Underfloor Heating Systems :///Users//Downloads/ LDS7 FINAL.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Consumer Guide: Balancing the Central Heating System
Consumer Guide: Balancing the central heating system System Balancing Keep your home heating system in good working order. Balancing the heating system Balancing of a heating system is a simple process which can improve operating efficiency, comfort and reduce energy usage in wet central heating systems. Many homeowners are unaware of the merits of system balancing -an intuitive, common sense principle that heating engineers use to make new and existing systems operate more efficiently. Why balance? Balancing of the heating system is the process of optimising the distribution of water through the radiators by adjusting the lockshield valve which equalizes the system pressure so it provides the intended indoor climate at optimum energy efficiency and minimal operating cost. To provide the correct heat output each radiator requires a certain flow known as the design flow. If the flow of water through the radiators is not balanced, the result can be that some radiators can take the bulk of the hot water flow from the boiler, leaving other radiators with little flow. This can affect the boiler efficiency and home comfort conditions as some rooms may be too hot or remain cold. There are also other potential problems. Thermostatic radiator valves with too much flow may not operate properly and can be noisy with water “streaming” noises through the valves, particularly as they start to close when the room temperature increases. What causes an unbalanced system? One cause is radiators removed for decorating and then refitted. This can affect the balance of the whole system. Consequently, to overcome poor circulation and cure “cold radiators” the system pump may be put onto a higher speed or the boiler thermostat put onto a higher temperature setting. -
Microgeneration Strategy: Progress Report
MICROGENERATION STRATEGY Progress Report JUNE 2008 Foreword by Malcolm Wicks It is just over two years since The Microgeneration Strategy was launched. Since then climate change and renewables have jumped to the top of the global and political agendas. Consequently, it is more important than ever that reliable microgeneration offers individual householders the chance to play their part in tackling climate change. In March 2006, there was limited knowledge in the UK about the everyday use of microgeneration technologies, such as solar thermal heating, ground source heat pumps, micro wind or solar photovolatics. Much has changed since then. Thousands of people have considered installing these technologies or have examined grants under the Low Carbon Buildings Programme. Many have installed microgeneration and, in doing so, will have helped to reduce their demand for energy, thereby cutting both their CO2 emissions and their utility bills. The Government’s aim in the Strategy was to identify obstacles to creating a sustainable microgeneration market. I am pleased that the majority of the actions have been completed and this report sets out the excellent progress we have made. As a consequence of our work over the last two years, we have benefited from a deeper understanding of how the microgeneration market works and how it can make an important contribution to a 60% reduction in CO2 emissions by 2050. Building an evidence base, for example, from research into consumer behaviour, from tackling planning restrictions and from tracking capital costs, means that we are now in a better position to take forward work on building a sustainable market for microgeneration in the UK. -
The Role of Micro-Generation Technologies in Alleviating Fuel
The role of micro -generation technologies in alleviating fuel poverty In a bid to ease the burden of fuel poverty, social housing providers are increasingly turning to micro-generation technologies to help reduce fuel costs. However, with many different types of micro-generation technologies on the market, designers need to know which technologies offer the best chance of alleviating fuel poverty The aim of the study was to determine the The three different types of micro-generation impact of micro-renewable energy technologies technologies were evaluated across three in alleviating fuel poverty. In particular, it sought different case study schemes in South to establish which micro-renewable energy Yorkshire and the West Midlands. Evaluation technologies offered the most cost-effective of the technologies involved monitoring their means of alleviating fuel poverty; and the factors performance, interviewing residents, collecting that influenced the cost-effectiveness of such longitudinal household energy consumption technologies. In doing so we focused on three data and modelling the financial payback of types of technology: ground source heat pumps the systems. (GSHPs); solar thermal hot water (STHW) systems; and solar photovoltaic (PV) systems. Key findings Solar thermal hot water systems The study was conducted by Fin O'Flaherty of STHW systems are not a cost-effective the Centre for Infrastructure Management and measure for alleviating fuel poverty, based on James Pinder, Visiting Fellow, Sheffield Hallam University. the data from our case studies. Although they are relatively cheap to purchase and install (at Background around £3,500 each), the net financial savings This report is based on the findings of a two generated from STHW systems are relatively year study into the role that micro-generation small (approximately £50 per year in this technologies can play in alleviating fuel study), particularly for under-performing poverty in the UK. -
Energy Saving Trust CE131. Solar Water Heating Systems: Guidance For
CE131 Solar water heating systems – guidance for professionals, conventional indirect models Contents 1 Solar hot water systems 3 1.1 Scope 3 1.2 Introduction 3 1.3 Safety 4 1.4 Risk assessment 5 1.5 Town and country planning 5 2 Design overview 6 2.1 Introduction 6 2.2 Solar domestic hot water (SDHW) energy 6 2.3 SDHW systems 7 3 Design detail 8 3.1 Collectors 8 3.2 Solar primary types 9 3.3 Primary system components 10 3.4 Secondary systems 11 3.5 Pre-heat storage 11 3.6 Auxiliary DHW heating 14 3.7 Combined storage – twin-coil cylinders 15 3.8 Separate storage – two stores 15 3.9 Separate storage – direct DHW heaters 16 3.10 Risk of scalding 16 3.11 Risk of bacteria proliferation 17 3.12 Risk of limescale 17 3.13 Energy conservation 18 3.14 Controls and measurement 20 4 Installation and commissioning 23 4.1 Installation tasks: site survey – technical 23 4.2 Installation tasks: selecting specialist tools 28 4.3 Installation tasks: Initial testing 28 4.4 Commissioning 29 5 Maintenance and documentation 30 6 Appendices 31 6.1 Sample commissioning sheet 31 6.2 Annual solar radiation (kWh/m2) 33 6.3 Sample installation checklist 33 6.4 Further reading 37 6.5 Regulations 38 6.6 Other publications 39 7 Glossary 40 The Energy Saving Trust would like to thank the Solar Trade Association for their advice and assistance in producing this publication. 2 Solar water heating systems – guidance for professionals, conventional indirect models 1 Solar hot water systems 1.1 Scope By following the Energy Saving Trust’s best practice This guide is designed to help installers, specifiers and standards, new build and refurbished housing will commissioning engineers ensure that conventional be more energy efficient – reducing these emissions indirect solar domestic hot water systems (SDHW) and saving energy, money and the environment. -
Underfloor Heating and Renewables
How to heat your home in the best possible way with underfloor heating and renewables We believe that choosing the right heating system Freedom to choose An expertly-designed UFH system gives you the freedom to choose – where to put your for your home should be simple and stress free, so furniture and how to set the temperature of each room to suit your lifestyle. we take care of every detail to provide confidence, comfort and peace of mind. Feel the difference Designed for your home As the only heating company awarded a Whatever the age, size or construction of UK Customer Satisfaction Awards 2018 WINNER Distinction from the Institute of Customer your home, chances are it’s suitable for Service, you can trust Nu-Heat to provide underfloor heating (UFH). Our experts will you with all the support you need, from initial go further to ensure precise performance discussions with your dedicated Account of your heating system. If you choose Nu-Heat UFH for your home, you can expect to: Manager to tips on controlling your heating Whether you’re planning a new build, from our Technical Support team. Feel the difference with a consistent, even Pocket the difference with low running costs Tailor the difference with a bespoke, tackling an extension or giving your existing heat across your whole floor – no more cold from your efficient heating solution – no whole-house heating solution tailored Our award-winning products and customer home a complete overhaul, we design your feet or draughty, cold rooms. more wasted energy. to your property’s build type – no more service, along with our unbeatable expertise heating system to be a perfect fit. -
Domestic Heat Pumps a Best Practice Guide
Domestic Heat Pumps A Best Practice Guide Introduction The number of heat pumps installed in the UK has increased significantly over the past few years with around 20,0001 domestic heat pumps installed every year. This is expected to increase further due to rising fuel costs, government policy and the shift towards a more decarbonised grid. Therefore the potential market for heat pumps is huge. Scope and purpose However, for heat pumps to reach their full The purpose of this MCS Best Practice Heat potential it is vitally important that end users, Pump Guide is to support designers and particularly householders can make an informed installers of domestic scale heat pumps in choice and have confidence that once installed the selection, installation and commissioning their system will deliver on any benefits claimed of such heat pumps, including smaller in the contract. commercial scale, to ensure optimum performance for all parties involved but From an installation point of view, this can be especially the consumer. It also tries to achieved by applying best practice throughout improve the interface between installer and the whole customer journey. From pre-sales, consumer in encouraging information flow design and installation to commissioning such as performance estimates and the and handover. implications of consumer law. As an installer, this MCS Best Practice Heat MCS intends to issue specific advice for Pump Guide aims to assist you with all of consumers as a separate document. these stages. Consequently this guide primarily focuses -
Underfloor Heating Systems Are 100 W/M2 for Concrete Floors and 70 W/M2 for Timber Suspended Floors
INSTALLATION INSTRUCTIONS ONE LARGE ZONE Unit 1 79 Friar Street Worcester WR1 2NT Tel: 01905 616 928 Fax:01905 611 240 E-mail: [email protected] Website: www.underfloorheatingsystems.co.uk 1. Installation Read this entire document first! Pipe distance for concrete floor is c/c 200 mm to c/c 250 mm and for timber suspended floors c/c 200 mm. Pipe to be 100 mm from the walls. Always go with flow to the cold spots first. See hand sketch for typical layout. Max loop length is 110 m. Max loop length is 110 m. If the pipe comes in a 200 m coil, it is sometimes much easier to work with the pipe if cut in half, ie 2 pcs of 100 m coils. Also we recommend two people for fitting the pipe, one person that holds the coil and another person to clip the pipe into the insulation. Fix the pipe to the insulation with the clips provided. You need approximate 1 to 2 clips per metre of pipe. The manifold and control pack should always be located centrally in the building. The PRT room thermostat timer controls the pump. Note, see system layout provided in this document for typical layout. Also, see wiring diagram provided. The system needs to have independent control from the boiler, ie S-plan system with a two port valve. Try to use all the pipework supplied. You will usually have waste. The pipe is marked every metre so you know when it is time to go back to the manifold. -
Comparative Study for Underfloor Heating System Using Boiler Or Heat Pump
An-Najah National University Faculty of Graduate Studies Comparative Study for Underfloor Heating System using Boiler or Heat Pump By Hussein Ishaq Hussein Awad Supervisor Dr. Abdelrahim Abu Safa This Thesis is Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Clean Energy and Conservation Strategy, Faculty of Graduate Studies, An-Najah National University, Nablus, Palestine. 2014 iii DEDICATION To my father soul …. To my mother, brothers and sisters……. To my wife, daughter…… To my uncles & Grand Father…… To all friends and colleagues……… To everyone working in this field…… To all of them, I dedicate this work. iv ACKNOWLEDGMENTS It is an honor for me to have the opportunity to say a word to thank all people who helped me to complete this study, although it is impossible to include all of them here. All appreciations go to my supervisor, Dr. Abdelrahim Abusafa for his exceptional guidance and insightful comments and observations throughout the implementation of this project. My thanks and appreciations go to the staff of Clean Energy and Conservation Strategy Engineering Master Program in An- Najah National University, especially Dr. Imad Ibrik, Prof. Marwan Mahmoud & Dr. Mohammad Sayed for their valuable suggestions and assistance. This project would not have been possible without the endless support and contributions from my family, especially my mother for her kindness, my wife for here encouragement and patience, my brothers and sisters for their support, also for my friends especially Eng. Azeez Arafeh, Eng. Islam Shabaneh & Eng. Ra’fat Naser Al-Deen, and colleagues for their useful help, and to everyone who contributed to complete this effort. -
Passive House Cepheus
PASSIVE HOUSE CEPHEUS • The term passive house (Passivhaus in German) refers to the rigorous, voluntary, Passivhaus standard for energy efficiency in buildings. It results in ultra-low energy buildings that require little energy for space heating or cooling. A similar standard, MINERGIE-P, is used in Switzerland. The standard is not confined only to residential properties; several office buildings, schools, kindergartens and a supermarket have also been constructed to the standard. Passive design is not the attachment or supplement of architectural design, but an integrated design process with the architectural design. Although it is mostly applied to new buildings, it has also been used for refurbishments. Thermogram of a Passive house Explain the difference CEPHEUS - Passive Houses in Europe.mht • Passive Houses require superior design and components with respect to: • insulation • design without thermal brigdes • air tightness • ventilation with heat recovery • comfortwindows und • innovative heating technology • To realise an optimal interaction of all components, an energy balance of the building has to be worked out. And step by step any new design may be improved to meat Passive House sta HOW? WALL FLOOR WALL WINDOW Space heating requirement • By achieving the Passivhaus standards, qualified buildings are able to dispense with conventional heating systems. While this is an underlying objective of the Passivhaus standard, some type of heating will still be required and most Passivhaus buildings do include a system to provide supplemental space heating. This is normally distributed through the low- volume heat recovery ventilation system that is required to maintain air quality, rather than by a conventional hydronic or high-volume forced-air heating system, as described in the space heating section below. -
Experience the Calming Beauty of RSF Fireplaces and the Real Wood Fire
2021 Experience the calming beauty of RSF fireplaces and the real wood fire. 1 “Just like Sunday dinner Nothing can replace the warm embrace of a real wood doesn’t come out of fire. A wood fire gives off a special kind of warmth that a can and fine wine penetrates and soothes. It’s true that burning wood in doesn’t come out of a your fireplace isn’t as convenient as burning gas. But box, a real fire doesn’t like all of life’s best things, that little extra effort makes come out of a pipeline.” a world of difference. Just like Sunday dinner doesn’t come out of a can and fine wine doesn’t come out of a box, a real fire doesn’t come out of a pipeline. If it’s a real fire…it’s wood. And if it’s a clean burning efficient wood fire… it’s probably an RSF fireplace. So come in, relax, kick off your shoes and leave your frantic life at the door. Experience the calming beauty of RSF fireplaces and the real wood fire. RSF is a proud supporting member of: 2 Contents 4 The RSF Built-in Advantage 5 The RSF Comfort Advantage 6 The RSF Smart BurnRate Air Control 7 Catalytic or Non-Catalytic Series: Choosing What’s Right for You 8 Focus 3600 Fireplace 10 Pearl 3600 Fireplace 14 Focus SBR Fireplace 16 Delta Fusion Fireplace 18 Opel Keystone Catalytic Fireplace 20 Opel 2 Plus Catalytic Fireplace 22 Opel 3 Plus Catalytic Fireplace 24 Focus ST Fireplace 26 Chimney Safety and Performance 26 RSF Convenience 27 RSF Heat Distribution 29 RSF Performance 29 RSF Accessories 30 RSF Specifications 31 Burning Wood in an RSF Fireplace is Good for the Environment 3 THE RSF THE RSF BUILT-IN ADVANTAGE COMFORT ADVANTAGE A fireplace is one of the most sought after features in a home and will increase its resale value more than a freestanding wood stove. -
New Low-Temperature Central Heating System Integrated with Industrial Exhausted Heat Using Distributed Electric Compression Heat Pumps for Higher Energy Efficiency
energies Article New Low-Temperature Central Heating System Integrated with Industrial Exhausted Heat Using Distributed Electric Compression Heat Pumps for Higher Energy Efficiency Fangtian Sun 1,2,*, Yonghua Xie 1, Svend Svendsen 2 and Lin Fu 3 1 Beijing Research Center of Sustainable Energy and Buildings, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; [email protected] 2 Department of Civil Engineering, Technical University of Denmark, 2800 Lyngby, Denmark; [email protected] 3 Department of Building Science, Tsinghua University, Beijing 100084, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-6832-2133; Fax: +86-010-8836-1680 Received: 23 October 2020; Accepted: 9 December 2020; Published: 14 December 2020 Abstract: Industrial exhausted heat can be used as the heat source of central heating for higher energy efficiency. To recover more industrial exhausted heat, a new low-temperature central heating system integrated with industrial exhausted heat using distributed electric compression heat pumps is put forward and analyzed from the aspect of thermodynamics and economics. The roles played by the distributed electric compression heat pumps in improving both thermal performance and financial benefit of the central heating system integrated with industrial exhausted heat are greater than those by the centralized electric compression heat pumps. The proposed low-temperature central heating system has higher energy efficiency, better financial benefit, and longer economical distance of transmitting exhausted heat, and thus, its configuration is optimal. For the proposed low-temperature central heating system, the annual coefficient of performance, annual product exergy efficiency, heating cost, and payback period are about 22.2, 59.4%, 42.83 ¥/GJ, and 6.2 years, respectively, when the distance of transmitting exhausted heat and the price of exhausted heat are 15 km and 15 ¥/GJ, respectively. -
Warmth, Efficiency, and Total Peace of Mind. Combi & Heating Boilers
Warmth, efficiency, and total peace of mind. Combi & Heating Boilers Self-Monitoring Self-Adjusting Self-Commissioning High Efficiency, Wall Mounted, Modulating Condensing Boilers with ”THINK Intelligence Within.” www.baxiboilers.com PN 240012218 Rev. [12/05/19] Why Choose Baxi? In North America, Baxi’s combination heating and domestic hot water boilers were first-to-market, reliably heating homes for almost 2 decades. 98% of customers recommend Baxi Over 8 million boilers produced Best in class ENERGY STAR® ratings at 95% AFUE provide lower utility bills and reduced carbon emissions. Why Choose a Combi Boiler? Combi boilers provide central heating and give you an endless supply of hot water. This means they’re economical to run, as hot water is only produced when you need it. What’s more, there’s no need for a separate water heater. Combi boilers are compact and wall-mounted, saving you valuable space. 150 Plus Years of Founder Richard Baxendale 1866 opened the doors to his new company. The Bermuda, Baxi’s most famous gas-fired boiler was 1966 launched. Celebrated 100th anniversary. A series of acquisitions took 1984 place leading to the ownership of the Bassano del Grappa ++ plant in Italy. Baxi introduced the first high efficiency combi boiler to 2000 North America. The award-winning Baxi #1 2006 Duo-tec Combi high efficiency boiler was launched. Baxi D+R Baxi merged with De Dietrich and Remeha to form BDR 2010 BDR THERMEA Thermea Group. BDR Thermea Group opens 2018 Baxi operations in North America. Innovative Technology Baxi’s pioneering THINK combustion management system provides the installer with the easiest boiler to commission and operate.