In This Issue: Books!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Horizontal Branch Morphology: a New Photometric Parametrization
LJMU Research Online Torelli, M, Iannicola, G, Stetson, PB, Ferraro, I, Bono, G, Salaris, M, Castellani, M, Dall'Ora, M, Fontana, A, Monelli, M and Pietrinferni, A Horizontal branch morphology: A new photometric parametrization http://researchonline.ljmu.ac.uk/id/eprint/13674/ Article Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Torelli, M, Iannicola, G, Stetson, PB, Ferraro, I, Bono, G, Salaris, M, Castellani, M, Dall'Ora, M, Fontana, A, Monelli, M and Pietrinferni, A (2019) Horizontal branch morphology: A new photometric parametrization. Astronomy and Astrophysics, 629. ISSN 0004-6361 LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription. For more information please contact [email protected] http://researchonline.ljmu.ac.uk/ A&A 629, A53 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935995 & c ESO 2019 Astrophysics Horizontal branch morphology: A new photometric parametrization M. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
Skytools Chart
22 Aquila - Scutum SkyTools 3 / Skyhound.com 7006 γ2 α IC 4997 γ1 δ ρ ε β ζ ζ Delphinus 6891 NGC 6738 ε δ γ γ NGC 6709 κ 6803 +10° ξ 6934 μ Blue Racquetball 6781 NGC 6633 β IC 4665 IC 4756 NGC 6755 θ1 Aquila θ2 Equuleus δ γ Collinder 359 6852 6790 Collinder 350 η 6760 ν Collinder 401 Phantom Streak +0° θ 6535 ι Serpens Cauda ζ λ β NGC 6704 6751 η NGC 6683 κ Wild Duck Cluster IC 1276 NGC 6664 6539 6712 ε α τ IC 4846 μ δ ζ 6517 ε M 26 ν -10° Scutum ν Saturn Nebula NGC 6625 2 NGC 6604 M 73 M72 ν α α1 Eagle Nebula Little Gem Star Queen Barnard's Galaxy γ β NGC 6605 τ h 8 υ Omega Nebula 1 M 17 52° x 34° 19h30m00.0s +00°00'00" (Skymark) Open Cl. Nebula Galaxy 8 7 6 5 4 3 2 1 Globular Cl. Dark Neb. Quasar Globule Planetary 22 Aquila - Scutum GALASSIE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 6822 Barnard's Gal. Sgr 19h 47m 58s -14° 48' 11" +9,40 13',5x12',3 IB 4,4 Mly Er 20 (dif.) Er 20 (v. c.) (v. c.) AMMASSI APERTI Sigla Nome Cost. A.R. Dec. Mv. Dim. N° Æ Distanza 200/4 80/11,5 20x60 IC 4665 Oph 17h 46m 18s +05° 43' 00" +5,30 70',0 29 1.100 ly Er 20 (det.) Er 15,5 (det.) (dif.) Cr 350 Oph 17h 48m 06s +01° 18' 00" +6,10 39',0 --- 930 ly Er 12,4 (det.) Er 20 (det.) (dif.) Cr 359 Oph 18h 01m 06s +02° 54' 00" +3,00 240',0 --- 810 ly Er 20 (det.) Er 20 (det.) (det.) NGC 6604 Ser 18h 18m 04s -12° 14' 30" +7,50 5',0 30 5.500 ly Er 20 (easy) Er 20 (easy) (det.) NGC 6605 Ser 18h 18m 21s -14° 56' 42" +6,00 15',0 12 --- Er 20 (dif.) Er 20 (cha.) (cha.) M 16 Star Queen Ser 18h 18m 48s -13° 48' 24" +6,50 6',0 60 5.700 ly Er 20 (obv.) Er 20 (easy) (easy) M 17 Sgr 18h 20m 47s -16° 10' 18" +7,30 25',0 --- 4.200 Or 6 (dif.) Er 20 (cha.) (v. -
7.5 X 11.5.Threelines.P65
Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93, -
108 Afocal Procedure, 105 Age of Globular Clusters, 25, 28–29 O
Index Index Achromats, 70, 73, 79 Apochromats (APO), 70, Averted vision Adhafera, 44 73, 79 technique, 96, 98, Adobe Photoshop Aquarius, 43, 99 112 (software), 108 Aquila, 10, 36, 45, 65 Afocal procedure, 105 Arches cluster, 23 B1620-26, 37 Age Archinal, Brent, 63, 64, Barkhatova (Bar) of globular clusters, 89, 195 catalogue, 196 25, 28–29 Arcturus, 43 Barlow lens, 78–79, 110 of open clusters, Aricebo radio telescope, Barnard’s Galaxy, 49 15–16 33 Basel (Bas) catalogue, 196 of star complexes, 41 Aries, 45 Bayer classification of stellar associations, Arp 2, 51 system, 93 39, 41–42 Arp catalogue, 197 Be16, 63 of the universe, 28 Arp-Madore (AM)-1, 33 Beehive Cluster, 13, 60, Aldebaran, 43 Arp-Madore (AM)-2, 148 Alessi, 22, 61 48, 65 Bergeron 1, 22 Alessi catalogue, 196 Arp-Madore (AM) Bergeron, J., 22 Algenubi, 44 catalogue, 197 Berkeley 11, 124f, 125 Algieba, 44 Asterisms, 43–45, Berkeley 17, 15 Algol (Demon Star), 65, 94 Berkeley 19, 130 21 Astronomy (magazine), Berkeley 29, 18 Alnilam, 5–6 89 Berkeley 42, 171–173 Alnitak, 5–6 Astronomy Now Berkeley (Be) catalogue, Alpha Centauri, 25 (magazine), 89 196 Alpha Orionis, 93 Astrophotography, 94, Beta Pictoris, 42 Alpha Persei, 40 101, 102–103 Beta Piscium, 44 Altair, 44 Astroplanner (software), Betelgeuse, 93 Alterf, 44 90 Big Bang, 5, 29 Altitude-Azimuth Astro-Snap (software), Big Dipper, 19, 43 (Alt-Az) mount, 107 Binary millisecond 75–76 AstroStack (software), pulsars, 30 Andromeda Galaxy, 36, 108 Binary stars, 8, 52 39, 41, 48, 52, 61 AstroVideo (software), in globular clusters, ANR 1947 -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
Arp Catalogue.Xlsx
ATLAS OF PECULIAR GALAXIES CATALOGUE 1 ATLAS OF PECULIAR GALAXIES CATALOGUE Object Name Mag RA Dec Constellation ARP 1 NGC 2857 12.2 09:24:37 49:21:00 Ursa Major ARP 2 13.2 16:16:18 47:02:00 Hercules ARP 3 13.4 22:36:34 ‐02:54:00 Aquarius ARP 4 13.7 01:48:25 ‐12:22:00 Cetus ARP 5 NGC 3664 12.8 11:24:24 03:19:00 Leo ARP 6 NGC 2537 12.3 08:13:14 45:59:00 Lynx ARP 7 14.5 08:50:17 ‐16:34:00 Hydra ARP 8 NGC 0497 13 01:22:23 ‐00:52:00 Cetus ARP 9 NGC 2523 11.9 08:14:59 73:34:00 Camelopardalis ARP 10 13.8 02:18:26 05:39:00 Cetus ARP 11 14.4 01:09:23 14:20:00 Pisces ARP 12 NGC 2608 12.2 08:35:17 28:28:00 Cancer ARP 13 NGC 7448 11.6 23:00:02 15:59:00 Pegasus ARP 14 NGC 7314 10.9 22:35:45 ‐26:03:00 Pisces Austrinus ARP 15 NGC 7393 12.6 22:51:39 ‐05:33:00 Aquarius ARP 16 M66 8.9 11:20:14 12:59:00 Leo ARP 17 14.7 07:44:32 73:49:00 Camelopardalis ARP 17 07:44:38 73:48:00 Camelopardalis ARP 18 NGC 4088 10.5 12:05:35 50:32:00 Ursa Major ARP 19 NGC 0145 13.2 00:31:45 ‐05:09:00 Cetus ARP 20 14.4 04:19:53 02:05:00 Taurus ARP 21 14.7 11:04:58 30:01:00 Leo Minor ARP 22 14.9 11:59:29 ‐19:19:00 Corvus ARP 22 NGC 4027 11.2 11:59:30 ‐19:15:00 Corvus ARP 23 NGC 4618 10.8 12:41:32 41:09:00 Canes Venatici ARP 24 NGC 3445 12.6 10:54:36 56:59:00 Ursa Major ARP 24 12.8 10:54:45 56:57:00 Ursa Major ARP 25 NGC 2276 11.4 07:27:13 85:45:00 Cepheus ARP 26 M101 7.9 14:03:12 54:21:00 Ursa Major ARP 27 NGC 3631 10.4 11:21:02 53:10:00 Ursa Major ARP 28 NGC 7678 11.8 23:28:27 22:25:00 Pegasus ARP 29 NGC 6946 8.8 20:34:52 60:09:00 Cygnus ARP 30 NGC 6365 12.2 17:22:42 62:10:00 -
ARP Peculiar Galaxies
October 25, 2012 ARP Peculiar Galaxies Observed: No ARP Object Con Type Mag Alias/Notes 249 PGC 25 Peg Glxy Double System 15 UGC 12891 MCG 4-1-7 CGCG 477-37 CGCG 478-9 4ZW177 VV 186 ARP 249 112 PGC 111 Peg Glxy S 16.6 MCG 5-1-26 VV 226 ARP 112 130 PGC 178 Peg Glxy SB 15.3 UGC 1 MCG 3-1-16 CGCG 456-18 VV 263 ARP 130 130 PGC 177 Peg Glxy S 14.9 UGC 1 MCG 3-1-15 CGCG 456-18 VV 263 ARP 130 51 PGC 475 Cet Glxy 15 ESGC 144 NGC 7828 Cet Glxy Ring B 14.4 MCG -2-1-25 VV 272 ARP 144 IRAS 38-1341 PGC 483 144 NGC 7829 Cet Glxy Ring A 14.6 MCG -2-1-24 VV 272 ARP 144 PGC 488 146 PGC 510 Cet Glxy Ring A 16.3 ANON 4-6A 146 PGC 509 Cet Glxy Ring B 16.3 ANON 4-6B 246 NGC 7837 Psc Glxy Sb 15.4 MCG 1-1-35 CGCG 408-34 ARP 246 IRAS 42+804 PGC 516 246 NGC 7838 Psc Glxy Sb 15.3 MCG 1-1-36 CGCG 408-34 ARP 246 PGC 525 256 PGC 1224 Cet Glxy SB(s)b pec? 14.8 MCG -2-1-51 VV 352 ARP 256 8ZW18 256 PGC 1221 Cet Glxy SB(s)c pec 13.6 MCG -2-1-52 VV 352 ARP 256 IRAS 163-1039 8ZW18 35 PGC 1431 Psc Glxy S 15.5 KUG 19-16 35 PGC 1434 Psc Glxy SB 14.7 UGC 212 MCG 0-2-14 MCG 0-2-15 CGCG 383-4 UM231 VV 257 ARP 35 IRAS 198-134 201 PGC 1503 Psc Glxy Disrupted 15.4 UGC 224 MCG 0-2-18 CGCG 383-6 VV 38 ARP 201 201 PGC 1504 Psc Glxy L 15.4 UGC 224 MCG 0-2-19 VV 38 ARP 201 100 IC 18 Cet Glxy Sb 15.4 MCG -2-2-23 VV 234 ARP 100 8ZW25 PGC 1759 100 IC 19 Cet Glxy E 15 MCG -2-2-24 MK 949 PGC 1762 19 NGC 145 Cet Glxy SB(s)dm 13.2 MCG -1-2-27 ARP 19 IRAS 292-525 PGC 1941 282 IC 1559 And Glxy SAB0 pec: 14 MCG 4-2-34 MK 341 CGCG 479-44 ARP 282 PGC 2201 127 IC 1563 Cet Glxy S0 pec sp 13.6 MCG -
Arxiv:1911.02835V1 [Astro-Ph.SR] 7 Nov 2019 Astronomy, Monash University, Melbourne, Clayton 3800, Australia
The Astronomy and Astrophysics Review manuscript No. (will be inserted by the editor) What is a Globular Cluster? An observational perspective Raffaele Gratton1 · Angela Bragaglia2 · Eugenio Carretta2 · Valentina D’Orazi1;3 · Sara Lucatello1 · Antonio Sollima2 Received: date / Accepted: date Abstract Globular clusters are large and dense agglomerate of stars. At variance with smaller clusters of stars, they exhibit signs of some chemical evolution. At least for this reason, they are intermediate between open clusters and massive objects such as nuclear clusters or compact galaxies. While some facts are well established, the increasing amount of observational data is revealing a complexity that has so far de- fied the attempts to interpret the whole data set in a simple scenario. We review this topic focusing on the main observational features of clusters in the Milky Way and its satellites. We find that most of the observational facts related to the chemical evo- lution in globular clusters are described as being primarily a function of the initial mass of the clusters, tuned by further dependence on the metallicity – that mainly affects specific aspects of the nucleosynthesis processes involved – and on the envi- ronment, that likely determines the possibility of independent chemical evolution of the fragments or satellites where the clusters form. We review the impact of multiple populations on different regions of the colour-magnitude diagram and underline the constraints related to the observed abundances of lithium, to the cluster dynamics, and to the frequency of binaries in stars of different chemical composition. We then re-consider the issues related to the mass budget and the relation between globular cluster and field stars.