISTR!BUTIONo GRAPHS<>BLACK SEA, 146 3 POLLENc>BLACK SEAo 585 3 >PHOSPHORUS IN BLACK SEA< 144 I PLLLENo CHENOPOO!ACEAEo PERCENT• GRAPH<>BLACK SEA• 388 3 PHOSPHORUS IN PORE WATER• TABL.Et<>SLACK SEAo 187 3 PHOSPHORUS SEOIMENTAT!ON<>BL.ACK SEA• 149 3 POLLEN, PTEROCARYA• PERCENT• GRAPH<>PI Arr SEA• 387 3 PHOSPHORYL.AT!ON PROCESSESoCHL.S• 296 3 POL.LEN, QUERCUS, PERCENT, GRAPH<>BLACK SEA, 387 3 PHOTO<>BLACK SEA BOTTOM 344 3 POLLEN, SPORES• AND MICROPLANKTON, REWORKEO<>BLACK SEA, 406 3 PHOTOGRAPHS, EQUIPMENT AND TECHNI QUESoBLACK SEA BOTTOM 338 3 POLLEN AND SPORE CONTENT, GRAPH<>BLACK SEAo SEDIMENT• 382 3 PHOTOGRAPHS Or BL.ACK SEAc>BOTTOM 338 I POLLEN AND SPORES, REWORKEO<>BLACK SEAo 383 3 PHOTOSc>BLACK SEA BOTTO� 340 3 POLLEN AND SPORES PER GRAM Or SEOIMENTc>BLACK SEA, 382 3 PHOTOSc>BLACK SEA BOTTOM 342 3 POLLEN DIAGRAM Or CORE 1461<>BLACK SEA, 403 3 PHOTOSc>BLACK SEA BOTTOM 343 3 POLLEN DIAGRAM Or CORE 61<>BL.ACK SEA, 401 3 PHUTOSc>BlACK SEA BOTTOM 345 3 POLLEN DIAGRAM Or CORE 66<>BLACK SEA• 397 3 PHOTOS, CAMERA ASSEMBL.V. OIAGRAM<>BL.ACK SEA BOTTO� 339 3 POLLEN DIAGRAM Or CORE 72<>BLACK SEA• 399 3 PHOTOS• CAMERA•STATION L-OCATION MAP<>BLACK SEA BOTTOM 339 3 POLLEN SPECTRA• OESCRIPTIDN<>BLACK SEA, 396 3 PHOTOS, OEBRISo SMALL<>BLACK SEA BOTTOM 339 3 POLLEN TYPESo DISTRIBUTION I N SEO!�ENT<>BLACK SEA• 383 3 PH OTOSo PHYSICAl DISTURBANCE, LACK oroBLACK SEA BOTTOM 339 3 POLLENS• VARIETIES<>BLACK SEA• 398 3 PHOTOSYNTHETIC NONSULrURc>BLACK SEA• BACTERIA• 421 3 PDLYCYCL!C <>BLACK SEA SEDIMENT CORE• AROMATICSo 510 3 PHOTOSYNTHETIC SULrUR<>BLACK SEAo BACTERIA• 421 3 >POLYELECTROLYTE$, INTERACTIONS WITH METAL IONS< 306 3 PHOTOTROPHIC ZONEe>BLACK SEA, 422 3 PO� YELECT�OL YTES<>M I NERALS AND MACROMOLECULES, 296 3 PHTHALATE ESTERSc>BLACK SEA CORES, ORGANIC ANALYSIS, 479 3 >POLYENE PIGMENTS< 512 3 >PHYlLOERYTHRIN• STRUCTURE< 5!7 3 >POLYGONUM POLLEN, MICROGRAPHc 409 3 PHYLLOPHORA NEVROSA<>BLACK SEA• 252 3 POLYMERIZATION<>MOLECULES• ORGANIC• SYNTHESIS AND 297 3 PHYLl OSILICATES<>BLACK SEA SEDIMENTS, 226 3 POLYMERIZATION<>PURINES• BASES or, 303 3 PHYSICAL PROPERTIES Or SOME WESTERN BLACK SEA SEDIMENTS<>MASS 332 I PDL.YMERIZAT!ON<>PYRIMIOINESo BASES or, 303 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 >POLYMERIZATION IN MINERALS AND MACROMOLECULES< 296 3 PYRENEEAN PHASE• OLO<>CAUCASUS, 83 3 POLYMERIZATION OF ORGANIC MDLECULESPYRIMIDINES, BASES or, POLYMERIZATIONc 303 3 POLYMERIZATION PROCESS<>BLACK SEA, OtAGENETIC C94 3 PYRITE, AND MANGANESE 0 ISTR I BUT!ONe •/MOL YBOENUM, IRON, 547 3 >POLYPEPTIDES, SYNTHESIS< 303 3 >PYRITE, AUTHIGENIC< 532 3 POLYPOOIACEAE SPORES<>BLACK SEA• 402 3 PYRITE<>BLACK SEA SEDIMENT, DEEP, 469 3 >POLYPOOIUM POLLEN• MICROGRAPH< 408 3 PYRITEc>BLACK SEA SEDIMENTS, 438 3 >POL YSACCHAR I OES• SYNTHESIS< 303 3 PYRITE, CONCENTRATION OF COPPER IN<>BLACK SEA SEDIMENTS, 471 3 PONT!AN AGEe>EUROPE, 376 3 PYRITE, CONCENTRATION OF MOLYBDENUM INc>BLACK SEA SEDIMENTS, 471 3 PONTIAN BLOCK<>BLACK SEA REGION• 91 3 PYRITE, DISTRIBUTION MAP< •/IRON SULFIDES• HYDROTROILITE ANO 537 3 PONTIAN CONGLOMERATESc>BLACK SEA REGION, MEOTIAN• 3!3 3 P YRITE<>GREIG!TE AND MACKINAWITE• TRANSFORMATION TO 527 3 PONTIAN GEOSYNCLINE<>BLACK SEA AREA• 63 3 PYRITE CONCENTRATION<>BLACK SEA CORES, 526 3 PONTIAN GEOSYNCLINE• MAP<>TURKEY, ANATOL!A, 65 3 >PYRITE FRAMBO!DS, ORIGIN< 187 3 >PONTIAN MASSIF< 64 3 PYRITE FRAMBO!OS, PHOTOe>BLACK SEA, 189 3 >PONTIAN RELICTS OR CASPIAN FAUNAe 376 3 PYRITE FROM MODERN OEEP•SEA SEOIMENTS,//MICRDELEHENT CONTENT IN 470 3 PUNTIAN STAGE<>CAUCASUS• 87 3 PYRITE MAX!MUM<>BLACK SEA SEDIMENTS• 463 3 PONTIAN SYNCUNORIUM<>BLACK SEA BASIN, EAST 309 3 PYRITIZATION<>BLACK SEA SEDIMENTS, 463 3 PONTIAN SYNCUNORIUM<>BLACK SEA BASIN, EAST 311 3 PYROXENE, DISTRIBUTION MAP<>BLACK SEA, 225 3 PONTIAN SYNCUNORIUM<>BLACK SEA BASIN, WEST 308 3 QUARTZ, AND FELDSPAR CONTENTS or, TABLE//AFFLUENTS• CARBONATE• 206 3 PONTIAN SY NCUNORIUM<>BLACK SEA BASIN, WEST 310 3 QUARTZc>BLACK SEA SEDIMENTS• . 220 3 PONTIAN SYNCUNORIUMS<>BLACK SEA BASIN• 308 3 QUARTZ• FELDSPAR GRAIN•SIZE RELATION, GRA/>BLACK SEA SEDIMENTS• 218 3 >PONTIC MOUNTAINS< 3 QUARTZ ELDSPAR RATIO<>BLACK SEA SEDIMENTS, TERRIGENOUS• 234 3 I • F >PONTIC MOUNTAINS OR KUZEY ANADOLU OAGLARI, GEOLOGY< 203 3 QUARTZ• FELDSPAR RATIO, DISTRIBUTION MA/>BLACK SEA SANDS• DEEP• 221 3 PONTIDES FOREOEEP<>BLACK SEA, 69 3 QUARTZ• FELDSPAR RATIO, D ISTRIBUTION MAP<>BLACK SEA SEDIMENTS, 218 3 PORE FLU!DS<>BLACK SEA, IONIC COMPOSITION OF 164 3 QUARTZ CONTENT• DISTRIBUTION MAP<>BLACK SEA SANDS• DEEP• 221 3 POROSITY• AND PHYSICAL PROPERTIES OF SE//SEA• WATER CONTENT• 160 3 QUARTZ CONTENTS, DISTRIBUTION HAPc>BLACK SEA SEDIMENTS, 2 18 3 PUROSITYc>BLACK SEA SEDIMENTS, 335 3 QUATERNARY<>BLACK SEA, SALINITY FLUCTUATIONS• 156 3 PORPHYRINS, ABUNOANCE<>BLACK SEA• CHLORINS AND 519 3 QUATERNARY<>BOSPORUS, STRAITS, MAR INE, 119 3 PORPHYRINS<>BLACK SEA SEDIMENT CORE, CHLORINS AND 5!6 3 QUATERNARY• HOLOCENE, MOLLUSCAN ASSEMBLAGI>BLACK SEA SEDIMENTS• 350 3 PORPHYRINS<>CHLORINS• CONVERSION TO 505 3 QUATER•ARY• HOLOCENE STRATIGRAPHYc>BLACK SEA• 194 3 PORPHYRINS, EXPERIMENTAL METHODS<>BLACK SEA, CHLORINS AND 5 1 6 3 QUATERNARY• LATE, LITHOSTRATIGRAPHY AND CHRONOSTRAT/>BLACK SEA• 366 3 PORPHYRINS, HISTOGRAMS OF MASS SPECTRA<>BLACK SEA. CHLORINS AND 521 3 QUATER•ARY , METHODS OF INVESTIGATIONBLACK SEA• CHLORINS AND 519 3 QUATERNARY• THEORETICAL CROSS SECTIONSc>BOSPORUS VALLEy, 118 3 PORPHYRINS, SOLVENT•EXTRACTION SCHEME, OIAGRAM<>CHLORINS AND 518 3 QUATERNARY AT 364 DEEP• WATER SEDIMENTS or BLA/>OINOFLAGELLATE$ IN L E I PORPHYRINS, VISIBLE SPECTRUM FROM SURFA/>BLACK SEA• CHLORINS AND 519 3 QUATERNARY DEPOSITS• OINOFLAGELLATES<>TERTIARY AND 364 3 PORPHYRINS IN, RELATION TO CHLOROPHYLL IN MARINE SE/>PETROLEUM• 468 3 Q UATERNARY GENERA<>BLACK SEA, 371 3 POSTGLACIAL STAGES<>BLACK SEA 372 3 QUATERNARY ROCKSctSEA AREA, HUNGARIAN AND WALACHIAN LOWLANDS, 203 3 POTASSIUM<>BLACK SEA SEDIMENTS• 431 3 QUATERNARY SEDIMENTATION AND MARINE LIFE• FACTORS C/>BLACK SEA• 118 3 :; POTASSIUM CONTENT<>BLACK SEA SEDIMENTS, 556 3 QUATERNARY. SEDIMENTS, MAP<>BLACK SEA BASIN, 310 3 POT HOLESc>BOSPORUS• 99 3 >QUERCUS. MICROGRAPH< 405 3 POT!• ABEDATI FAULT<>CAUCASUS, 82 3 >QUERCUS• MICROGRAPHS< 384 3 I POT ! DUNE STRAND<>BLACK SEA REGION• KOBULETI• 3 12 3 QUERCUS• PERCENT, GRAPH<>BLACK SEA, POLLEN, 387 3 t P04•P AND PHOSPHORUS• ORGANIC• TABLE<>BLACK SEA• 145 3 QUERQUS OH OAK POLLEN<>BLACK SEA, 396 3 PRECAMBRIAN ERA<>ANATOLIA• 63 3 QUERQUS OR OAK POLLEN, DISTRIBUTION IN SEOIMENT<>BLACK SEA, 383 3 PRINCIPLE"COMPONENTS SOLUTI ON<>FACTOR ANALYSIS• 433 3 >QUI NQUELOCUL I NA• MlCROGRAPHSc 4 1 2 3 PROGRESS 0F<>BLACK SEA, ANOXIC CONDITIONS, 134 3 RACHA• LECHKHUMSKIY SUBZONE<>CAUCASUS, 78 3 PRUMAX FACTORS• CORRELATIONSc/SEA SEDIMENTS, GEOCHEMISTRY• 440 3 RACHA• SVANETSKIY FAULT<>CAUCASUS, 82 3 PRUMAX FACTORS, CORRELATIONS, TABLEBLACK SEA• 129 3 PROHAX SOLUTION<>rACTOR ANALYSIS• 434 3 RADIOCARBON AND TRITIUM• SAMPLING FORBLACK SEA• 502 3 RADIOCARBON CONTENT VS DEPTH, GRAPH<>BLACK SEA, 131 3 PHOPANE CONCENTRATION<>BLACK SEA WATER, 499 3 RADIOCARBON OATES<>BLACK SEA SEDIMENTS• 365 3 PROPYLENE CONCENTRATION<>BLACK SEA W ATER, 499 3 RADIOCARBON OATING<>BLACK SEA SEDIMENTS• 190 3 PHOPYLENE RATIOS RELATIVE TO OXYGEN•ZERO•/>BLACK SEA• PROPANE• 502 3 RAOIOLAR I TE• OPHIOLITE ZONE Sc>TURKEY, ANATOL lA• 68 3 PROTELPHIDIUM SUBGRANOSUS• D!STRIBUTION//SEA SHELF• RUMANIAN• 416 3 >REACTION RATES IN CELLULAR PROCESSES AND SEDI�ENTARY SYSTEMS< 296 3 >PROTELPH!UIUM SUBGRANOSUS• MICROGRAPHS< 4 12 3 REACTIONS• EQUILIBRIU�, LOW TEMPERATURE<>MINERALS• 296 3 >PROTELPH!DIUM SUBGRANOSUS MARTKDB !, MICROGRAPHS< 412 3 >RECENT SED IMENTS OF BLACK SEA< 183 1 PROVENANCEc/ISOTOPE RATIOS, USED AS INDICATOR Of GEOLOGIC 554 3 REO SEA<>BLACK SEA• COMPARISON WITH 589 3 PROVE�ANCE<>LEAO ISOTOPES• USE IN DETERMINING GEOLOGIC 554 3 >RED SEA• COCCOL ITH ASSEMBLAGES< 358 3 PSHEKHA• TYRNYAUZ GEOSUTURE<>CAUCASUS, 78 3 >RED SEA• DINOFLAGELLATES< 377 3 PSHEKH�· TYRNYAUZ GEOSUTURE<>CAUCASUS, 82 3 >REO SEA• SALINITIES• SURFACE< 358 3 PSOU RIVER, SEOIMENT<>BLACK SEA REGION, 3 1 3 3 >RED SEA• 1966 EXPEDITION< 577 3 >PTEROCARYA, MICROGRAPHS< 384 3 REO TIOES<>GONYAULAX POLYEDRA, 375 3 PTEROCARyA, PERCENT> GRAPH<>BLACK SEA, POLLEN, 387 3 REOBEOS<>ANATOL I A• 64 3 PTlROCARYA OR WALNUT POLLEN• DISTRIBUTION IN SEOIME/>BLACK SEA• 383 3 REDOX CUND!T!ONS, CHANGE IN<>BLACK SEA, 461 3 >PTEROCARYA POLLEN, MICROGRAPH< 409 3 REDOX POTENTIAL• GRADIENT<>BLACK SEA• 4 20 3 PULSATIONS<>BLACK SEA TURBIDITES• GRADED BEDDING• 329 3 REDUCING CQNO!TONS<>ORGANIC MATTER, PRESERVATION UNDER 301 3 o­ >PURINES, BASES OF, POLYMERIZATIONc 303 3 REDUCING ENVIRONMENT<>BLACK SEA SEDIMENTS• 291 3 Il,) Col

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 REDUCING ENVIRONMENT, ESTABLISHMENT OFc>BLACK SEA• SALINITIES, SURFACE• GRAPH<>BDSPORUS• REDUCING ZONE• MOLYBDENUM• DIAGENETIC REOISTR!BUTIOI>BLACK SEA> 297 3 SALINITIES, SURFACE<>REC SEA, 105 3 0. REDUCT!ON<>BLACK SEA• SULFATE 548 3 SALINITYc>BLACK SEA> 358 3 .., REOUCTION<>BLACK SEA• SULFATE 419 3 SALINITY<>BLACK SEA• 118 3 ,. REDUCTION• ROLE OF ORGANIC MATTER<>lRON• 422 3 SALINITY<>BLACK SEA• 356 3 REilUCT!ON AND SULriDIZATION> EVALUATION OF<>IRON• 538 3 SA�INITYc>BLACK SEA> 375 3 REDUCT!ON POTENT! AL<>BLACK SEA WATER> OX! DATI ON• 538 3 SALINITY<>BLACK SEA• NEO£UX INIAN TIME, :191 3 REFLECTED•WAVES METHOD OR RWM• RESULTS<>BLACK SEA> 537 3 SALINITY, CHANGE IN<>BLACK S EA, 458 3 REGRESSION<>BLACK SEA, 43 3 SALINITY• CONDUCTOMETR!C• AND CHLORINITY VALUES, TA/>BLACK SEA• 570 3 REGRESSION, HOLOCENE• SHORELINE LEVELS4>BLACK SEA• 309 3 SALINITY, CONDUCTDMETRIC1 SAMPLES AND ANALYSIS<>BLACK SEA, 152 3 >RELATION BETWEEN CHLORINITY ANO CONOUCTOMETRIC SALINITY IN BLAI 312 3 151 3 I SALINITY, EFFECT ON BIOGENIC PRODUCTION<>BLACK SEA• RESIDENCE T!ME<>BLACK SEA• WATER, DE£p, 151 SA�INITY INCREASE IN<>BLACK SEA, 250 3 1 RESULTS<>BLACK SEA• H£AT•FI.Ow MEASUREMENT, 127 3 SALINITY, LOWERED• REASONS fOR<>BLACK SEA• 387 3 RETROGRADING<>BLACK SEA COASTLINES, 53 3 SALINITYc>MARMARA, SEA OF• 529 3 RHABOOSPHAERA TENUIS• MICROGRAPHS<>BLACK SEA> 309 3 SALINITY• OXYGEN• AND HYORDGEN SULFIDEI>BLACK SEA• PHOSPHORUS• 119 3 RHODAN!AN PHASE<>CAUCASUS• 361 3 SAL! NITY • SURF ACE<>BOSPORUS, 147 3 RHODOPE OR DOSPAO OAGH• METAMORPHIC ROCKS<>TURKEY• 87 3 SALINITY• TEMPERATURE• AND DENSITY PROFILES<>BLACK SEA• 105 3 >RHODOPURPUR IN< 63 3 S ALINITY AND CHEMICAL COMPOSITIDN<>BLACK SEA• WATER• 138 3 >RICCIA POLLEN• MICROGRAPH< 5!3 3 SALINITY DISTRIBUTION, TABLEc>BLACK SEA• HOLOCENE COCCOLITHS• 93 3 RIDGES<>BLACK SEA• SUBMARINE 409 3 SALINITY FLUCTUATIONS> QUATERNARYc>BLACK SEA• 362 3 RIONI• KURA BASIN<>USSR• GEORGIA> 2 3 SALINITY H!STORY<>BLACK SEA> 156 3 >RIONI RIVER, CARBONAT£ LOAD> SUSPENDED< 64 3 SALINITY I N BLACK SEA WATERBLACK SEA REGION> 281 3 SALINITY INDICATDRS<>B�ACK SEA• COCCOLITHS AS 151 1 >RIONI RIVER• SEDIMENT DISCHARGE TO BLACK SEA< 312 3 SALINITY SE·CT!DNS<>BOSPDRUS> 362 3 R ISES• GRANITIC LAYER<>BLACK SEA BASIN• 205 3 SALINITY TOLERANCES<)BLACK SEA• DIATOMS• 108 3 RISS GLACIAL STAGE<>BOSPORUS, 40 3 SALINIZATION<>BLACK SEA• 391 3 RIVER D I SCHARGE<>BLACK SEAl SHElf FORMAT ION• 123 3 SALINIZATION<>BLACK SEA• 119 3 ROCK FRAGMENTS<>BLACK SEA SEDIMENTS• 308 3 SALIN!ZATION<>B�ACK SEA• 121 3 >ROLE OF THE BOSPORUS IN BLAC S EA CHEMISTRY ANO SEDIMENTATION< 213 3 K I SALIX OR wiLLOW POLLEN<>BLACK SEA, �59 3 RUBIDIUM<>BLACK SEA SEDIMENTS• 115 SALT DISTRIBUTION, INTERSTITIAL<>BLACK SEA, 400 3 RUBIDIUM, GRAPH SALT GRADIENT• PARTICIPATION< 158 3 RUBIDIUM• STRONTIUM DATA<>ARGENTINE BASIN SEDIMENT• 558 3 SALT !NF�UX, TABLE<>AZOV• BLACK S EA BASIN• 306 3 RUBIOIUM• STRONTIUM OATA<>MID•ATLANT IC RIDGE SEDIMENT, 562 3 SALTSo INTERSTITIA�<>BLACK SEA, NUTRIENT 254 3 RUBIDIUM• STRONTIUM DATA> TABLES<>BLACK SEA SEDIMENT• 562 3 SALTY BOTTOM WATER• SOURCE OF<>BLA CK SEA• 169 3 RUBIDIUM CONTENToBLACK SEA SEDIMENTS, 562 3 >SA�VINIA POLLEN> MICROGRAPH< 138 3 a.. RUBIO I UM I SOTOPE RA Tl OS> GRAPHS S TRONT! UM• 557 3 SALVIN I A SPORES<>BLACK SEA• 409 3 >RUMANIA• ASSYNTIAN DR BAYKALIAN METAMORPHISM< 563 3 SAMPLING ANO SAMPLE PREPARAT! ON<>BLACK SEA SEDIMENTS• 402 3 S" >RUMANIA• MEZIY SHIELD< 63 3 SAMSUN D!STRICT<>BLACK SEA• SINOP• 204 3 >RUMANIA• PLIOCENE DINOFLAGELLATES< 43 3 SAMSUN SHELF DISTRICT, STRUCTURE AND MDRPHDL/>BLACK SEA• S!NOP• 310 3 f >RUMANIA• SEISMIC RESULTS< 378 3 SAMURZAHKANO SUBZONE<>CAUCASUS• 309 3 >RUMANIA AND BULGARIA• MOESIAN PLATFORM< 22 3 SAN PEDRO BASIN> STEROLS<>CA�IFDRNIA> 78 3 f RUMANIAN, AMMONIA COMPACTA> DISTRIBUTION MAP<>BLACK SEA SHELf• 70 3 SAND• POSSIBLE EXTRACTION OF<>BLACK SEA REGION• MAGNETIC 509 3 RUMANIAN, CR!BRDELPHIOIUM POEYANUM• D!STR!BUT/>BLACK S EA SHELF• 417 3 SAND• SILT• CLAY RATIOS• DIAGRAM<>BLACK SEA> SEDIMENT CORES> 315 3 RUMANIAN, EGGERELLA SCABRA, DISTRIBUTION MAP<>B�ACK SEA SHELF• 416 3 SAND COMPOSITION CHANGES<>BLACK SEA• 212 3 RUMAN I AN• LAGENA CF , L, LAEV Is, DIS TR I BUT IONI>BLACK SEA SHELF • 415 3 SAND CONTENT• VERTICAL VARIATION<>BLACK SEA TURBIOITES, 235 3 RUMANIAN, NONION OEPRESSULUM, DISTRIBUTION MA/>BLACK SEA SHELF> 416 3 SAND FRAcT!ON<>BLACK SEA SEDIMENTS• 318 3 RUMANIAN, PROTELPHIDIUM SUBGRANOSUS• DISUIBU/>BLACK SEA SHELF• 415 3 SAND PROVINCES, COMPOSITION, TABLE<>BLACK SEA, 272 3 RUMANIAN, SIGMOMORPHINA HILLIANSON!, OISTRIBU/>BLACK SEA SHELF• 416 3 SAND PROVINCES• MAP<>BLACK SEA> 230 3 RUMANIAN SHDRE RUMEX PO�LEN<>BLACK SEA• 411 SANDS• DEEP• COMPDSITION<>BLACK SEA 325 3 >RUSSIA, HOLOCENE, MIDDLE• CHARACTERISTICS OF< 398 3 SANDS, DEEP, COMPOSITION CHANGES, PHOTOSoBLACK SEA 222 3 >RUSSIAN P�ATFORM< 374 3 SANDS> OEEP•SEA> PETROLOGY<>BLACK SEA 223 3 RUSSIAN PLATFORM<>BLACK SEA AREA> 63 3 SAPROPE� BEDS<>BLACK SEA, SEDI MENT UNIT 226 3 >RUSSIAN PLATFORM, GEOLOGY< 202 3 SAPROPEL LAYER<>BLACK SEA• 2, 582 3 R�M• RESULTS<>BLACK SEA> RH�ECTEC•WAVES METHOD DR 202 3 SAPROPEL!C CLAYS<>BLACK SEA• 135 3 RWM DATA, COMPAR!SON<>BLACK SEA• CSS DATA• 43 3 SAPROPEL!C LAYER, GEDCHEM!STRY<>BLACK SEA SEDIMENTS> 374 3 SACHKHERE• KUTAISI FAULT<>CAUCASUS> 43 3 SAPROPEL!C LAYERS, AGES<>B�ACK SE� 441 3 SAIRME SU8ZONE<>CAUCASUS, CHAKVA• 81 3 SAPROPEL!C LAYERS<>BLACK SEA SEDIMENTS, 190 3 SAKAR• ISTRANCA ZONE<>BULGAR!A• 78 3 SAPROPEL!C MUDS<>BLACK SEA• ELEMENT�, o!STRIBUT!ON IN 335 3 SALINE WATER, INFLUX OF<>BLACK SEA• 67 3 SAPROPEL!C MUDS• COBALT AND CA RBON, ORGANIC• CONTENI>BLACK SEA• 462 3 SALINIFICATION> BIOTIC RESPONSE<>B�ACK SEA, 133 3 SAPRDPEL!C HUQS, COPPER AND CARBON, ORGANIC> CONTEN/>BLA CK SEA• 465 3 SALINIFICATION<>BLACK SEA• 373 3 SAPRDPEL!C MUDS• ELEMENT CONCENTRATION IN ORGANIC F/>BLACK SEA• 464 3 SALINIFICATIDN<>BLACK SEA BASIN• 372 3 SAPROPEL!C MUDS• MASS PHYSICAL PROPEOTJES<>MEDITERRANEAN BASIN> 467 3 SAL!NITIES<>BLACK SEA WATER• 364 3 SAPROPEL!C MUDS> MOLYBDENUM AND CARBON, ORGANIC• COI>BLACK SEA> 337 3 SALINITIES, CONOUCTOMETRIC ANO TITRIMETR!C, GRAPH<>BLACK SEA, 580 3 SAPROPEL!C MUDS• NICKEL AND CARBON, ORGANIC• CONTEN/>BLACK SEA• 464 3 SALINITIES.>PANAMA• GULF Df• 154 3 SAPROPELIC MUDS• SULFUR• TOTAL• A ND CARBON• ORGANICI>BLACK SEA> 464 3 358 3 465 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 SAPROPEL!C MUDS, SULrUR, TOTAL, AND COBALT CDNTENT,/>BLACK SEA• 465 SEDIMENT•C ORE PROr!LE<>BLACK SEA BASIN, 192 3 SAPROPEL!C MUDS• TABLEBLACK SEA• 442 3 SAPROPELIC MUDS• TRACE•ELEMENT RELATION TO BITUMEN/>BLACK SEA• 466 SEDIMENT C ORE 1432, CARBON DISTRIBUTION, GRAPH<>BLACK SEA, 442 3 SAPROPELIC MUDS, TRACE•ELEMENT RELATION TO rULVIC A/>BLACK SEA• 467 SEDIMENT CORE 1432• MOLYBDENUM DISTRIBUTION, GRAPH<>BLACK SEA• 442 3 SAPROPELIC MUDS• TRACE•ELEMENT RELATION TO HUMIC AC/>Bi.ACK SEA• 466 SEDIMENT CORE 1432• STRONTIUM DISTRIBUTION, GRAPHc>BLACK SEA, 442 3 SAPRDPELIC MUDS• VANADIUM AND CARBON, ORGANIC• CONT/>BLACK SEA• 464 SEDIMENT CORE 1432• SULrUR D ISTRIBUTION• GRAPH<>BLACK SEA, 442 3 SAPROPELIC ZONE<>BLACK SEA, 442 SEDIMENT CORE 1440, CARBON DIOXIDE DISTRIBUTION, GR/>BLACK SEA• 445 3 >SAPROPELS• BITUMENS• OCCURRENCE or MICRDELEMENTSc 468 SEDIMENT CORE 1440, CARBON DISTRIBUTION• GRAPH<>BLACK SEA, 445 3 SAPROPELS• SOURCE Or<>OLO BLACK SEA DEPOS ITS• TRACE ELEMENTS IN 468 SEDIMENT CORE 1440• MOLYBDENUM DISTRIBUTION• GRAPH<>BLACK SEA• 445 3 >SCANDINAVIA• UPLirT• ISOSTATIC< 125 SEDIMENT CORE 1440, STRONTIUM DISTRIBUTION• GRAPH<>BLACK SEA• 445 3 SCANDIUM CONTENT<>BLACK SEA CORES, 572 SEDIMENT CORE 1440• SULruR DISTRIBUTION• GRAPH<>BLACK SEA, 445 3 SCYPHOSPHAERA, MICROGRAPHS<>BLACK SEA, 359 SEDIMENT CORE 1452• CARBON DIOXIDE DISTRIBUTION• GR/>BLACK SEA• 444 3 SCYTHIAN EP!HERCYNIAN PLATE<>USSR, CAUCASUS, WESTERN• 77 SEDIMENT C ORE 1452• CARBON DISTRIBUTION·• GRAPH<>BLACK SEA, 444 3 SCYTHIAN Pi.ATE<>BI.ACK SEA BASIN, 308 SEDIMENT C ORE 14521 MOLYBDENUM DISTRIBUTION• GRAPH<>BLACK SEA• 444 3 SCYTHIAN Pi.ATE<>CAUCASUS, 77 SEDIMENT CORE 1452, STRONTIUM OISTRIBUTIDN• GRAPH<>BLACK SEA, 444 3 >SCYTHIAN PLATrDRM< 66 SEDIMENT CORE 1452• SULrUR DISTRIBUTION• GRAPH<>BLACK SEA, 444 3 >SCYTHIAN PLATrORM< 314 SEDIMENT CORE 14621 CARBON DIOXIDE DISTRIBUTION, GR/>BLACK SEA• 443 3 SCYTHIAN PLATrORMe>BLACK SEA, 46 SEDI MENT CORE 14621 CARBON DISTRIBUTION• GRAPH<>BLACK SEA, 443 3 SCYTHIAN PLATrORM<>BLACK SEA BASIN• 310 SEDIMENT CORE 1462• MOLYBDENUM DISTRIBUTION• GRAPH<>BLACK SEA• 443 3 SCYTHIAN Pi.AUORM• MAPc>USSR, UKRAINE, 65 SEDIMENT CORE 1462, STRONTIUM DISTRIBUTION, GRAPH<>BLACK SEA, 443 3 SEA LEVEi.<>BLACK SEA• 373 SEDIMENT CORE 14621 SULrUR DISTRIBUTION• GRAPH<>BLACK SEA, 443 3 SEA LEVEL<>BDSPDRUS• 102 SEDIMENT CORE 1470, CARBON DIOXIDE DISTRIBUTION, GR/>Bi.ACK SEA, 443 3 SEA LEVEL• DIHER!NG IDEAS<>BLACK SEA, 374 SEDIMENT CORE 1470• CARBON DISTRIBUTION• GRAPH<>BLACK SEA, 443 3 SEA LEVEL• RISE IN• EHECTS<>BLACK SEA• 298 SEDIMENT CORE 1470, MOLYBDENUM DISTRIBUTION, GRAPH<>BLACK SEA, 443 3 SEA LEVEL• RISE Or<>BLACK SEA• 353 SEDIMENT CORE 1470, STRONTIUM DIS TRI BUT! ON• GRAPH<>BLACK SEA' 443 3 >SEA LEVEL• WORLD• POSSIBLE r ALL IN< 374 SEDIMENT CORE 1470• SULFUR DISTRIBUTION, GRAPH<>BLACK S[A, 443 3 >SEA LEVEL• WORLD RISE ore 133 SEDIMENT CORE 1472• CARBON DIOXIDE DISTRIBUTION• GR/>BLACK SEA• 446 3 SEA•LEVEL CHANGEs, EUSTATIC<>BLACK SEA, SHELr rORMATION, 308 SEDIMENT CORE 1472• CARBON DISTRIBUTION, GRAPH<>BLACK SEA, 446 3 SEA•LEVEL CURVE<>BLACK SEA• 196 SEDIMENT C ORE 1472• MOI.YBDENUM DISTRIBUTION• GRAPH<>BLACK SEA• 446 3 SEA•LEVEL rLUCTUATIDNS, PLEisTOCENE• OIAGRAM<>BLACK SEA• 157 SEOI�ENT CORE 1472• STRDNT!U� DISTRIBUTION, GRAPH<>BLACK SEA• 446 3 SEA LEVELS<>BLACK SEA, 156 SEDIMENT CORE 1472• SULrUR DISTRIBUTION• GRAPH<>BLACK SEA, 446 3 SEAQUAKES<>BLACK SEA• 275 SEDIMENT CORE 1484• CARBON DIOXIDE DISTRiauTION• GR/>BLACK SEA• 446 3 SEA•ATER, ORGANIC HATTER<>BLACK SEA• 94 SEDIMENT CORE 1484• CARBON DISTRIBUTION• GRAPH<>BLACK SEA, 446 3 SEDIMENT, ASPHALTIC COMPOUNDS<>BLACK SEA 503 SEDIMENT C ORE 1484• MOLYBDENUM DISTRIBUTION• GRAPH<>Bi.ACK SEA• 446 3 SEDIMENT, BENZENE, CONCENTRATION<>BLACK SEA 520 SEDIMENT CORE 1484, STRONTIUM D ISTRIBUTION, GRAPH<>BI.ACK SEA• 446 3 a. SEDIMENT, BLACK AND GRAY LAYERS, DIATOM OISTRIBUTIDNt>BLACK SEA 392 SEUIMENT CORE 1484• SULrUR DISTRIBUTION• GRAPH<>BLACK SEA, 446 3 f SEDIMENT, DEEP• HYOROTRO!LITE<>BLACK SEA 469 SEDIMENT CORES• DEPOSITION RATES• RELATIVE<>BLACK SEA• 193 3 S' SEDIMENT, DEEP, PYRI TE<>BLACK SEA 469 SEDIMENT CORES• rACTOR ANALYSES<>BLACK SEA• 439 3 SED IMENT, DIETHYL ETHER• CONCENTRATIDN<>BLACK SEA 520 SEDIMENT CORES• GEOCHEMISTRYc>BLACK SEAl EAST AND NORTHEAST• 445 3 SEDIMENT, HYDROGEN, MDLECULAR<>BLACK SEA 502 SEDIMENT CORES• GEDCHEMISTRY<>BLACK SEA• SOUTH AND SOUTHWEST• 444 3 SEDI MENT, MICROPLANKTON<>BLACK SEA 402 SEDIMENT CORES• GEDCHEMISTRYc>BLACK SEA• WEST AND NORTHWEST, 443 3 !" SEDIMENT, MOLYBDENUM DISTRIBUTION MAP<>BLACK SEA 545 SEDIMENT CORES• GEOCHEMISTRY, rACTOR AND TREND•SURrA/>BI.ACK SEA 435 3 SEDIMENT, ORGANIC ANALYSIS Or CORE SAMPLES, TABLE<>BLACK SEA 503 SEDI MENT CORES• ORGANIC ANALYSES• EXPERIMENTAL METHO/>BLACK SEA 477 3 SEDIMENT, PARAHINS, GAS CHROMATOGRAMSc>BLACK SEA 503 SED IMENT CORES• SAND• SI�T• CLAY RATIOS• OIAGRAM<>BLACK SEA, 212 3 SEDIMENT, PETROLEU.H ETHER• CONCENTRAT!ON<>BLACK SEA 520 SEDIMENT DEPOSIT I ON, RATE OF c>BLACK SEA, 72 3 SEDIMENT, PETROLEUM ETHER•DIETHYI. ETHER, CONCENTRAT!/>BLACK SEA 520 SEDIMENT FORMATION AND DIAGENESIS IN BL//IN PROCESSES OF 542 1 SEDIMENT, POLLEN AND SPORE CONTENT, GRAPH<>BLACK SEA, 382 >SEDIMENT GENESIS AND DIAGENESIS, TRACE ELEMENTS, RE�ATION TO< 457 3 SEDIMENT, RELATIONS< �/SOUTHWESTERN COAST• PIGMENT CONTENT or 427 SEDIMENT SEQUENCE, ELEMENTS, CONTENT, TABLE<>BLACK SEA 459 3 SEDIMENT, RUBIDIUM• STRONTIUM OATA, TABLES<>BLACK SEA 562 SEDIMENT SUPPLY, HAP<>BLACK SEA, 255 3 SEDIMENT, STEROL, UNKNOWN<>BLACK SEA 510 SEDIMENT SURFACE• ICING SUGAR• COLUMN CHROMATOGRAPHY/>BLACK SEA 518 3 SEDIMENT, STEROLS• ABUNDANCE, TABLE<>BLACK SEA 508 SEDIMENT THICKNESS<>BLACK SEA AND ANATOLIA, 66 3 SEDIMENT, STRONTI UM• ISOTOPE RATIOS VS DEPTH• GRAPH<>BLACK SEA 568 SEDIMENT TYPES• GRAPH<>BLACK SEA• 232 3 SEDIMENT, SURrACE LAYER, TABLE<>BLACK SEA, IRON, rDRMS OF, IN 534 SEDIMENT TYPES, GRAPHS<>BLACK SEA, 231 3 SEDIMENT, SURrACE SAMPLE, ABSORPTION• EXCITATION, AN/>BLACK SEA 511 SEDIMENT TYPES• UNIT 1, MAP<>BLACK SEA, 231 3 SEUIMENT• WATER INTERFACE• S ILICON , D!SSOLVEO<>BLACK SEA• 390 SEDIMENT TYPES• UNITS 2 AND 3• MAP<>BLACK SEA, 231 3 SEDIMENT ACCUMULATION RATE<>BLACK SEA, 139 SEDIMENT UNIT l<>BI.ACK SEA• 365 3 SEDIMENT AND INTERSTITIAL•WATER DATA• TABLE<>BI.ACK SEA, 169 SEDIMENT UNIT I• CLAY rRACTION ANALYSIS• TABLE<>BLACK SEA, 210 3 SEDIMENT AND WATfR, STRDNTIUM•ISOTOPE RATIOS• TABLE<>BLACK SEA 567 SEDIMENT UNIT 11 COCCOLITH ODZE<>BLACK SEA, 582 3 SEDIMENT CDLUMN<>BLACK SEA, HYDROCARBON GEDCHEMI $TRY, 02 SEDIMENT UNIT I• CORRELATIDNc>BLACK SEA• 373 3 SEDIMENT CORE• AROMATICS, PDLYCYCLIC<>SLACK SEA 5105 SEDIMENT UNIT 1• GRAIN•SIZE OISTRIBUT!ON, MAPS<>BLACK SEA, 211 3 SEDIMENT CORE, CALCIUM CARBONATE AND CARBON, ORGANI/>Bi.ACK SEA, 185 SEDIMENT UNIT 1• MASS PHYSICAl. PROPERTIES<>BLACK SEA• 336 3 SEDIMENT CORE, CARDTENOIOS<>BLACK SEA 512 SEDIMENT UNIT 11 TEXTURAL PROPERTIES<>BLACK SEA• 207 3 SEDIMENT CORE, CHLORINS AND PORPHYRINSc>BLACK SEA 516 SED IMENT UNIT 2<>8LACK SEA• 365 3 SEDIMENT CORE, rATTY AC!OS<>BLACK SEA 514 SEDIMENT UNIT 2• MASS PHYSICAL PROPERTIES<>BlACK SEA, 336 3 SEDIMENT CORE, GAS ANALYSIS, TABLE<>BLACK SEA 502 SEDIMENT UNIT 2• PERMEABILITY<>BLACK SEA, 337 3 0. SEDIMENT CORE• STEROI.S<>B�ACK SEA 505 SEDIMENT UNIT 2• SAPROPEL BEaSc>BLACK SEA• 5 82 3 w Ul

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 SEDIMENT UNIT 3<>BLACK SEA, 365 3 SEDIMENTS• CARBON, CARBON DIOXIDE, AND WATER, TOTAL<>BLACK SEA 433 3 SEDIMENT UNIT 3• LUTITE• BANOED<>BLACK SEA, 582 3 SEDIMENTS• CARBON• NITROGEN RATIO<>BLACK SEA 300 3 0. SEDIMENT UNIT 3. �ASS PHYSICAL PRDPERTIES<>BLACK SEA, 337 3 SEDIMENTS• CARBON, ORGANIC, DISTRIBUTION, GRAPH<>BLACK SEA 299 3 � SEDIMENT UNITS<>BLACK SEA• HYDROGEN SULFIDE ZONE• 297 3 SEUIMENTS• CARBON, ORGANIC, DISTRIBUTION• GRAPH<>BLACK SEA 300 3 0. SEDIMENT UNITS, THICKNESS AND AGE<>BLACK SEA• 578 3 SEDIMENTS• CARBON OIOXIOE VS LEAD, STRONTIUM RUBIOIU/>BLACK SEA 558 3 SEDIMENT UNITS• URANIUM CONCENTRATIONS<>BLACK SEA 571 3 SEDIMENTS• CARBONATE CONTENT, OISTRIBUTION MAPS<>BLACK SEA 216 3 SEDIMENT UNITS 2 AND 3, TEXTURAL PRDPERTIES<>BLACK SEA, 207 3 SEDIMENTS• CARBONATE CONTENT, T ABlE<>BLACK SEA 290 3 SEDIMENTARY LAYERS• DEPTH• MAPS<>BLACK SEA BASIN• 41 3 SEDIMENTS• CARBONATE CONTENT, TOTAL• DISTRIBUTION MA/>BLACK SEA 219 3 SEDIMENTARY MATERIAL• DISTRIBUT I ON<>BLACK SEA BASIN• 259 3 SEDIMENTS• CARBONATE CONTENT OF SILT AND CLAY FRACTI/>BLACK SEA 219 3 SEDIMENTARY RO KS• THICK SECTION<>BLACK SEA BASIN• 24 3 SEDIMENTS• CARBONATE OISTRIBUTION<>BLACK SEA 264 3 SEDIMENTARY SEQUENCE,C AGES<>Bt.ACK SEA BASIN• 42 3 SEDIMENTS• CARBONATE M!NERALS<>BLACK SEA 213 3 SEDIMENTARY SYSTEMS<>REACTION RATES IN CELLULAR PROCESSES AND 296 3 SEDhENTS• CARBONATES, TERRIGENOUS• MAPS<>BLACK SEA 291 3 SEDIMENTARY THICKNESS, MAPS<>BLACK SEA BASIN• 40 3 SEOI MENTS<>CASPIAN BASIN• 275 3 SEDIMENTATION• AGENT OF< •/GRADED BEDDING• TRANSPORT AND 329 3 SEDIMENTS• CATIONS• EXCHANGEABLE• TABLE<>BLACK SEA 173 3 SEDIMENTAT ION• CARBONATE• DATA PRESENTATION<>Bt.ACK SEA, 279 3 SEDIMENTS• C ELLULAR P�OCESSEs, DATA ANALYSIS<>BLACK SEA 298 3 SEDIMENTATION• COMPARISONS<>BI.ACK SEA, 275 3 SEDIMENTS• CELLULAR PROCESSES, DEFINITION OF PROBLEM<>BLACK SEA 296 3 SEDIMENTATION, DATA AND METHOOS<>BLACK SEA 249 3 SEDIMENTS• C ELLULAR PROCESSES, ORGANIC MOLECULES, SY/>BLACK SEA 302 3 SEDIMENTATION, PREDOMINANCE OF<>BLACK SEA, HDI.DCENE PEt.AGIC 356 3 SEOIMENTS<>CELLULAR PROCESSEs IN BLACK SEA 296 I SEDIMENTATION, RATE<>Bt.ACK SEA• 332 3 SEDIMENTS• CHEMICAL ANALYSIS<>BLACK SEA 430 3 SEDIMENTATION, RATE OF<>BI.ACK SEA, 175 3 SEDIMENTS• CHEMISTRY• STRATIGRAPHIC VARIATIONS<>BLACK SEA 441 3 115 SEDIMENTS• CHEMOGENIC CALCITE CONCENTRATION• MAP<>BLACK SEA 292 3 SEOIMENTAT!ON<>ROI.E OF THE BOSPORUS IN BLACK SEA CHEMISTRY AND I SEDIMENTATION, STUOIES<>BI.ACK SEA 249 3 SEDIMENTS• CHLDRITE<>BLACK SEA 440 3 SEDIMENTATION IN BI.ACK SEA<>MOOERN 249 I SEDIMENTS• CHLORITE VARIANCE<>BLACK SEA 436 3 279 SEDI MENT S• CHROM I UN<> BLACK SEA 432 3 SEDIMENTATION IN BI.ACK SEAoSOHE CHARACTERISTICS OF CARBONATE I SEDIMENTATION PATTERNS, REGIDNAL<>BLACK SEA• 191 3 SEDIMENTS• CHRONOSTRATIGR APHY<>BLACK SEA 365 3 SEDIMENTATION PROCESS, EVOI.UTION OF< ,/GRADED BEDDING, 329 3 SEDIMENTS• CLAY• COARSE•, FRACTION<>BLACK SEA 272 3 SEDIMENTATION RATE<>BLACK SEA> 298 3 SEDIMENTS• CLAY• MEDIUM•• FRACTION<>BLACK SEA 273 3 SEDIMENTATION RATE<>BLACK SEA> 349 3 SEDIMENTS• CLAY �RACTION, CHLORITE, DISTRIBUTION MAP<>BLACK SEA 227 3 SEDIMENTATION RATES<>BLACK SEA• 29 3 SEDIMENTS• CLAY FRACTION• ILLITE• DISTRIBUTION MAP<>BLACK SEA 227 3 SEDIMENTAT ION RATES<>BI.ACK SEA• 190 3 SEDIMENTS, CLAY �RACTION, KAOLINITE, DISTRIBUTION MA/>BLACK SEA 227 E 227 3:i SED IMENTATION RATES<>BLACK SEA BASIN• 1 3 S DIMENTS• CLAY FRACTION• MONTMORILLONITE• DISTRIBUT/>BLACK SEA SEDIMENTATION RATES• RAPID<>BI.ACK SEA, 55 3 SEDIMENTS• CLAY MINERALS, DISTRIBUTION MAP<>BLACK SEA 261 3 SEDIMENTATION ZONE TRANSIT!ONS<>BLACK SEA, 268 3 SEDIMENTS• COBALT<>BLACK SEA 432 3 SEDIMENTS• ABYSSAL PLAIN<>81.ACK SEA 332 3 SEDIMENTS• COBALT, DISTRIBUT!ON<>BLACK SEA 457 3 SEDIMENTS• AGES<>BLACK SEA 365 3 SEDIMENTS• COCCOL ITH MUD• GRAIN SIZE AND COMPOSITION/>BLACK SEA 219 3 a. SEDIMENTS• AGES<>BLACK SEA 568 3 SEDIMENTS, COCCOLITH MUD, SHEAR STRENGTH<>BLACK SEA 333 3 SED IMENTS• ALUMINUM<>Bt.ACK SEA 431 3 SEDIMENTS• COHESION<>BLACK SEA 333 3 ;' SEDIMENTS• ALUMINUM CONTENT<>BLACK SEA 556 3 SEDIMENTS, COLOR<>BLACK SEA 524 3 SEDIMENTS• AMINO ACID DISTRIBUTION, GRAPH<>Bt.ACK SEA 300 3 SEDIMENTS• COMPARISONS<>BLACK SEA, MODERN AND NEOEUXINIAN 412 3 f SEDIMENTS• AMINO ACID DISTRIBUTION• GRAPH<>BLACK SEA 301 3 SEDIMENTS• COMPOSITION, AVERAGE VALUES AND RANGE, TA/>BLACK SEA 435 3 SEDIMENTS• AMINO SUGAR DISTRIBUTION• GRAPH<>Bt.ACK SEA 300 3 SEDIMENTS• COMPOSITION, TABLEBLACK SEA 300 3 SEDIMENTS• COMPOSITION CHANGES, LATERAL• O!AGRAM<>BLAC K S EA 233 3 SEDIMENTS• ARAGONITE<>BLACK SEA 213 3 SEDIMENTS• COMPOSITIONAL•GENETIC TYPES, MAP<>BLACK SEA 265 3 SEDIMENTS• ATDMIC•ABSORPTION ANALYSIS, TABLE<>BLACK SEA 557 3 SEDIMENTS• COPEPOO EGG CASESc>BLACK SEA 365 3 SEDIMENTS• BARITE<>BLACK SEA 437 3 SEDIMENTS• COPPER<>BLACK SEA 432 3 SEDIMENTS• BARIUM<>BLACK SEA 432 3 SEDIMENTS• COPPER, DISTRIBUT!ON<>BLACK SEA 457 3 275 3 SEDIMENTS• COPPER CONTENT<>BLACK SEA 558 SEO IMENTS<>BERING SEA 3 SEDIMENTS• BISMUTH<>BLACK SEA 432 3 SEDIMENTS• CORE LOCATION MAPc>BLACK SEA 333 3 SEDIMENTS• BLACK AND GRAY t.AYERS<>BLACK SEA 391 3 SEDIMENTS• CORES, CORRELATION OF<>BLACK SEA 351 3 SEOIMENTS<>Bt.ACK SEA• 181 3 SEDIMENTS• CORRELATION• PREVIOUS STUDIES<>BLACK SEA 349 3 SEDIMENTS<>Bt.ACK SEA• CATION•EXCHANGE CAPACITY OF 172 3 SEDIMENTS• DANUBE FAN<>BLACK SEA 332 3 sEDIMENTS• BORON<>BLACK SEA 432 3 SEDIMENTS• DEEP, DIATOM sCARCI TY<>BLACK SEA 389 3 SEDIMENTS• BOTTOM<>BLACK SEA 389 3 SEDIMENTS• DEEP• SILICA OISSOLUTION<>BLACK SEA 390 3 410 3 SEDIMENTS• BOTTOM• PALYNDPLANKTOLOGIC CONTENT, SOURC/>BLACK SEA SEDIMENTS• DEEP•BASIN• FLUID LOSS, TABLE<>BLACK SEA 161 3 SEDIMENTS• BUGAZIAN<>BLACK SEA 350 3 SEDIMENTS• DENSITY• WET BULKc>B�ACK SEA 334 3 SEDIMENTS• CADMIUM<>BLACK SEA 432 3 SEDIMENTS• DETRITUS<>BLACK SEA 250 3 389 SEDIMENTS• CALCI TE<>BLACK SEA 213 3 SEDIME�TS<>DIATOMS IN PLEI STOCENE DEEP BLACK SEA I SEDIMENTS• CALCI TE<>BLACK SEA SEDIMENTS• DIVISIONS OF<>BLACK SEA 349 3 285 3 S A 285 SEUIMENTS• CALCITE• DOLOMITE RATIO<>BLACK SEA 213 3 SEDIMENTS• DOLOMITE<>BLAC• E 3 SEDIMENTS• CALCITE• DOLOMITE RATIO, DISTRIBUTION MAP<>BLACK SEA 218 3 SEDIMENTS• DOLOMITE DISTRIBUTION MAP<>BLACK SEA 286 3 SEDIMENTS• CALCI UM<>BLACK SEA 431 3 SEDIMENTS• OZHEMETINIAN<>BLACK SEA 350 3 SEDIMENTS• CALCIUM CA�BONATEc>BLACK SEA 335 3 SEDIMENTS• EH• ANO PH•DEPENOENT FACTORS<>BLACK SEA 446 3 SEDIMENTS• CALCIUM CARBONATE AND CARBON• ORGANIC• DI/>BLACK SEA 298 3 SEDIMENTS• ELECTRON MICROSCOPY<>BLACK SEA 187 3 SEDIMENTS• CALCIUM CARBONATE DISTRIBUTION, GRAPH<>BLACK SEA 299 3 SEDIMENTS• ELEMENT DISTRIBUTION• �ACTOR ANALYTICAL S/>BLACK SEA 433 3 SEDIMENTS• CALCIUM CARBONATE DISTRIBUTION, GRAPH<>BLACK SEA 300 3 SEDIMENTS• ELEMENTAL ANALYSIS<>BLACK SEA 555 3 SEDIMENTS• CARBON<>BLACK SEA 515 3 SEOHIENTS• EUXINE ABYSSAL PLAIN<>BLACK SEA 333 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 5EOWEt�TS• ncHANGE COEHICIENTS• TABLE<>BLACK SEA 173 3 SEDIMENTS• MODERN, DOLDM!TE<>BLACK SEA 282 3 SEDIMENTS• FATTY �CIDS> ABUNDANCE, TABLE<>BLACK SEA 516 3 SED IMENTS• MODERN, IRON CDNTENT<>BLACK SEA 267 3 SEDIMENTS• rELDSPAR<>BlACK SEA 220 3 SED IMENTS• MODERN, MANGANESE CONTENT<>BLACK SEA 267 3 SEDIMENTS• FINE•GRAINEQ, CHEMICAL PROPERTIES<>BLACK SEA 230 3 SED IMENTS• MODERN, PHOSPHORUS CONTENT<>BLACK SEA 267 3 SEDIMENTS• f!NE•GRAINED> PETROLOGY<>BLACK SEA 230 3 SEDIMENTS• MODERN• SIDERITE<>BLACK SEA 285 3 SEDIMENTS<>FORMS OF IRON IN SURFACE LAYER OF BLACK SEA 532 1 SEDIMENTS> MOLLUSK SHELLS• ATLANTIS II CORE LOCATION/>BLACK SEA 350 3 SEDIMENTS> GALLIUM<>BLACK SEA 432 3 SEDIMENTS• MOLYBDENUM<>BLACK SEA 432 3 SEDIMENT S• GAS TROPOOS<>BLACK SEA 350 3 SEDIMENTS• MOLYBDENUM, COPPER, AND COBALT, Dl STRIBUT/>BLACK SEA 456 3 SEDIMENTS> GEOCHEMISTRY, ATLANTIS II CORE ANALYSESoBLACK SEA 450 3 SEDIMENTS• MOLYBDENUM• O!STRIBUTION<>BLACK SEA 457 3 SEOIMENTS• GEOCHEMISTRY> CORE LOCATION MAP<>BLACK SEA 431 3 SEDIMENTS• MOLYBDENUM, IRON, PYRITE• AND MAN/>MEO!TERRANEAN SEA 547 3 SEDIMENTS• GEOCHEMISTRY, FACTOR SCORES VS 14•ANGSTROI>BLACK SEA 440 3 SEDIMENTS• MOLYBDENUM• RELATION TO SULFIDE CONTENT<>BLACK SEA 551 3 SEDIMENTS> GEOCHEMISTRY• OBLIQUE PROMAX PRIMARY•PATT/>BLACK SEA 435 3 SEDIMENTS• MOLYBDENUM AND CARBON, ORGANIC, DISTRIBUT/>BLACK SEA 544 3 SEDIMEN TS• GEOCHEMISTRY, OBLIQUE PROMAX PRIMARY•PATT/>BLACK SEA 437 3 SEDIMENTS• MOLYBDENUM CONTENT• TABLE<>BLACK SEA 549 3 SEDIMENTS• GEOCHEMISTRY• PREVIOUS STUO!ES<>BLACK SEA 430 3 SEDIMENTS• MOLYBDENUM DISTRIBUTION IN<>BLACK SEA 544 3 SEQIMENTS, GEOCHEMISTRy, PRDMAX FACTORS, CORRELATIONt>BLACK SEA 436 3 SEDIMENTS• MOLYBDENUM V S CARRON• ORGANIC> GRI>MEOITERRANEAN SEA 550 3 SEDIMENTS• GEOCHEMISTRY• PROMAX FACTORS> CORRELATIONI>BLACK SEA 440 3 SEDIMENTS• MOLYBDENUM VS CARBON• ORGANIC, GRAPH<>BLACK SEA 550 3 SEDIMENTS, GEOCHEMISTRY, TREND SURFACES, CONTOUREO<>BLACK SEA 436 3 SEDIMENTS> MONTMOR!LLONITE<>BLACK SEA 267 3 SEDIMENTS> GEOCHEMISTRY• TREND SURFACES• CONTOURED<>BLACK SEA 438 3 SEDIMENTS• MONTMORILLONITE C oNTENT, VERTICAL CHANGES/>BLACK SEA 228 3 SEDIMENTS, GEOCHEMISTRY, TREND SURFACES, CDNTOUREO<>BLACK SEA 439 3 SEDIMENTS• MONTMORILLONITE VARIANCE<>BLACK SEA 436 3 SEDIMENTS• GRAIN SPECIFIC GRAVITY<>BLACK SEA 335 3 SEDIMENTS> MYTILIO SHELLS<>BLACK SEA 350 3 SEDIMENTS• HEAVY MINERA�S<>BLACK SEA 224 3 SEDIMENTS• NEOEUX!NIAN<>BLACK SEA 350 3 SEOIMENTS• HYDROCARBONS> AROMATIC<>BLACK SEA 512 3 SEDIMENTS• NEOEUXINIAN, GEOCHEMISTRY<>BLACK SEA 441 3 SEDIMENTS, HYDROGEN SULFIDE ZONE, MOLYBDENUM OISTRIBI>BLACK SEA 548 3 SEOIMENTS"•NEH DATA AND REVIEWBLACK SEA 549 3 SEDIMENTS> N!CKEL<>BLACK SEA 432 3 SEDIMENTS, HYDROG[N SULFIDE ZONE, TRACE ElEMENTS<>BLACK SEA 456 3 SEOI MENTS• Nl CKEL• 0 ISTR I BUTIDN<>BLACK SEA 457 3 SEDIMENTS• ILLITE<>BLACK SEA 267 3 SEDIMENTS• NICKEL CONTENT<>BLACK SEA 558 3 SEDIMENTS; ION•EKCHANGE CAPACITY<>BLACK SEA 235 3 SEDIMENTS• NITROGEN• DISTRIBUTION, GRAPH<>BLACK SEA 299 3 SEDIMENTS• ION•EXCHANGE CAPACITY• TABLE<>BLACK SEA 233 3 SEU IMENTS• NITROGEN• ORGAN !C,FORMS OF<>BLACK SEA 301 3 SEDIMENTS> IONIC ENVIRONMENT, FLUCTUAT!ONS<>BLACK SEA 306 3 SEDIMENTS• NITROGEN DISTRIBUTION• GRAPH<>BLACK SEA 300 3 SEDIMENTS• IRON<>BLACK SEA 431 3 SEDIMENTS> DPAL<>BLACK SEA 226 3 SEOIMENTS<>ISOTDP IC AND ELEMENTAL GEOCHEMISTRY OF BLACK SEA 554 I SEDIMENTS• OPTICAL AND X•RAY FLUORESCENCE PROCEOURESI>BLACK SEA 433 3 SEDIMENTS• KALAMITIAN<>BLACK SEA 350 3 SEDIMENTS• OPTICAL AND X•RAY FLUORESCENCE SPECTROQRAI>BLACK SEA 434 3 SEO! HENTS• KARK IN IT I AN<>BLACK SEA 350 3 SEDIMENTS, OPTICAL EMISSION SPECTROGRAPHY<>BLACK SEA 432 3 SEUIMENTS• LAMINATI0NS<>9LACK SEA � 356 3 SEDIMENTS• ORGANIC MATERIAL• SHEAR STRENGTH<>BLACK SEA 333 3 i SEDIMENTS• LEAD<>SLACK SEA 432 3 SEO I MENTS• ORGANIC MATTER• FlBERL I KE<>BLACK SEA 335 3 a. SEDIMENTS• LEAD ISOTOPES<>BLACK SEA 559 3 SEDIMENTS• OXYGENATED ZONE, MOLYBDENUM, VERTICAL OISI>BLACK SEA 547 3 :; SEDIMENTS• L!TH!UM<>BLACK SEA 432 3 SEDIMENTS• OXYGENATED ZONE, MOLYBDENUM OISTRIBUTION,/>BLACK SEA 546 3 SEDIMENTS; LITHOLOGY<>BLACK SEA 184 3 SEDIMENTS• PALEOSALINITY AND PALEOECOLOGY• GENERAL<>BLACK SEA 356 3 SEDIMENTS> LITHOLOGY<>BLACK SEA 264 3 SEDIMENTS• PETROLDGY<>BLACK SEA 226 3 SEDIMENTS> LITHOSTRATIGRAPHIC UNITS• THICKNESS• TABLI>BLACK SEA 366 3 SEDIMENTS• PHOSPHORUS<>BLACK SEA 431 3 SEDIMENTs• LITHOSTRATIGRAPHY OF CORES<>BLACK SEA 365 3 SEDIMENTS• PHOSPHORUS, TOTAL, DISTRIBUTION, GRAPH<>BLACK SEA 300 3 t SEOIHENTS• NAGNESIUM<>BLACK SEA 431 3 SEDIMENTS• PHYLLOSILICATES<>BLACK SEA 226 3 SEDIMENTS• MAJOR•ELEMENT ANALYSIS, TABLE<>BLACK SEA 557 3 SEDIMENTS• PIGMENTS DISTRIBUTION• GRAPH<>BLACK SEA 30D 3 SEDIMENTS• MANGANESE<>BLACK SEA 432 3 SEDIMENTS• PLASTICITY<>BLACK SEA 336 3 sEDIMENTS> MASS CHEMICAL AND PHYSICAL PROPERTIES• DEI>BLACK SEA 334 3 SEDIMENTS• PLASTICITY CHART<>BLACK SEA 336 3 SEOIMENTS<>HASS PHYSICAL PROpERTIES OF SOME WESTERN BLACK SH 332 I SEDIMENTS> POROSITY<>BLACK SEA 335 3 SED I ME NT S<>MED I TERRANEAN 275 3 SEDIMENTS• POTASSI UM<>BLACK SEA 431 3 SEDIMENTS• MEMBRANE•LIKE STRUCTURES<>BLACK SEA 332 3 SEDIMENTS> POTASSIUM CONTENTc>BLACK SEA 556 3 SEO!MENTS<>MEMBRANES, TUBULAR• IN BLACK SEA 304 3 SEDIMENTS• PREVIOUS RESEARCH<>BLACK SEA 200 3 SEDIMENTS• MICROELEMEHT CONTENT IN SAPR//SEA• OLD BLACK SEA 463 3 SEDIMENTS• PYRITE<>BLACK SEA 438 3 SEDIMENTS• M!NERALOGY<>BLACK SEA 213 3 SEDIMENTS• PYRITE• CONCENTRATION OF COPPER IN<>BLACK SEA 471 3 SEOIMENTS<>H!NERALOGY AND PETROLOGY OF BLACK SEA BASIN 200 1 SEDIMENTS• PYRITE• CONCENTRATION OF MOLYBDENUM IN<>BLACK SEA 471 3 SEDIMENTS• MODERN, ANKER! TE<>BLACK SEA 265 3 SEDIMENTS• PYRITE MAXIMUM<>BLACK SEA 463 3 SEDIMENTS• MODERN• ARAGONI TE<>BLACK SEA 282 3 SEDIMENTS• PYRITIZATION<>BLACK SEA 463 3 SEDIMENTS• MODERN<>BLACK SEA, ANATOLIAN CDtiTINENTAL SLOPE, 269 3 SEDIMENTS• QUARTZ<>BLACK SEA 220 3 SEDIMENTS• MOOERNoBLACK SEA, CAUCASIAN CONTINENTAL SLOPE, 269 3 SEDIMENTS• QUARTZ• FELDSPAR GRAIN•SIZE RELATION• GRAI>BLACK SEA 218 3 SEDIMENTS• MODERN<>aLACK SEA, KERCH CONTINENTAL SLOPE• 270 3 SEDIMENTS• QUARTZ• FELDSPAR RATIO, DISTRIBUTION MAP<>BLACK SEA 218 3 SEDIMENTS> MODERN, CALCI TE<>BLACK SEA 262 3 SEDIMENTS• QUARTZ CONTENTS, DISTRIBUTION MAP<>BLACK SEA 218 3 SEDIMENTS• MODERN> CALCIUM CARBONATE CONTENT AND GRAI>BLACK SEA 267 3 SEDIMENTS> QUATERNARY• HOLOCENE• MOLLUSCAN ASSEMBLAGI>BLACK SEA 350 3 SEDIMENTS> MODERN, CAI.CIUM CARBONATE DISTRIBUTION, MI>BLACK SEA 288 3 SEDIMENTS, RADIOCARBON OATES<>BLACK SEA 365 3 SEDIMENTS> MODERN, CARBON• ORGAN IC• CONTENT• MAP<>BLACK SEA 266 3 SEDIMENTS• RAOIOCARBON OAT!NG<>BLACK SEA 190 3 SEDIMENTS• MODERN, CARBONATE CONTENT, MAP<>BLACK SEA 266 3 SEDIMENTS• REDUCING ENVIRONMENT<>BLACK SEA 297 3 SEDIMENTS• MODERN, CARBONATE MINERAL CONTENT• TABLE<>BLACK SEA 284 3 SEDIMENTS• ROCK FRAGMENTS• PHOTOS<>BLACK SEA 214 3 SEDIMENTS, MODERN, CARBONATES, MINERAL AND GENETIC TI>BLACK SEA 294 3 SEDIMENTS• RUBIDIUM<>BLACK SEA 432 3 SEDIMENTS• MODERN> CLAY MINERALDGY<>BLACK SEA 267 3 SEDIMENTS• RUBIDIUM CDNTENT<>BLACK SEA 557 3 SEDIMENTS• MODERN, COCCOLITHS IN FRACTIONS OF ,PHOTOS<>BLACK SEA 293 3 SEDIMENTS• SAMPLING DPERAT!ONS<>BLACK SEA 183 3 s .....

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 SEDIMENTS• SAND fRACTION<>BLACK SEA 272 3 SEDIMENTS or BI.ACK SEA<>RECENT 183 SEDI�ENTS• SAPROPEllC LAYER, GEOCHEMISTRYe>BLACK SEA 44I 3 SEISMIC BOUNDARY VELOCIT!ES•QEPTH, REI.ATIDN<>BI.ACK SEA BASIN• 42 3I SEDIMENTS• SAPROPELIC LAYERS<>BLACK SEA 335 3 SE ISMIC CROSS SECT!ONS<>BI.ACK SEA BASIN• 39 3 � SEDIMENTS• SENSITIVITY<>BI.ACK SEA 334 3 SEISMIC DATA, ANALYSIS<>BLACK SEA, MAGNETOMETER AND 45 3 co SEDIMENTS• SHEAR STRENGTH<>BLACK SEA 333 3 SE ISMIC FEATURES, MAP<>Bi.ACK SEA• 33 3 SEDIMENTS• SILICA CONTENT<>BLACK SEA 556 3 SEISMIC PROf! i.E<>BI.ACK SEA, EAST•CENTRAl• 26 3 SEDIMENTS• S!llCON<>SLACK SEA 431 3 SEISMIC PROrti.[S, MAP<>BI.ACK SEA, 14 3 SEDIMENTS, Sli.T, COARSE•, fRACTIDN<>Bi.ACK SEA 272 3 SEISMIC PROfiLES, RESUI. TS<>Bi.ACK SEA, 17 3 SEDIMENTS• SILT• r!NE•, DISTRIBUTION MAP<>BLACK SEA 273 3 SEISMIC REFLECT!ON<>Bi.ACK SEA, 12 3 SEDIMENTS• SII.T• r!NE•, fRACTION<>BI.ACK SEA 272 3 SEISMIC REri.ECTION<>BI.ACK SEA• 71 3 SEDIMENTS• Sli.VER<>BLACK SEA 432 3 SEISMIC SDUNOING OR DSS• RESUI.TS<>BLACK SEA• DEEP 35 3 SEDIMENTS• SOOIUM<>BLACK SEA 431 3 SEISMIC VEi.OCITIES• AVERAGE<>BI.ACK SEA BASIN• 35 3 SEDIMENTS• SORTING<>Bi.ACK SEA 273 3 SEISMIC VELOCITIES• DISTRIBUTION• HAP<>BI.ACK SEA BASIN, 38 3 SEDI�ENTS, SORTING CDErr!CIENTS, DISTRIBUTION MAP<>BLACK SEA 274 3 SEISMIC VEi.OCI TY•OEPTH, RELATlON<>BI.ACK SEA BASIN• 38 3 SEDIMENTS• SDURCE<>BLACK SEA 249 3 SEISMIC WAVE f!Ei.D<>BLACK SEA BASIN• 35 3 SEDIMENTS, SOURCE AREA, STRATIGRAPHIC MAP<>BLACK SEA 280 3 SEISMIC wAVES• PRIMARY, HODOGRAPHoBI.ACK SEA BASIN• 37 3 SEDIMENTS• STRATIGRAPHIC UN!T S<>BLACK SEA 332 3 SENSIT!VITY<>BLACK SEA SEDIMENTS• 334 3 SEDIMENTS, STRATIGRAPHY<>BLACK SEA 194 3 SERNANDER HDI.OCENE S TRA T !GRAPHI C SCALE<>BI.YTT • 366 3 SEDIMENTS• STRONTIUM<>BI.ACK SEA 432 3 SETTI.!NG METHODS• COMPARISON, GRAPHSBLACK SEA 557 3 SEVASTOPOL BAY, CONCRETIONS AND SEDIMENTS, COMPDSIT/>Bi.ACK SEA, 172 3 SEDIMENTS• STRONTIUM ISOTOPES<>BLACK SEA 562 3 SEVASTOPOI. BAY• MANGANESE ANO PHOSPHORUS IN PORE WAI>Bi.ACK SEA• 171 3 SEDIMENTS, STUDIES Or<>BLACK SEA 183 3 SHAKHE CANYON<>BI.ACK SEA BASIN, 314 3 SEDIMENTS• SUBCDI.i.O !OAL fRACT!ON<>BLACK SEA 273 3 >SHAI.I.Ow STRUCTURE Of BLACK S A< 11 E I SEDIMENTS, SUBCDLLOIDAL rRACTION, DISTRIBUTION MAP<>BLACK SEA 274 3 SHEAR STRENGTH<>BLACK SEA SEDIMENTS• 333 3 SEDIMENTS• SUGAR O!STR!BUT!ON, GRAPH<>BLACK SEA 300 3 SHEI.f<>Bi.ACK SEA BASIN• 2 3 SEDIMENTS• SULf iDES• fORMATION Of<>BLACK SEA 473 3 SHELf, EUGEOSYNCI.!NAI. ZDNES<>BLACK SEA 315 3 SEDIMENTS• SULfUR<>BLACK SEA 431 3 SHEI.f' Ml NERAI. EXPI.OIT AT! ON<>BLACK SEA, 316 3 SlD!MENTS• SUMMARY<>BLACK SEA 581 3 SHELF, M I OGEOSYNCI.lNAI. ZONES<>BI.ACK SEA 315 3 SEDIMENTS• TABLE< ICONTENT IN PYRITE fROM MODERN DEEP•SEA 470 3 SHEI.F, RUMANIAN• AMMONIA COMPACTA, DISTRIBUTION MAP<>BI.ACK SEA 417 3 SEDIMENTS• TARKHANKUT!AN<>BI. ACK SEA 350 3 SHELF, RUMANIAN• CRIBROEI.PHIOIUM POEYANUM, DISTRIBUTI>Bi.ACK SEA 416 3 SEDIMENTS• TERRIGENOUS, CALCITE• DOLOMITE RATIO<>BLACK SEA 234 3 SHEI.f• RUMANIAN• EGGEREI.I.A SCABRA, DISTRIBUTION MAP<>BLACK SEA 415 3 SEU!MENTS• TERRIGENOUS• CARBONATE CONTENT<>Bi.ACK SEA 233 3 SHELF• RUMANIAN• LAGENA C�o Lo I.AEVIS, OISTRIBUTION/>Bi.ACK SEA 416 3 SEDIMENTS• TERRI GENOus, M INERAI.OGY<>BI.ACK SEA 233 3 SHELf• RUMANIAN• NONION OEPRESSULUM• DISTRIBUTION MA/>BI.ACK SEA 415 3 557 SHELf' RUMAN I AN• PROTELPH I UM SUBGRANOSUS• 0 ISTR IBU/>BLACK SEA 4 6 SEDIMENTS• THORIUM CONTENT<>BLACK SEA 3 10 1 3 SEDIMENTS• T!N<>BI.ACK SEA 432 3 SHELF, RUMANIAN, S!GMOMORPHINA Wll.l.lAMSON!, DIST�IBU/>BI.ACK SEA 416 3 SEDIMENTS• TITANIUM<>BI.ACK SEA 431 3 SHEI.f, SUBMERGED BLOCKS<>BI.ACK SEA 315 3 557 SHEI.r ND i.ITTORAI. ZDNE<>BI.ACK SEA 308 ;' SEDIMENTS• TITANIUM CONTENT<>BI.ACK SEA 3 A I SEDIMENTS• TRACE Ei.EMENTS ANQ CARBON• ORGANIC• AERlA/>Bi.ACK SEA 457 3 SHELf AND LITTORAL ZONE, RECOMMENDATIONS rDR STUOY<>BI.ACK SEA 315 3 t SEDIMENTS• UPPER I.AYER, CLAY•MINERAI. DISTRIBUTION �A/>BI.ACK SEA 268 3 SHELF AREA, MAP<>BI.ACK SEA BASIN, 311 3 >C SEDIMENTS• UPPER I.AYER, GEOCHEMISTRY<>BI.ACK SEA 441 3 SHEI.F DISTRICTS• MAP<>BI.ACK SEA• 310 3 I SEDIMENTS• URANIUM CONTENT<>BI.ACK SEA 557 3 SHEI.f FDRMAT!ON<>BI.ACK SEA, 315 3 SEDIMENTS• VANADIUM<>BLACK SEA 432 3 SHELf fORMAT!ONo RIVER OISCHARGE<>BI.ACK SEA• 3D8 3 SEDIMENTS, VANADIUM, DISTRIBUT!ONoBLACK SEA 457 3 SHELf fORMATION, SEA-LEVEl. CHANGES, EUSTATIC<>BLACK SEA, 308 3 SEUIMENTS• VITYAZEVIAN<>BI.ACK SEA 350 3 SHELf fORMATION• TECTONIC MDVEMENTS<>BLACK SEA, 308 3 SEDIMENTS, WATER CONTENT<>BI.ACK SEA 335 3 SHEI.f Of BLACK SEA OFF RUMAN IAN SHDREBI.ACK SEA 160 3 SHEI.f ZDNE<>BI.ACK SEA, 308 3 SEDIMENTSBLACK SEA, 170 3 SEDIMENTS• WATER DISTRIBUTION, GRAPH<>BI.ACK SEA 300 3 SHELL MATER!AI.<>BI.ACK SEA• NEOEUXINIAN 349 3 SEDIMENTS• WEIGHT, UNIT<>BI.ACK SEA 334 3 SHEI.I.S IN DEEP•WATER SEDIMENTS Of BI.ACK SEA<>MOI.I.USCAN 349 I SEDIMENTS• X•RAY fi.UURESCENCE• TABLE<>BI.ACK SEA 432 3 SHIPS, SUNKEN, PDSSIBI.E PRESENCE OfBI.ACK SEA 431 3 SHOREi.I NE LEVEI.S<>BI.ACK SEA, REGRESSION• HOI.OCENE• 312 3 SEDIMENTS• X•RAY SPECTROMETRIC ANAI.YSES• TABI.E<>BI.ACK SEA 556 3 S IAI.<>BI.ACK SEA AREA• BASIF!CATION Or 118 3 SEDIMENTS, YTTRIUM<>BLACK SEA 432 3 SICII.IAN TERRACE<>MARMARA• SEA or, 121 3 SEUIMENTS• ZINC<>BI.ACK SEA 432 3 SIDERITEc>BI.ACK SEA SEDIMENTS• MODERN, 285 3 SEDIMENTS• ZINC CONTENT<>BLACK SEA 558 3 SIEVING AND SETTLING METHODS, CDMPARISONd>GRAIN•SIZE ANAlYSIS• 320 3 SEDIMENTS• ZIRCONIUM<>BLACK SEA 432 3 >SIGMOMORPH!NA SEMITECTA, MICROGRAPHS< 412 3 SEDIMENTS• ZIRCONIUM D!STRIBUT!ON<>BI.ACK SEA 459 3 SIGMDMORPHINA WII.I.IAMSDNh D!STRIBUTION//SEA SHELf• RUMANIAN• 416 3 >SEDIMENTS AND CELLS••A PARAI.LEi.< 296 3 >SIGMOMDRPH!NA WILI.IAHSDNI• MICROGRAPHS< 412 3 SlDIMENTS AND THEIR PALEO•DCEANOGRAPH!CIIDEEP BI.ACK SEA 524 SILICA, ALKAI.INITY• TABlEBI.ACK SEA 286 3 SII.ICA CONTENT<>BLACK SEA CORES, 572 3 SEDIMENTS fROM ELEVEN BLACK SEA CORES<>GEOCHEM!STRY Of 430 I SII.ICA CONTENT<>BlACK SEA SEDIMENTS• 556 3 SlillMENTS Of<>BLACK SEA• 205 3 SII.ICA DISSDLUTION<>BLACK SEA SEDIMENTS, DEEP, 390 3 SEUIMENTS Of BLACK SEA<>CHI.DRDPHYI.L" DEGRADAT!DN PRODUCTS IN 426 I SILICON<>BI.ACK SEA SEDIMENTS, 431 3 SEDIME�TS OF BLACK SEABLACK SEA• SEDIMENT• WATER INTERfACE• 3 E QUATERNARY DEEP• WATER I 390 SEDIMENTS Of BLACK SEA<>MOLI.USCAN SHEI.i.S IN DEEP•WATER 349 I SILl. DEPTH<>BOSPORUS• 149 3 SEDIMENTS Of BI.ACK SEABDSPORUS, 195 3

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 SILT• CLAY RATIOS• OlAGRAM<>BLACK SEA, SEDIMENT CORES> SAND• 212 STEROl.> UN�NOWN<>B�ACK SEA SEDIMENT> 510 SILT, COARSE•, FRACTION<>BLACK SEA SEDIMENTS, 272 STEROl. AND STANDARDS, RETENTION TIMES, TABI.E<>BI.ACK SEA 508 SILT> riNE•, DISTRIBUTION MAP<>BLACK SEA SEDIMENTS• 273 STEROl. fRACTION> SURFACE, HISTOGRAM OF MASS SPECTRU/>BI.ACK SEA> 509 SILT, riNE• , FRACTION<>BI.ACK SEA SEDIMENTS, 272 STEROLS• ABUNDANCE, TABLE<>BLACK SEA SEDIMENT, 508 SILURIAN AND DEVONIAN, TRANSGRESS!ON<>TURKEY• ANATOI. IA, 64 STEROLS<>AI.BERTA• CHESTERMERE I.AKE> 510 Sli.URIAN GRAPTOLI TE SHAI.ES<>TURKEY, TAURUS OR TDRDS OAGLARI> 64 STEROLS<>AI.BERTA, COOKING I.AKE• 510 SILURIAN ROCKS<>TURKEY> ISTANBUl.• 64 STEROLS> AND CAROTENDIOS FROM A Bt.ACK S//CHLORINS> HYDROCARBONS, 505 Sli.VER<>BI.ACK SEA SEDIMENTS> lo32 STEROLS<>BI.ACK SEA SEDIMENT CORE• 505 SINOP• SAMSUN OlSTRICTc>BI.ACK SEA, STEROLS<>CAI.IFORNIA• SAN PEDRO BASIN> 509 liD S lNOP• SAMSUN SHELF DISTRICT, STRUCTURE AND MORPHOI./>Bt.A CK SEA• 309 >STEROLS> CONVERSION TO STERANES< 505 >SINOP BAY< 311 STEROLS> EXPERIMENTAl. METHDOS<>BI.ACK SEA CORE, 506 >SITOSTANOI.c 509 STEROLS> GAS CHROMATDGRAM<>BI.ACK SEA CORE, 508 SITOSTEROI.c>BETA• 505 STEROLS<>TEXAS• BAFFIN BAY> 509 SIVASH BASIN<>BI.ACK SEA AREA, 69 >STIGMASTAN£< 505 SKEWNESSc>BI.ACK SEA TURBIDITES, GRADED BEDS• 326 >STl GMAS TA NOI.< 505 SKEWNESS, GRAPH GRADED BEDS• GRAIN SIZE VS 328 >STIGMASTEROL< 505 SLOPE<>Bt.ACK SEA, CONTINENTA� 308 STRAITS> MARINE> QUATERNARY<>BOSPDRUS, 119 SLOPESc>BI.ACK SEA BASIN> 2 STRANDZHA MOUNTAINS<>BULGARIA• BLACK SEA BEI.T, 91 SI.UMP rEATURES<>BI.ACK SEA BASIN> 3 STRATIGRAPHIC CDLUMNS<>BI.ACK SEA• 195 SLUMPINGc>Bt.ACK SEA> 19 STRATIGRAPHIC SCAt.E<>BLYTT• SERNANOER HOLOCENE 366 SI.UMPINGc>CRIMEAN PENINSULA> 22 STRATIGRAPHIC SCALES> TABLEBI.ACK SEA> 310 STRATIGRAPHIC UNITS<>BLACK SEA SEDIMENTS• 332 SDCHI• NOVORDSSIYSK SHEI.F DISTRICT• STRUCTURE AND M/>BI.ACK SEA• 313 STRATIGRAPHIC UNITS• DIAGRAMc>BI.ACK SEA> COCCOLITH 354 SOCHI ZONE<>CAUCASUS> 78 STRATIGRAPHY<>BI.ACK SEA> CDCCOI.ITH 353 SODIUM<>BI.ACK SEA SEDIMENTS> 431 STRATIGRAPHY<>BI.ACK SEA SEDIMENTS> 194 SDLID•STATE BOUNDARIES<>MINERAI.S• 297 STRATIGRAPHY, THREEFDI.O<>BLAC� SEA• 442 >SOME CHARACTERISTICS Of CARBONATE SEDIMENTATION IN BI.ACK SEAc 2 79 STROMATOt.ITES> MIOCENE> I.ATEc>MEOITERRANEAN> EVAPORITES AND 124 SOMKHET• KAFAN ZDNE<>TRANSCAUCASIA> 67 STRDNTIUM<>BLACK SEA> COCCOI.!THS• 566 SDRTING<>BI.ACK SEA SEDIMENTS, 273 STRUNT!UM<> BLACK SEA SEDIMENTS> 432 SORT ING<>BI.ACK SEA TURBIDITES• GRADED BEDS• 326 STRONTIUM• RUBIDIIJM ISOTOPE RATIOS> GRAPH/>BLACK SEA SEDIMENTS> 563 SORTING COEFFICIENTS, DISTRIBUTION MAP<>BI.ACK SEA SEDIMENT$, 274 STRONTIUM CONTENToBI.ACK SEA SEDIMENTS, 557 >SOUTH ATLANTIC> BRAARUDOSPHAERA• NERITIC DOMINANCE< 360 STRONTIUM OATA<>ARGENTIN£ BASIN SEOhENT> RUB IDIUM• 562 SPARGANIUM POI.I.ENc>BI.ACK S[A, 398 STRONTIUM OATA<>MID•ATLANTIC RIDGE SEDIMENT, RUBIDIUM• 562 >SPARGANIUM PDI.I.EN• MICROGRAPH< 409 STRONTIUM DATA> TABI.ES<>BLACK SEA SEDIMENT, RUBIDIUM• 562 SPEC IFI C GRAVITY<>BI.ACK SEA SEDIMENTS, GRAIN 335 STRONTIUM DISTRIBUTION, GRAPH<>BI.ACK SEA, SEDIMENT CORE 1 432> 442 a. SPECTROGRAPHY<>BI.ACK SEA SEDIMENTS, OPTICA� EMISSION 432 STRONTIUM DISTRIBUTION• GRAPH<>BLACK SEA> SEDIMENT CORE 1 440> 445 f SP!I.I.WAY, MAR! NE<>BOSPORUS, 119 STRONTIUM DISTRIBUTION, GRAPH<>BI.ACK SEA, SEDIMENT CORE 1 452, 444 :; SPINIFERITES BENTORI<>BI.ACK SEA> 366 STRONTIUM DISTRIBUTION• GRAPH<>BLACK SEA> SEDIMENT CORE 1462> 443 It SPINIFERITES BUI.I.OIDES<>BI.ACK SEA, 366 STRONTIUM DISTRIBUTION, GRAPH<>BI.ACK SEA, SED I MENT CORE 1470, 443 >C SPINIFER!TES CRUCIFDRM!Sc>BI.ACK SEA• 366 STRONTIUM OISTRIBIJTION> GRAPH<>BLACK SEA> SEDIMENT CORE 1472> 446 SPINIFERITES CRUCifDRMIS<>BI.A CK SEA• 375 STRONTIUM DISTRIBUTION, GRAPH<>BLACK SEA, SEDIMENT CORE 1484, 446 >SPINIFERITES CRUCIFORMIS> MICROGRAPHS< 368 STRONTIUM IN CARBONATE PHASE DF TWO COR/>ISOTOPE COMPOSITION OF 566 SPINIFERITES HIRABII.IS<>BLACK SEA, 366 STRONTIUM•ISDTOPE RATIOS, TABLE<>Bt.ACK SEA SEDIMENT AND WATER, 567 SPINlfERITES NOOOSUS<>BI.ACK SEA> 366 >STRONTIUM"ISDTOPE RATIOS> USEO AS INDICATOR O F GEDI.DGIC PROVEN/ 554 SPINIFERITES SCABRATUS<>BLACK SEA, 366 >STRONTIUM•ISDTOPE RATIOS IN OCEANs, TABI.E< 567 SPORE CONTENT, GRAPH<>BLACK SEA• SEDIMENT, PDI.I.EN AND 382 STRONTIUM"ISDTOPE RATIOS VS DEPT�, GRAPH<>BI.ACK SEA SEDIMENT• 568 SPORES, AND MICROPLANKTON> REWORKEO<>BLACK SEA> POI.I.EN, 406 STRONTIUM ISOTOPES, ANALYTICAl. PROCEDURES<>BLACK SEA• 566 SPORESc>BI.ACK SEA> 402 STRONT IUM ISDTDPES<>BLACK SEA SEDIMENTS> 562 SPORES, REoORKEO<>BI.ACK SEA> POI.�EN AND 383 STRONT!Uit �UBIDIUH, GRAPHB�ACK SEA> POLLEN AND 382 >STRUCTURAl. STAGE, USAGE OF T(RM< 82 >SPOROPOLLENIN< 381 STRUCTURAl. STAGES<>CAUCASUSo WES TERN, BASEMENT> 82 SPREADING Ofe>ANATDLIA, CRUST• 71 STRUCTURE> DISCUSSION<>BI. ACK SEA SASIN> 25 SPRINGS> SUBMARINE<>BLACK SEA> 162 STRUCTURE> SUMMARY<>BLACK SEA> 578 SPRUCE POI.LENc>BL.CK SEA> PICEA OR 396 STRUCTURE AND MDRPHDLDGYc>BI.ACK SEA BASIN> 308 SREONA GORA AREA, FORMATION OF<>BUI.GARIA> 91 STRUCTURE HAP<>CAUCASUS, WESTERN• 85 STAGE, USAGE OF TERM<>STRUCTU�A� 82 STRUCTURE OF BI.ACK SEA<>SHALLDW 11 STANDARD DEVIATION<>BI.ACK SEA TURBIDITES> GRADED BEDS> 326 STRUCTURE Of BLACK SEA BAS!Nc>DEEP 35 STANDARD DEVIATION VS GRAIN SIZE, r.RAPH//GRADEO BEDS, 327 STYR!AN PHASE<>CAUCASUS> 86 STARA PI.ANINA MEGA•ANTICI.INORIUM<>BLACK SEA B ASIN> 308 SU�BOREAI. CLIMATIC SHIFTc>BLACK SEA> 372 STARA PI.ANINA MEGA•ANTICI.INO�IUM<>BLACK SEA BASIN> 310 SUBCDI.I.OIDAI. FRACTION<>BLACK SEA SED IMENTS• 27 3 STARD• EUX!NSKA TERRACE<>BUI.GAR!A, BI.ACK SEA COAST• 93 SUBCDI.LO!DAL fRACTION, DISTRIBUTION MAP<>BI.ACK SEA SlOIMENTS• 274 STAROKARANGATSKA TERRACEc>BUI.GARIA, BI.ACK SEA COAST, 9 3 SUBDUCTION ZDNE<>SI.ACK SEA BASIN> 59 STAVROPOL UPI.IFT<>CAUCASUS, 78 SUBDUCTION ZDNE<>MEOITERRANEAN> EASTERN> 59 STERANESc>STERDI.S, CONVERSION TO 505 SUBHERCYNIAN PHASEc>CAUCASUS, 83 >STI:.RANES IN PETROLEUM, ORIGIN< 506 SUBMARINE CANYON<>BOSPDRUS AND MARMARA, SEA OF> 100 0. STEROIDAL CDMPOUNOS<>BLACK SEA CORES> ORGANIC ANA�YS!S, 479 SU�MARINE CANYONS<>BLACK SEA, 2 II.) '()

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 SUBMARINE CANYONS<>BLACK SEA, 162 3 SVANETSKIY FAULT<>CAUCASUS, RACHA• 82 3 SUBMARINE CANYONS<>BLACK SEA AND BOSPORUS, 124 3 SWABIAN A LB, JURASSIC ROCKS<>BLACK SEA AREA• 203 3 SUBMARINE CANYONSc>BLACK SEA BASIN, 309 3 SWELL! NG, MECHAN I SM<>M I TOCHONDRI AL 306 3 t SUBMARINE RIOGES<>BLACK SEA• 2 3 SYNCLINORIUMS<>USSR, CAUCASUS, WESTERN, 79 3 0 SUBMARI NE VALLEVS<>BLACK SEA, KDLKHIDA DISTRICT• 312 3 SYNTHESIS AND POLYMERIZATION<>MOLECULESo ORGANIC• 297 3 SUBSIDENCE<>BLACK SEA, 57 3 SYNTHESIS AND POLYMERIZATION OF ORGANIC/lAND TEMPLATES I N 304 3 SUB&IOENCE<>BLACK SEA BASIN, II 3 SYRACOSPHAERA MEDITERRANEA, MICROGRAPH<>BLACK SEA• 355 3 SUBS!DENCE<>BLACK SEA BASIN• 124 3 SYRACOSPHAERA MEOITERRANEA, MICROGRAPHS<>BLACK SEA• 357 3 SUBSIDENCE, EASTERN ZONE DF<>CAUCASUS, 78 3 SYRACOSPHAERA PYRUS• MICROGRAPH<>BLACK SEA• 357 3 SUBSIDENCE, WESTERN ZONE OF<>CAUCASUS, 78 3 TARKHANKUTIAN<>BLACK SEA SEDIMENTS• 350 3 SUDETAN PHASE<>CAUCASUS, HERCYNIAN OROGENY, 80 3 TARKHANKUT!AN STAGE<>BLACK SEA• 194 3 SUGAR DISTRIBUTION• GRAPH<>BLACK SEA SEDIMENTS, 300 3 TAURUS DR TOROS DAGLAR I o SILURIAN GRAPTOLITE SHALES<>TURKE Y, 64 3 SU�HUMI LANOSLIDES<>BLACK SEA REGION, 313 3 T AVRICHESK SUITE<>BLACK SEA BASINo 43 3 SULFATE• BORON• FLUORIDE• AND CALCIUM< •/CHLORINITY RATIOS OF 152 3 TBILISI BASIN<>CAUCASUS• 86 3 SULFATE• C HLORIDE RATIO<>BLACK SEA• 419 3 TECTATDOINIUM PELLITUM<>BLACK SEA, 366 3 SULFATE• INTERSTITIAL<>BLACK SEA• 164 3 TECTATODINIUM PS!LATUM<>BLACK SEA, 366 3 SULFATE•RE DUC I NG, COUNTSc>BLA CK SEA• BACTERIA, 421 3 TECTATODINIUM PSILATUM<>BLACK SEAo 375 3 SULfATE REDUCTI ON<>BLACK SEA, 419 3 >TECTATODINIUM PSILATUM, MICROGRAPHS< 368 3 SULfATE REDUCTION<>BLACK SEA, 422 3 TECTOGENES!Se >USSR• CAUCASUS, WESTERN, 82 3 SULFIDAT!ON<>BLACK SEA• IRON 528 3 TECTONIC ELEMENTS• MAP<>BLACK SEA BASIN• 46 3 SULFIDE• D S I SSOLVED• PROFILESc>BLACK EA• 139 3 TECTONIC MOVEMENTS<>BLACK SEA, SHELF FORMATION• 308 3 V SULFIDE• ERTICAL fLUX OF<>BLACK SEA• 138 3 TEMPERATURE, AND DENSITY PRDFILES<>BLACK SEA• SALINITY, 138 3 SULF S O IDE CDNTENT<>BLACK SEA EDI MENTS, MOLYBDENUM, RELATION T 551 3 TEMPERATURE<>BLACK SEA, WATER 93 3 SULFIDE fORMATION ON DISTRIBUTION Of SOl/AND PROCESSES Of 456 I TEMPERATURE<>BULGARIA• VARNA LAKEo WATER 93 3 SULfiDE OXIDATION• BIOLOGIC AND CHEMI CAL<>BLACK SEA• 420 3 TEMPERATURE AND CHLDRINITY• TABLE<>BLACK SEA WATER• 93 3 SULfiDE OXIDATIO"<>BLACK SEA, 423 3 TEMPERA TURE•OEPTH PROFIL ES<>BLACK SEA, 54 3 X B SULfiDE•O IOIZING, COUNTS<> LACK SEA, BACTERIA• 421 3 TEMPERATURES AND VELOCITIES• LOWER LAYER<>BDSPORUS• 112 3 SULfiDE PRODUCTIDN<>BLACK SEA SEDI MENTS• 139 3 TEMPLATES IN SYNTHESIS AND POLYMERIZATI//CATALYSTS AND 304 3 SULFIDE SULFUR• GRAPH<>BLACK SEA CORES• SULfUR• ELEMENTAL• VS 525 3 TEREK• CASPIAN BASIN<>BLACK SEA AREA• 69 3 SULFIDESo DIAGENETIC DEVELOPMENT<>BLACK SEA• 446 3 TEREK• CASPIAN TROUGH<>CAUCASUS• 78 3 SULfiDES, FORMATION Df<>BLACK SEA SEDIMENTS• 473 3 TERRACE<>BLACK SEA, NEW• 312 3 SUVIDES IN PLEISTOCENE OEEP BLACK SEA SEDIMENTS AND THElt IRON > 524 TERRACES<>BOSPORUSo 117 3 Z I SULfiDI AT!ON, EVALUATION OF<>I RON, REDUCTION AND 538 3 TERRACESc>BULGARIAo BLACK SEA CDASTo 9 3 3 SULFUR<>BLACK SEA SEDIMENTS, 431 3 TERRACES<>HARMARAo SEA OF• 118 3 SULfUR, ELEMENTAL<>BLACK SEA CORESo 477 3 TERR IGENOUS, CALCITE• OOLDMITE RATIO<>BLACK SEA SEDIMENTS, 234 3 SULFUR, ElEMENULo VS SULFIDE SULFUR, GRAPH<>BLACK SEA CORES, 525 3 TERRIGENOUS DETRITU S<>BLACK SEA BASIN, 308 3 S�LfUR, ORGAN I C•l HORGAN! C RATl O<>BLACK SE A, 419 3 >TERTIARY AND QUATERNARY DEPOSITS, DINOF"LAGELLATES< 364 3 ;' SULfUR, REDUCED, CONCENTRATIDN<>BLACK SEA CORES, 526 3 TERTIARY DRIGIN<>BOSPORUS• 117 3 SULfUR, REDUCED• VS IRON, REACTIVE• GRAPH<>BLACK SlA CORES, 526 3 t TERTIARY RDCKS<>BLACK SEA AREAo BAVARIAN MOLASSE, 203 3 >C SULfUR, TOTAL, AND CARBON, ORGANIC, CONI/SEA, SAPROPELIC MUDS, 465 3 >TETHYS SEA AREA• HOUNTAIN•BUILDING PERIOD< 63 3 I SULFUR, TOTALo AND CDBAL T CONTENT, GRAP//SEA• SAPROPEL! C MUDS• 465 3 >TETHYS SEAwAY< 60 3 SULfUR CYCLE<>BLACK S EA, CARBON, ORGANIC, IN MICROBIAL 424 3 >TEXASo BAfFIN BAYo STEROLS< 509 3 SULfUR CYCLE> MICROBIAL• OIAGRAM<>BLACK SEA• 423 3 THANATOCOENOSES<>BLACK SEA, DIATOM 391 3 SULfUR CYCLEo MICROBIAL, METHODS STUDY<>BLACK SEA, or 421 3 THERMAL REFRACTION<>BLACK SEAl 55 3 SULfUR CYCLE• ORGANIC MATTER, ROLE OF<>BLACK SEA• 419 3 THIDBACILLUS<>BLACK SEA, 420 3 SULFUR CYCLE IN BLACK SEA<>MICROBIAL 419 I THIOBACILLUS, COUNTS<>BLACK SEA• 421 3 SULfUR DISTRIBUTION• GRAPH<>BLACK SEA, SEDIMENT CORE 1432. 442 3 THIOMOLYBDATE<>BLACK SEA, 543 3 SULfUR DISTRIBUTION, GRAPH<>BLACK SEAo S EDIMENT CORE 1440• 445 3 THIORHODACEAE, CDUNTS<>BLACK SEA• 421 3 S SULfUR DI TRIBUTION> GRAPH<>BLACK SEA, SEDIMENT CORE 1452. 444 3 THIOSULFATE OXIOATION<>BLACK SEA, 424 SULfUR DISTRIBUTION, GRAPH<>BLACK SEA 3 , SEDIMENT CORE 1462, 443 3 THIDXYMOLYBDATE<>BLACK SEA, 543 3 S�LfUR DISTRIBUTION• GRAPH<>BLACK SEA, SEDIMENT CORE 1470, 443 3 THOR IUM ANALYSES, TABLE<>BLACK SEA CORES, URANIUM AND 3 SULfUR D!STRIBUTIONo GRAPH<>BLACK SEA, 571 SEDIMENT CORE 14 72. 446 3 THORIUM CDNTENT<>BLACK SEA SEDIMENTS• 557 3 SULFUR DISTRIBUTION• GRAPH<>BLACK SEA, SEDIMENT CORE 1484, 3 446 TIANETA ZDNE<>CAUCASUSo MEST!YA• 78 3 SULfUR STUOIESo METHODS<>BLACK SEA, 421 3 Tl DES<>BOSPORUS, 103 3 SUMMARY<>BLACK SEA• XI 3 TIOES<>GONYAULAX POLYEDRA• REO 375 3 >SUMMARY Of BLACK SEA INVESTIGATIONS< 575 TILIA DR LINDEN PDLLEN<>BLACK SEA, 398 3 SUPSA RIVERo SEO!MENT<>BLACK SEA REGION• I 312 3 TIN<>BLACK SEA SEDIMENTS, 432 3 SUSPENDED LOAD • GRAIN SizE, TABLEc>AZOV• BLACK SEA BASIN• 252 3 TITANIUM<>BLACK SEA SEDIMENTS• 431 3 SUSPENDED LOAD• SEASONAL DISCHARGE, TABLE<>BLACK SEA BASIN, 251 3 TITANIUM CONTENT<>BLACK SEA CORESo 572 3 SUSPENDED LOAD• TABLE<>BLACK SEA• AHLUENTS, 253 3 TITANIUM C ONTENT<>BLACK SEA SEDIMENTS, 557 3 SUSPENDED MATERIAL<>BLACK SEA• 262 3 TOROS DAGLARio SILURIAN GRAPTOLITE SHALES<>TURKEY, TAURUS OR 64 BLACK S J SUSPENDED MATERIAL, CHEMICAL COMPOS!T!O/>AZOV• EA BASIN• 254 3 T RABZON• BATUMI DISTRICT<>BLACK SEA• 310 3 SUSPENDED MATTERo CONCENTRATION IN UPPER LAYER, GRA/>BLACK SEA• 264 3 T RABZON• B ATUM! SHELF DISTRICT• STRUCTURE AND MDRPH/>BLACK SEA• 309 3 SUSPENDED MATTER, CONCENTRATION IN WATER COLUMN, GR/>BLACK SEA• 264 3 TRACE• METAL CONCENTRATION IN SED!MENTS<>BLACK SEA• 259 3 SUSPENDED HATTER, DRY WEIGHT, GRAPH<>BLACK SEA• 139 3 TRACE, TABLE<>BLACK SEA, AFfLUENTS, ElEMENTS• RARE AND 260 3 SUSPENDED MAnEr., SURfACE CONCENTRATION• MAP<>BLACK SEAo 263 3 TRACE•ELEMENT CONCENTRATION RELATED TD

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 TRACE•ELEMENT CONCENTRAT!ONSc/SEA, HYDROGEN SULFIDE, EFFECT ON 461 3 TURBIDITES, GRADED BEDS> C•M DIAGRAMS<>BLACK SEA 330 3 TRACE•ELEMENT RELATION TO BITUMEN CONTE//SEA• SAPROPEL!C MUDS• 466 3 TURBIDITES, GRADED BEOS, GRAIN•SIZE CURVES, SEGMENT/>BLACK SEA 325 3 TRACE•ELEMENT RELATION TO FULV!C ACID C//SEA• SAPROPEL!C MUDS• 467 3 TURBIDITES, GRAOEO BEDS, GRAIN•SIZE FEATURES<>BLACK SEA 322 3 TRACE•ELEMENT RELATION TO HUMIC ACID COl/SEA• SAPROPEL!C MUDS• 466 3 TURBIDITES, GRADED BEDS> GRAIN•SIZE FEATURES<>BLACK SEA 323 3 TRACE•ELEMENT RELATION TO ORGANIC MATERIA/>BLACK SEA SEDIMENTS> 462 3 TURBIDITES, GRADED BEDS> GRAIN•SIZE FEATURES<>BLACK SEA 324 3 T RACE ELEMENTS• ANALYSIS OF PARTICULATE MATTER<>BLACK SEA• 137 3 TURBIDITES , GRADED BEOS• GRAIN•SIZE PARAMETERS<>BLACK SEA 326 3 TRACE ELEMENTS<>BLACK SEA SEDIMENTS• HYDROGEN SULFIDE ZONE• 456 3 TURBIDITE S, GRADED BEDS> GRAIN•SIZE POPULATI ONS<>BLACK SEA 321 3 TRACE ELEMENTS<>BLACK SEA �ATER• !NTERSTIT�L• 168 3 TURBIDITES, GRADED BEDS> GRAIN SIZE VS KURTOSIS> GRA/>BLACK SEA 328 3 TRACE ELEMENTS• COLLECTION OF SAMPLES AND ANALYSIS<>BLACK SEA• 137 3 TURBIDITES, GRADED BEDS> GRAIN SIZE VS SKEWNESS, GRA/>BLACK SEA 328 3 TRACE ELEMENTS> DISSOLVED VS, SUSPENOED<>BLACK SEA• 457 3 TURBIDITES, GRADED BEDS• KURTOSIS<>BLACK SEA 326 3 TRACE ELEMENTS• EFFECT OF MEDITERRANEAN WATER INFLU/>BLACK SEA• 461 3 TURBIDITES, GRAOEO BEDS> MATR!X<>BLACK SEA 321 3 TRACE ELEMENTS• RELATION TO<>SEDIMENT GENESIS AND DIAGENESIS• 457 3 TURBIDITES, GRADED BEDS> MATRIX<>BLACK SEA 331 3 TRACE ELEMENTS• SAMPLE LOCATION MAP<>BLACK SEA• 457 3 TURBIDITES, GRADED BEDS• MATRIX CONTENT VS GRAIN SIZ/>BLACK SEA 326 3 TRACE ELEMENTSBLACK SEA 327 3 TRACE ELEI'IENTS• STUDIES<>BLACK SEA> 456 3 TURBIDITES, GRADED BEDS• SAND•SIZE CONTENT, VARIATIO/>BLACK SEA 325 3 T RACE ELEMENTS ANO CARBON> O RGANIC, AER!At>BLACK SEA SEDIMENTS, 457 3 TURBIDITES, GRAOEO BEDS> SKEWNESS<>BLACK SEA 326 3 TRACE ELEMENTS AND CARBON> ORGANIC• VERTICAL O ISTRI/>BLACK SEA> 458 3 TURBIDITES, GRADED BEDS• SORTI NG<>BLACK SEA 326 3 TRACE ELEMENTS INoOLD BLACK SEA DEPOSITS, 459 3 TURBIDITES, GRADED BEOS> STANDARD DEVIATION<>BLACK SEA 326 3 TRACE ELEMENTS IN BLACK SEA ANO THEIR FLU/>DISTRIBUTION OF SOME 137 TURBIDITES, GRADED BEDS• STANOARO OEVIATION VS GRAIN/>BLACK SEA 327 3 I TRACE ELEMENTS IN DEEP•WATER SEOIMENTS//ON DISTRIBUTION OF SOME TURBIDITES, GRADING> TYPES OF<>BLACK SEA 329 3 456 I TRACE ELEMENTS IN SAPROPELS> SOURCE OF<>OLD BLACK SEA DEPOSITS> 468 3 TURBIDITES, GRAI N•SIZE DISTRIBUTIONS• VERTICAL VARIA/>BLACK SEA 321 3 TRACE METALS, DISSOLVED> ANALYSIS<>BLACK SEA• 137 3 TURBIDITES, LITHOLOGY OF CORES<>BLACK SEA 319 3 TRACTION LOAD• GRAIN SIZE• TABLE<>AZOV• BLACK SEA BASIN> 251 3 TURBIDIT£S, PRESENTATION DF OATA<>BLACK SEA 318 3 > TRANSCAUCASIA• AOZHARO• TRIALETSK!Y ZONE< 69 3 TURBIDITES, SAMPLING METHODSc>BLACK SEA 317 3 >TRANSCAUCASIA> SOMKHET• KAFAN ZONE< 67 3 TURBIDITES, SAND CONTENT> VERTICAL VARIATION<>BLACK SEA 318 3 TRANSCAUCASIAN GEANT!CL!NE<>USSR, GEORGIA, 47 3 TURBIDITY"CURRENT ACTIVITY<>BLACK SEA, 3 3 >TRANSCAUCASIAN MASSIF< 64 3 TURBIDITY CURRENTS<>BLACK SEA• 18 3 TRANSCAUCAS!A N TECTONIC OEPRESSIONS<>USSR, GEORGIA> 47 3 T URBIDITY CURRENTS<>BLACK SEA> 119 3 TRANSGRESS!ON<>NEW BLACK SEA 374 3 TURBIDITY CURRENTS<>BLACK SEA• 268 3 TRANSGRESS ION<>OLO BLACK SEA 374 3 TURBIDITY CURRENTS• LUTUM DENSITIES<>BLACK SEA> 331 3 TRANSGRESSIVE PHASE<>BLACK SEA, NYMPHAEAN 374 3 TURBIDITY CURRENTS• NEDEUXINIAN<>BLACK SEA• 351 3 T RANSGRESSIVE PULSES<>BLACK SEA> 374 3 >TURKEY, ANATOL IA> LIAS• OOGGER TROUGH, MAP< 65 3 3 TRANSPORT AND SEDIMENTATION• AGENT OF< •/GRADED BEDDING• 329 3 >TURKEY, ANATOLJA, MIOGEOSYNCLINES AND EUGEOSYNCLINES< Tl TRANSVERSDPONTIS PULCHER, MICROGRAPHS<>BLACK SEA• 361 3 >TURKEY, ANATOLI A, PALEDZO I C SEDIMENTS, SOURCE< 57 3 TREhD•SURfACE ANALYSESTURKEY, ANATDLIA, PONTIAN GEOSYNCLINE, MAP< 65 3 TREND SURF ACES> C ONTOUREO<>BLACK SEA SEDIMENTS• GEOCHEMISTRY> 436 3 >TURKEY, ANATOLJA, RADIOLARITE• OPHIOLITE ZONES< 68 3 TREND SURFACES> CONTOUREO<>BLACK SEA SEDIMENTS> GEOCHEMISTRY> 438 3 >TURKEY, ANATOL IA, SILURIAN A NO DEVONIAN> TRANSGRESSION< 64 3 :r TRlND SURFACES> CONTOURED<>BLACK SEA SEDIMENTs, GEOCHEMISTRY> 439 3 >TURKEY, ANATDLIA• ULTRAMAFIC MASSIFS< 68 3 TRIALETSKiv FOLDED SYSTEM<>BLACK SEA BASIN> AOZHARO• 308 3 >TURKEY, BLACK SEA BASIN• GEOPHYSICAL PROF ILE< 17 3 TRIALETSKIY fOLOEO SYSTEM<>BLACK SEA BASIN> AOZHARD• 311 3 >TURKEY, CENTRAL COAST, GEOPHYSICAL PROFILE< 15 3 i TRIALETSKIY FOLDED SYSTEM<>CAUCASUS> WESTERN> ADZHARO• 79 3 >TURKEY, G0LOEN HORN< 99 3 t TRIALETSKIY fOLDED SYSTEM> CENTRAL ZONE<>CAUCASUS> ADZHARO• 78 3 >TURKEY, ISTANBUL> SILURIAN ROCKS< 64 3 TRIALETSKIY FOLDED SYSTEM> NORTHERN ZONEoCAUCASUS> ADZHARO• 78 3 >TURKEY, !ZMIT BAY< 99 3 TRIALETSK IY fOLDED SYSTEM• SOUTHERN ZONE<>CAUCASUS> AOZHARO• 78 3 >TURKEY, MELANGES, TECTONIC• AND OPHIOLITES< 59 3 TRIALETSKI Y ZONEoTRANSCAUCASIA• AOZHARO• 69 3 >TURKEY, NORTHWEST COAST> GEOPHYSICAL PROFILE< 15 3 >TRIPOR! TES, MICROGRAPHS< 384 3 >TURKEY, RHOOOPE OR OOSPAD OAGH> METAMORPHIC ROCKS< 63 3 TR!TERPENO!OAL COMPOUNDS<>BLACK SEA CORES, ORGANIC ANALYS IS> 479 3 >TURKEY, TAURUS DR TOROS DAGLARI, SILURIAN GRAPTOLITE SHALES< 64 3 TRITIUM> SAMPLING FDRBLACK SEA• 24 3 TR! TIUM CONTENT< , tATOMIC•wEAPONS TESTS• EFFECTS ON C•l4 AND 131 3 >TURKISH STRAITS, STUDIES Or< 99 3 T SAISHJ FAULT<>CAUCASUS• TSKHAKAYA• 82 3 TYPHA PDLLEN<>BLACK SEA• 398 3 TSKHAKAYA• TSAISHI fAULT<>CAUCASUS, 82 3 TYRNYAUZ GEDSUTURE<>CAUCASUS, PSHEKHA­ 78 3 TSKHALTA• LAYLA ZONE<>CAUCASUS> 78 3 TYRNYAUZ GEDSUTURE<>CAUCASUS, PSHEKHA• 82 3 TUAPSE• NDVOROSS!YSK ZONE<>CAUCASUS> 78 3 >TYRRHENIAN MASSIF< 73 3 TURBIDITE• GRAIN•SIZE GRAPH<>BLACK SEA, 229 3 >T YRRHENIAN SEA• COMPARED TO BLACK SEA ANO ANATOLIA< 73 3 TUR�ID!TE OEPOSITION<>BLACK SEA, 212 3 TYRRHENIAN TERRACE<>MARMARA, SEA Of• 121 3 TURBIDITE SEQUENCE<>BLACK SEA• 349 3 TYULENOVD BLOCK<>BULGARIA> BLACK SEA BELT• 91 3 TUHBIOITES TEXTURAL APPROACHUSSR, 65 3 ""A T I TURB!D!TES<>BLACK SEA• 22 3 >UKRAINIAN MASS IF, GEOLOGY< 202 3 TURBID!TES<>BLACK SEA, 191 3 >UKRAINIAN SHIELD, AGE< 63 3 TURBIDITES, CORE LOCATION MAP<>BLACK SEA 318 3 UKRAINIAN SHIELD> MAP<>USSR, 65 3 TURBIDITES, GRADED BEDDING, C•M OR PASSEGA OIAGRAMS<>BLACK SEA 329 3 ULMUS OR ELM POLLEN<>BLACK SEA, 398 3 TURBIDITE S, GRADED BEDDING• OATA !NTERPRETATION<>BLACK SEA 329 3 ULTRAMAFIC MASSIFS<>TURKEY> ANATOLIA> 68 3 TURBIDITES, GRADED BEDDING, PULSATIONS<>BLACK SEA 329 3 >UMB ILICOSPHAERA SP,, MICROGRAPH< 304 3 TURBIDITES, GRADED BEDDING• SEDIMENTATION PROCESS> [/>BLACK SEA 329 3 UNDERCURRENT< >BOS P D RUS• 107 3 TURBIDITES, GRADED BEDDING, TRANSPORT AND SEDIMENTAT/>BLACK SEA 329 3 U NIT 1, AGE OF<>BLACK SEA SEDIMENTS• 184 3 1'URBlD!TES, GRADED BEDDING> TRENDS<>BLACK SEA 318 3 UNIT 1, COCCOL ITH DOZE<>BLACK SEA, SEDIMENT 582 3 t -

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 UNIT 2, AGE<>BLAC� SEA SEDIMENTS• 187 3 WATER, ETHYLENE CONCENTRATI ON<>BLACK SEA 499 3 UNIT 2<>BLACK SEA SEDIMENTS• 184 3 >WATER, fUNCTION IN �INERALS AND MACROMOLECULES< 296 3 UNIT 2, SAPROPEL BEDS<>BLACK SEA, SEDIMENT 582 3 WATER, HYDROCARBON GASES, SATURATED• TABLE<>BLAC� SEA 500 3 t .,., UNIT 3<>BLACK SEA SEDIMENTS• 187 3 WATER, HYDROGEN SULFIDE CONCENTRATIDN<>BLACK SEA 537 3 UNIT 3, LUTITE, BANOED<>BLACK SEA, SEDIMENT 582 3 WATER, INfLUX Of<>BLACK SEA• MED I TERRANEAN 301 3 >UNITED STATES• BASIN AND RANGE PROVINCE• COMPARED TO BLACK SEA/ 73 3 WATER, INTERSTITIAL<>BLACK SEA, S"ELF ZONES, 170 3 UPLlrT<>BLACK SEA, 57 3 WATER, INTERSTITIAL• BOUNDARY CONDITIONS AND ASSUMPT/>BLACK SEA 174 3 UPLIFT • CENTRAL ZONE Of<>CAUCASUS, 78 3 WATER, INTERSTITIAL• COMPOSITION• TABLEt/SEA• NORTHhEST SHELF• 170 3 UPL IFT, COASTAL<>BLACK SEA, 314 3 WATER• INTERSTITIAL• DISTRIBUTION AND C/>BLACK SEA BASIN• DEEP• 158 3 UPL lrT, I SOSTA T IC<>SCANO I NAV I A, 125 3 WATER, INTERSTITIAL• METHDDSc>BLACK SEA• 157 3 UPLIFTS<>BLACK SEA BASIN, NOnHERN, 43 3 WATER, INTERSTITIAL• MINOR COMPONENTS, TABLE<>BLACK SEA 168 3 UPMIXING<>BLACK SEA• 150 3 WATER, INTERSTITIAL• TRACE ELEMENTS<>BLACK SEA 168 3 URANIUM AND THORIUM ANALYSES, TABLE<>BLACK SEA CORES, 571 3 WATER• ION IC VAR!ATIDN<>BLACK SEA, 151 3 >URANIUM A S A GEOLOGIC MARKER < 572 3 WATER, LAYERS<>BLACK SEA 93 3 URANIUM CONCENTRATIDNS<>BLACK SEA SEDIMENT UNITS, 571 3 WATER, MET"ANE CONCENTRATI0NS<>8LACK SEA 499 3 URANIUM CONTENT<>SLACK SEA SEDIMENTS• 557 3 WATER• MOLYBDENUM, HYDROGEN SULfiDE• AND EH• DISTRIB/>8LACK SEA 544 3 URANIUM GEOCHEMISTRY, ANALYTICAL METHOOS<>BLACK SEA, 570 3 WATER, MOLYBDENUM, VERTICAL O!STR!BUT!ON<>BLACK SEA 543 3 URANIUM GEOCHEMISTRY, CORE LOCATION MAP<>BLACK SEA• 570 3 WATER, MOLYBDENUM CONTENT• TABLE<>BLACK SEA 543 3 >URANIUM GEOCHEMISTRY IN BLACK SEA< 570 I WATER, MOLYBDENUM IN<>BLACK SEA 542 3 >USSR, ARMENIA, ARZAKAN MASSIF< 80 3 WATERUSSR, CAUCASUS, WESTERN, BASEMENT, AGE AND LOCATION< 80 3 WATER, ORGANIC• NITRATE• AND PHOSPHATE COMPOS!TIDN•I>BLACK SEA 94 3 >USSR, CAUCASUS• WESTERN• FAULT SYSTEMS< 81 3 WATER, DXIOATION• REDUCTION PDTENTIAL<>BLACK SEA 537 3 >USSR, CAUCASUS, WESTERN, GEOTECTONIC ZONATION < 77 3 WATER, OXYGENATED LAYER<>BLACK SEA, 127 3 >USSR, CAUCASUS, WESTERN• SCYTHIAN EPIHERCVNIAN PLATE< 77 3 WATER, PROPANE CONCENTRATION<>BLACK SEA 499 3 >USSR, CAUCASUS, WESTERN, SYNCLINDRIUMS< 79 3 wATER, PROPYLENE CONCENTRATION<>BLACK SEA 499 3 > SSR, u CAUCASUS• WESTERN• TECTOGENESIS< 82 3 WATER, SALINIT!ESc>BLACK SEA 580 3 >USSR, GEORGIA, HERCYNIAN ROCKS< 80 3 WATER, SALINITY AND CHEMICAL COHPOSITION<>BLACK SEA• 93 3 >USSR, GEORGIA• R!ON!• KURA BASIN< 64 3 WATER, SAMPLING AND ANALYTICAL TECHNIOUES<>BLACK SEA, 127 3 >USSR, GEORGIA, TRANSCAUCASIAN GEANTICLINE< 47 3 WATER, STRONTIUH•ISOTOPE RATIOS• TABLE<>BLACK SEA SEDIMENT AND 567 3 > SSR, U GEORGIA, TRANSCAUCASIAN TECTONIC DEPRESSIONS< 47 3 WATER, SUBMARINE D!SCHARGE<>BLACK SEA 161 3 >USSR, GEORGIAN BLOCK< 47 3 WATER, SUMMARY<>BLACK SEA 579 3 >USSR, A UKR !NEo SCYTHIAN PLATFORM• MAP< 65 3 WATER, TOTAL<>BLACK SEA SEDIMENTS, CARBON, CARBON DIOXIDE, AND 433 3 >USSR, UKRAINIAN SHIELD, MAP< 65 3 WATER ANO PORE WATERS• CHEMICAL COMPDSfT ION• TABLE<>BLACK SEA• 166 3 UZUNLAR• I'O ST•• GLACIAL STAGE<>BOSPDRUS• 121 3 WATER BALANCE, MODEL<>BLACK SEA• 146 3 UZUNLARSKA T ERRACE<>BULGAR! A o SLACK SE A COAST, EUX!ND• 93 3 WATER BALANCE, MOOEL<>BLACK SEA• 148 3 VANADIUM<>BLACK SEA SEDIMENTS, 432 3 WATER BALANCE• TABLE<>BLACK SEA• 250 3 VANADIUM, DISTRIBUTION<>SLACK SEA SEDIMENT S• 457 3 WATER BUDGET<>BLACK SEA• S" 121 J. V ANADIUM A ND CARsON• ORGANIC, CONTENT,//SEA• SAPRDPELIC MUDS• 464 3 WATER CDLUMN<>BLACK SEA• HYDROCARBON GEOCHEMISTRY• 499 3 VANADIUM CONTENT<>BLACK SEA CORES, 572 3 WATER COMPOSITION• TABLE<>DANUBE• BLACK SEAo AND OCEAN, 94 3 VARIMAX RDTATIDN<>FACTOR ANALYSIS, 434 3 WATER CONTENT<>BLACK SEA SEDIMENTS, 335 3 i D >VARISCAN R HERCYNIAN TECTOGENESIS< 64 3 WATER CONTENT, GRAPHS<>BLACK SEA SEDI MENTS• 160 3 t VARNA OEPRESS!ON<>BULGARIA• BLACK SEA BEL T• 91 3 WATER CONTENT, POROSITY• AND PHYSICAL PROPERTIES Of />BLACK SEA• 160 3 VARNA LAKE, WATER TEMPERATURE<>BULGARIA• 93 3 WATER DISTRIBUTION• GRAPH<>BLACK SEA SEDIMENTS• 300 3 VELOCIT!E$, LOWER LAYER<>BOSPORUS, TE�PERATURES AND 112 3 WATER•EXCHANGE VALUESc>BLACK SEA• 147 3 VENUS<>BLACK SEA, 251 3 WATER I NTERFACE• SILICON, DISSOLVED<>BLACK SEA, SEDIMENT• 390 3 F >VITYAZEVIAN, BASE O < 373 3 WATER MASSES<>BLACK SEAo 580 VlTYAZEVIAN<>BLACK SEA SEDIMENTS• 350 3 WATER OUTfLOW, INFLOW<>BLACK SEA• 373 � VI TY AZEVIAN BOUNOARY<>BLACK SEA• KALAN IT IAN• 349 3 WATER SAMPLING STATIONS• �APc>BLACK SEA• 128 VlTYAZEVIAN STAGE<>BLACK SEA, 194 3 WATER SAMPLING STATIONS, MAPc/SEA AND ATLANTIC OCEAN, 128 VOLCANIC ROCKS<>BLACK SEA• TURKISH COAST• 24 3 WATER SEDIMENTS OF BLACK SEABLACK SEA• 215 3 WATER TEMPERATURE<>BLACK SEA, 93 VOLCAN!SM<>BLACK SEA REGION• 68 3 WATER TEMPERATURE<>BULGAR!A, VARNA LAKE• 93 WALACHIAN LDWLANDS<>BLACK SEA AREA• 202 3 WATER•TEMPERATURE VARIATIONS<>BLACK SE A, HEAT•FLOH MEASUREMENT• 56 WALACH!AN LOWLANDS• QUATERNARY RDCKSBl ACK SEA, 149 WALLACH!AN PHASEc>CAUCASUS• 87 3 WATER VDLUMES<>BLACK SEA• 577 WALNUT POLLEN<>BLACK SEA• JUGLANS OR 400 3 WATERS Or BLACK SEA SEDIMENTS••NEW DATA AND REVIE/>INTERSTITIAL 155 WALNUT POlLEN, DISTRIBUTION IN SEO!MENT//SEA, PTEROCARYA OR 383 3 WAVE ACTION, SEDIMENT DISTRIBUTIDN<>BLACK SEA, 259 WASHOUT<>BLACK SEA• 313 3 WAVE F!ELD<>BLACK SEA BASIN• SEISMIC 35 WATER, ANOXIC• DEVELOPMENT, GRAPH<>BLACK SEA• 135 3 WAVES, INTERNAL<>BOSPORUS• 112 WATER<>BLACK SEA, 97 3 WAVES, PRI�ARY• HODOGRAPH<>BLACK SEA BASIN• SEISMIC 37 WATER<>BLACK SEA• INFLUX Or MEDITERRANEAN 373 3 WEIGHT, UNITc>BLACK SEA SEDIMENTS, 334 W ATER, CAlCIUM CARBONATE SUPERSATURAT !ONc>BLACK SEA, 252 3 WEST PONTIAN SYNCLINOR IUM<>BLACK SEA BASIN• 308 WATER• CARBON MONOXIDE VALUES<>BLACK SEA 502 3 WEST PONT!AN SYNCLINOR!UM<>BLACK SEA BASIN• 310 W ATERBLACK SEA, SALIX OR 400 WATER• DEEp, RESIDENCE TIME<>BLACK SEA• 127 3 WINDS<>BOSPORUS, ETES!AN 100 WATER, ETHANE CONCENTRATION<>BLACK SEA 499 3 >WISCONSIN OR NEOEUXINIAN TIME• FENNOSCANDIAN ICE SHEET< 156

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 WURM GlACIATION<>BlACK StA• 566 3 WURM GlACIATION• GLAC IATION AND PERMAFROST MAP<>BlACK SEA, 228 3 WURM I GlACIAl STAGE<>BOSPORUS• 121 3 WURM II GLACIATION<>BOSPORUS, 123 3 wURM Ill GLACIATION• tFFECT ON StDIMENTATION<>BLACK SEA, 235 3 WURM INTtRVAl, DINOFlAGELLATt, FRESHWATtR<>BlACK SEA, 377 3 X"RAY FLUORESCENCE• TABLE<>BLACK SEA SEDIMENTS• 432 3 X•HAY FLUORESCENCE ANALYSIS<>BLACK SEA SEDIMENTS, 431 3 X•RAY FlUORESCENCE PROCtOURES, TABltBLACK SEA SEDIMENTS• 204 3 YTTRIUM<>BLACK StA SEDIMENTS, 432 3 YTTRIUM CONTENT<>BLACK SEA CORES, 572 3 ZEOLITES, DISTR IBUTION MAP<>BLACK SEA, 215 3 ZINC<>BlACK SEA SEDIMENTS• 432 3 ZINC, PROF ILE<>BLACK SEA• DISSOLVED• 141 3 ZINC CDNTENT<>BlACK SEA SEDIMENTS, 558 3 Z INC IN DIATOM SAMPLES<>BLACK SEA, 559 3 ZIHCON!UM<>BlACK StA• 444 3 ZIRCON!UM<>BlACK SEA SEDIMENTS• 432 3 ZIRCONIUM CONTENT<>BLACK SEA CORts, 572 3 ZIRCONIUM 0 IS TR I BUT! ON<>BLACK SEA SEOI MENTS, 459 3 ZONGULOAK OISTRICT<>BLACK SEA• 3 10 3 ZDNGULDAK SHElF DISTRICT, STRUCTURE AND MDRPHOLOGY<>BLACK SEA• 309 3 lDOBENTHOS<>BlACK SEA, 281 3 ZOOBENTHQS, MAP<>BlACK SEA, CARBONATE PRODUCTION BY 282 3 Z00BENTHOS BIOMASS• DISTRIBUTION• MAPS<>BLACK SEA• 257 3 Z00PlANKTDN<>BULGARIA, BLACK SEA, 95 3 ZOOPLANKTON, ELEMENT CONCENTRATION• TABLE<>BLACK SEA• 261 3 � lDSTERA<>BlACK SEA, 258 3 CD ZYGODISCUS DEFLANDRE!, MICROGRAPH<>BLACK SEA• 359 3

�0 .. A. :; A. CD >C

t Col

Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3839728/9781629812151_backmatter.pdf by guest on 23 September 2021