Genome-Scale Analysis Identifies Paralog Lethality As a Vulnerability of Chromosome 1P Loss in Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Scale Analysis Identifies Paralog Lethality As a Vulnerability of Chromosome 1P Loss in Cancer LETTERS https://doi.org/10.1038/s41588-018-0155-3 Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer Srinivas R. Viswanathan1,2,3, Marina F. Nogueira! !1,2,12, Colin G. Buss! !4,5,12, John M. Krill-Burger2, Mathias J. Wawer6, Edyta Malolepsza2,7, Ashton C. Berger1,2, Peter S. Choi1,2,3, Juliann Shih! !2, Alison M. Taylor1,2,3, Benjamin Tanenbaum! !2, Chandra Sekhar Pedamallu1, Andrew D. Cherniack! !2, Pablo Tamayo! !2,8, Craig A. Strathdee2, Kasper Lage2,7, Steven A. Carr2, Monica Schenone! !2, Sangeeta N. Bhatia2,3,4,5,9,10,11, Francisca Vazquez2, Aviad Tsherniak! !2, William C. Hahn! !1,2,3 and Matthew Meyerson! !1,2,3* Functional redundancy shared by paralog genes may afford on a gene5 and loss of function of its paralog across 10,287 paralog protection against genetic perturbations, but it can also result pairs (Supplementary Fig. 1; Supplementary Note). We identified in genetic vulnerabilities due to mutual interdependency1– 5. 167 genes for which dependency was significantly correlated with Here, we surveyed genome-scale short hairpin RNA and loss of a paralog (1.6% of paralog test pairs at q < 0.05), includ- CRISPR screening data on hundreds of cancer cell lines and ing many previously reported paralog dependencies (for example, identified MAGOH and MAGOHB, core members of the splic- ARID1B dependency with ARID1A inactivation10, SMARCA2 ing-dependent exon junction complex, as top-ranked paralog dependency with SMARCA4 inactivation11, UBC dependency with dependencies6– 8. MAGOHB is the top gene dependency in cells UBB inactivation5, and FERMT1 dependency with FERMT2 inac- with hemizygous MAGOH deletion, a pervasive genetic event tivation5). However, of these 167 paralog dependency pairs, only that frequently occurs due to chromosome 1p loss. Inhibition 7 were ‘symmetric’, in which dependency for each of the genes in of MAGOHB in a MAGOH-deleted context compromises via- the pair was significantly correlated with inactivation of its partner bility by globally perturbing alternative splicing and RNA sur- paralog (Fig. 1a,b; Supplementary Table 1). A similar analysis of data veillance. Dependency on IPO13, an importin-β receptor that from genome-scale CRISPR screening of 341 cell lines15 identified mediates nuclear import of the MAGOH/B-Y14 heterodimer9, 125 significant paralog dependencies (1.4% of paralog test pairs at is highly correlated with dependency on both MAGOH and q < 0.05), of which 7 pairs were symmetric (Supplementary Table 2; MAGOHB. Both MAGOHB and IPO13 represent dependencies Supplementary Note). Paralog genes arise via ancestral duplica- in murine xenografts with hemizygous MAGOH deletion. Our tion events and may functionally diverge over time1,16. Symmetric results identify MAGOH and MAGOHB as reciprocal paralog paralog pairs likely share complete functional redundancy, making dependencies across cancer types and suggest a rationale for them particularly attractive targets for ‘collateral lethality’ strate- targeting the MAGOHB-IPO13 axis in cancers with chromo- gies2. An enrichment for RNA-splicing related genes was noted some 1p deletion. among symmetric, but not asymmetric, paralog pairs in the shRNA The systematic integration of data from genomic characteriza- and CRISPR screening datasets (Supplementary Table 3), suggest- tion and genetic screening of cancer cell lines can identify gene ing that redundant essentiality may be exploited to target splicing- dependencies induced by specific somatic alterations and inform related pathways. the development of targeted therapeutics. For example, several One symmetric paralog pair was shared between the shRNA studies have shown that inactivation of specific driver or pas- and CRISPR datasets: MAGOH-MAGOHB; a second pair, FUBP1- senger genes may confer dependency on functionally redundant KHSRP, was highly significant for symmetry in the shRNA data 2,3,10–13 paralogs . Paralog dependencies have also emerged as impor- and borderline significant in the CRISPR dataset (q1 = 0.0547) tant targets in recent genome-scale functional genomic screens4,5, (Fig. 1a,b; Supplementary Fig. 1; Supplementary Tables 1 and 2)15. underscoring the importance of further characterizing this class of We focus here on validation of the former pair. MAGOH and cancer vulnerabilities. MAGOHB encode core members of the exon–junction complex To systematically identify paralog dependencies that may rep- (EJC), a multiprotein complex that is deposited on messenger resent attractive cancer targets, we analyzed data from pooled, RNAs at the time of splicing and that mediates diverse downstream genome-scale short hairpin RNA (shRNA) screening of 501 cancer processes including mRNA transport, stability, and nonsense- cell lines5,14. We determined the correlation between a dependency mediated decay (NMD)6,17. 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. 2Broad Institute of MIT and Harvard, Cambridge, MA, USA. 3Harvard Medical School, Boston, MA, USA. 4Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA. 5Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. 6Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA. 7Department of Surgery, Massachusetts General Hospital, Boston, MA, USA. 8UCSD Moores Cancer Center and Department of Medicine, University of California, San Diego, La Jolla, CA, USA. 9Howard Hughes Medical Institute, Chevy Chase, MD, USA. 10Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA. 11Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA. 12These authors contributed equally: Marina F. Nogueira, Colin G. Buss. *e-mail: [email protected] NATURE GENETICS | VOL 50 | JULY 2018 | 937–943 | www.nature.com/naturegenetics 937 © 2018 Nature America Inc., part of Springer Nature. All rights reserved. LETTERS NATURE GENETICS Using both shRNA and CRISPR technologies, we individually of MAGOHB knockdown, with or without ectopic re-expression of validated MAGOHB dependency in the setting of MAGOH loss, MAGOH. We observed an increased expression of NMD biotype as well as MAGOH dependency in the setting of MAGOHB loss. transcripts on MAGOHB knockdown in ChagoK1 cells (Fig. 2a, Furthermore, in a cell line without hemizygous deletion of either left). In contrast, MAGOHB knockdown in MAGOH-reconstituted paralog, knockdown of either MAGOH or MAGOHB individu- ChagoK1 cells was well tolerated without a notable shift in NMD ally was tolerated, but the combination was lethal (Supplementary biotype transcript distribution (Fig. 2a, right). We next sought to Fig. 2). We noted that MAGOHB dependency in the setting of determine whether the upregulation of NMD isoforms on MAGOHB MAGOH inactivation was particularly pronounced based on (1) knockdown in ChagoK1 cells was occurring at the expense of other effect size (log-fold difference in MAGOHB dependency between transcript biotypes. Among genes that had significantly upregulated MAGOH-inactivated and non-MAGOH-inactivated cell lines) and NMD isoform(s) on MAGOHB knockdown, we observed a signifi- (2) MAGOHB scoring as a robust 6σ differential dependency (hav- cant proportional decrease in coding isoform expression in ChagoK1 ing a dependency score in some cell lines greater than six standard cells but not MAGOH-reconstituted ChagoK1 cells (Fig. 2b, deviations below its mean dependency score across all cell lines) in compare left and right). To investigate whether particular splice both the RNA interference (RNAi) and CRISPR screening data. We event classes were driving this redistribution of isoform types, we therefore sought to further characterize MAGOHB dependency in quantified the proportion of differentially spliced events of each the setting of MAGOH loss. class that were more common in either the absence (Fig. 2c, red) or MAGOHB was the top differential dependency in cells with presence (Fig. 2c, blue) of MAGOHB knockdown in either ChagoK1 hemizygous deletion of MAGOH (Fig. 1c; Supplementary Tables cells or MAGOH-reconstituted ChagoK1 cells. As compared with 4 and 5; Supplementary Note) and dependency on MAGOHB MAGOHB knockdown in MAGOH-reconstituted ChagoK1 cells, was predicted by low expression of MAGOH, consistent with the MAGOHB knockdown in ChagoK1 cells resulted in reduced cas- notion that hemizygous deletion of MAGOH leads to its decreased sette exon inclusion and increased intron retention (Fig. 2c). expression (Supplementary Fig. 3). shRNA-mediated knockdown Therefore, many global transcriptomic effects of MAGOH/B insuf- of MAGOHB led to a decrease in cell viability and colony-forming ficiency appear attributable to alterations in these two splice event capacity in three MAGOH-deleted cell lines, but not in control cell types, indicative of a defect in exon definition/recognition. lines euploid for MAGOH (Fig. 1d,e; Supplementary Fig. 4). Ectopic We identified 22 instances in which there was both a signifi- expression of MAGOH in an MAGOH-deleted cell line fully rescued cant absolute upregulation of an NMD isoform (beta > 1 in dif- MAGOHB dependency, indicating that MAGOHB dependency in ferential expression analysis using Kallisto19) and corresponding MAGOH-deleted cells is solely due to MAGOH loss, and consis- downregulation of at least one protein
Recommended publications
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Manuscript for Proximity Interactome Analysis of Lassa
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452739; this version posted July 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Main Manuscript for 2 Proximity interactome analysis of Lassa polymerase reveals 3 eRF3a/GSPT1 as a druggable target for host directed antivirals. 4 Jingru Fang1,2, Colette Pietzsch3,4, George Tsaprailis5, Gogce Crynen5, Kelvin Frank Cho6, Alice 5 Y. Ting7,8, Alexander Bukreyev3,4,9, Erica Ollmann Saphire2* and Juan Carlos de la Torre1* 6 1 Department of Immunology and Microbiology, Scripps Research, La Jolla CA 92037 7 2La Jolla Institute for Immunology, La Jolla CA 92037 8 3Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550 9 4Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550 10 5Proteomics Core, Scripps Research, Jupiter, FL 33458 11 6Cancer Biology Program, Stanford University, Stanford, CA 94305 12 7Department of Genetics, Department of Biology and Department of Chemistry, Stanford 13 University, Stanford, CA 94305 14 8Chan Zuckerberg Biohub, San Francisco, CA 94158 15 9Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 16 TX 77550 17 *Erica Ollmann Saphire; Juan Carlos de la Torre. 18 Email: [email protected] and [email protected] 19 Author Contributions: J.F., E.O.S., and J.C.T designed research; J.F. performed all non-BSL4 20 experiments and analyzed data; C.P.
    [Show full text]
  • Discovery of the First Genome-Wide Significant Risk Loci for Attention Deficit/Hyperactivity Disorder
    ARTICLES https://doi.org/10.1038/s41588-018-0269-7 Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder Ditte Demontis 1,2,3,69, Raymond K. Walters 4,5,69, Joanna Martin5,6,7, Manuel Mattheisen1,2,3,8,9,10, Thomas D. Als 1,2,3, Esben Agerbo 1,11,12, Gísli Baldursson13, Rich Belliveau5, Jonas Bybjerg-Grauholm 1,14, Marie Bækvad-Hansen1,14, Felecia Cerrato5, Kimberly Chambert5, Claire Churchhouse4,5,15, Ashley Dumont5, Nicholas Eriksson16, Michael Gandal17,18,19,20, Jacqueline I. Goldstein4,5,15, Katrina L. Grasby21, Jakob Grove 1,2,3,22, Olafur O. Gudmundsson13,23,24, Christine S. Hansen 1,14,25, Mads Engel Hauberg1,2,3, Mads V. Hollegaard1,14, Daniel P. Howrigan4,5, Hailiang Huang4,5, Julian B. Maller5,26, Alicia R. Martin4,5,15, Nicholas G. Martin 21, Jennifer Moran5, Jonatan Pallesen1,2,3, Duncan S. Palmer4,5, Carsten Bøcker Pedersen1,11,12, Marianne Giørtz Pedersen1,11,12, Timothy Poterba4,5,15, Jesper Buchhave Poulsen1,14, Stephan Ripke4,5,27, Elise B. Robinson4,28, F. Kyle Satterstrom 4,5,15, Hreinn Stefansson 23, Christine Stevens5, Patrick Turley4,5, G. Bragi Walters 23,24, Hyejung Won 17,18, Margaret J. Wright 29, ADHD Working Group of the Psychiatric Genomics Consortium (PGC)30, Early Lifecourse & Genetic Epidemiology (EAGLE) Consortium30, 23andMe Research Team30, Ole A. Andreassen 31, Philip Asherson32, Christie L. Burton 33, Dorret I. Boomsma34,35, Bru Cormand36,37,38,39, Søren Dalsgaard 11, Barbara Franke40, Joel Gelernter 41,42, Daniel Geschwind 17,18,19, Hakon Hakonarson43, Jan Haavik44,45, Henry R.
    [Show full text]
  • Functional Interactomes of the Ebola Virus Polymerase Identified by Proximity Proteomics 2 in the Context of Viral Replication
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.20.453153; this version posted July 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Functional interactomes of the Ebola virus polymerase identified by proximity proteomics 2 in the context of viral replication 3 Jingru Fang1,2, Colette Pietzsch3,4, George Tsaprailis5, Gogce Crynen6, Kelvin Frank Cho7, Alice 4 Y. Ting8,9, Alexander Bukreyev3,4,10*, Juan Carlos de la Torre2*, Erica Ollmann Saphire1* 5 1La Jolla Institute for Immunology, La Jolla CA 92037 6 2Department of Immunology and Microbiology, Scripps Research, La Jolla CA 92037 7 3Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550 8 4Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550 9 5Proteomics Core, Scripps Research, Jupiter, FL 33458 10 6Bioinformatics and Statistics Core, Scripps Research, Jupiter, FL 33458 11 7Cancer Biology Program, Stanford University, Stanford, CA 94305 12 8Department of Genetics, Department of Biology and Department of Chemistry, Stanford 13 University, Stanford, CA 94305 14 9Chan Zuckerberg Biohub, San Francisco, CA 94158 15 10 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 16 TX 77550 17 Correspondence: [email protected], [email protected], [email protected] 18 Lead contact: [email protected] 19 SUMMARY 20 Ebola virus (EBOV) critically depends on the viral polymerase to replicate and transcribe the viral 21 RNA genome.
    [Show full text]
  • A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
    CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort.
    [Show full text]
  • Mutations in Splicing Factor Genes in Myeloid Malignancies: Significance and Impact on Clinical Features
    cancers Review Mutations in Splicing Factor Genes in Myeloid Malignancies: Significance and Impact on Clinical Features Valeria Visconte 1, Megan O. Nakashima 2 and Heesun J. Rogers 2,* 1 Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; [email protected] 2 Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH 44195, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-216-445-2719 Received: 15 October 2019; Accepted: 19 November 2019; Published: 22 November 2019 Abstract: Components of the pre-messenger RNA splicing machinery are frequently mutated in myeloid malignancies. Mutations in LUC7L2, PRPF8, SF3B1, SRSF2, U2AF1, and ZRSR2 genes occur at various frequencies ranging between 40% and 85% in different subtypes of myelodysplastic syndrome (MDS) and 5% and 10% of acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). In some instances, splicing factor (SF) mutations have provided diagnostic utility and information on clinical outcomes as exemplified by SF3B1 mutations associated with increased ring sideroblasts (RS) in MDS-RS or MDS/MPN-RS with thrombocytosis. SF3B1 mutations are associated with better survival outcomes, while SRSF2 mutations are associated with a shorter survival time and increased AML progression, and U2AF1 mutations with a lower remission rate and shorter survival time. Beside the presence of mutations, transcriptomics technologies have shown that one third of genes in AML patients are differentially expressed, leading to altered transcript stability, interruption of protein function, and improper translation compared to those of healthy individuals. The detection of SF mutations demonstrates the importance of splicing abnormalities in the hematopoiesis of MDS and AML patients given the fact that abnormal splicing regulates the function of several transcriptional factors (PU.1, RUNX1, etc.) crucial in hematopoietic function.
    [Show full text]
  • 1471-2105-8-217.Pdf
    BMC Bioinformatics BioMed Central Software Open Access GenMAPP 2: new features and resources for pathway analysis Nathan Salomonis1,2, Kristina Hanspers1, Alexander C Zambon1, Karen Vranizan1,3, Steven C Lawlor1, Kam D Dahlquist4, Scott W Doniger5, Josh Stuart6, Bruce R Conklin1,2,7,8 and Alexander R Pico*1 Address: 1Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158 USA, 2Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA, 3Functional Genomics Laboratory, University of California, Berkeley, CA 94720 USA, 4Department of Biology, Loyola Marymount University, 1 LMU Drive, MS 8220, Los Angeles, CA 90045 USA, 5Computational Biology Graduate Program, Washington University School of Medicine, St. Louis, MO 63108 USA, 6Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064 USA, 7Department of Medicine, University of California, San Francisco, CA 94143 USA and 8Department of Molecular and Cellular Pharmacology, University of California, San Francisco, CA 94143 USA Email: Nathan Salomonis - [email protected]; Kristina Hanspers - [email protected]; Alexander C Zambon - [email protected]; Karen Vranizan - [email protected]; Steven C Lawlor - [email protected]; Kam D Dahlquist - [email protected]; Scott W Doniger - [email protected]; Josh Stuart - [email protected]; Bruce R Conklin - [email protected]; Alexander R Pico* - [email protected] * Corresponding author Published: 24 June 2007 Received: 16 November 2006 Accepted: 24 June 2007 BMC Bioinformatics 2007, 8:217 doi:10.1186/1471-2105-8-217 This article is available from: http://www.biomedcentral.com/1471-2105/8/217 © 2007 Salomonis et al; licensee BioMed Central Ltd.
    [Show full text]
  • Influence of Erf3a/GSPT1 Gene Expression on Susceptibility to Carcinogenesis
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL INFLUENCE OF ERF3 A/GSPT1 GENE EXPRESSI ON ON SUSCEPTIBILITY TO CARCINOGENESIS JOANA FERREIRA TOMÉ MALTA VACAS Tese orientada por: Professor Doutor Rui Miguel Brito Professora Doutora Maria Manuela Coelho DOUTORAMENTO EM BIOLOGIA (Biologia Molecular) 2009 This study was supported by the Fundação Para a Ciência e a Tecnologia: PhD fellowship SFRH/BD/21468/2005, projects POCTI/MGI/40071/2001 and PTDC/SAU-GMG/67031/2006. This dissertation should be cited as: Malta-Vacas J. (2009) Influence of eRF3a/GSPT1 gene expression on susceptibility to carcinogenesis. PhD Thesis, University of Lisbon, Portugal. “O erro é a noite dos espíritos e a armadilha da inocência” Luc de Clapiers, Marquês de Vauvenargues NOTAS PRÉVIAS Nos termos do n.º 1 do Artigo 40, Capítulo V, do Regulamento de Estudos Pós-Graduados da Universidade de Lisboa, publicado no Diário da República – II Série N.º 153, de 5 de Julho de 2003, esclarece-se que na elaboração da presente dissertação foram usados integralmente artigos científicos já publicados (4) ou submetidos para publicação (1) em revistas indexadas de circulação internacional, os quais integram os Capítulos II e III da presente tese. Tendo os referidos trabalhos sido realizados em colaboração, a candidata esclarece que participou integralmente no planeamento e na elaboração de todos os trabalhos, assim como na análise e discussão dos resultados. Esclarece-se ainda que a formatação dos vários artigos que integram a presente dissertação obedece às regras das revistas em que foram publicados ou submetidos para publicação. Por este motivo, não foi possível adoptar um critério uniforme ao longo dos vários capítulos.
    [Show full text]
  • The Emerging Role for Cullin 4 Family of E3 Ligases in Tumorigenesis T ⁎ ⁎ Ji Chenga,B,1, Jianping Guob,1, Brian J
    BBA - Reviews on Cancer 1871 (2019) 138–159 Contents lists available at ScienceDirect BBA - Reviews on Cancer journal homepage: www.elsevier.com/locate/bbacan Review The emerging role for Cullin 4 family of E3 ligases in tumorigenesis T ⁎ ⁎ Ji Chenga,b,1, Jianping Guob,1, Brian J. Northb, Kaixiong Taoa, Pengbo Zhouc, , Wenyi Weib, a Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China b Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA c Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA ARTICLE INFO ABSTRACT Keywords: As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its CRL4, Cullin 4 broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on E3 ligases evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we PROTACs summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and Tumorigenesis context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including Targeted therapy thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional che- mical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL).
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]