Screening and Deconvoluting Complex Mixtures of Catalyst Components in Reaction Development Elena Wolf
Total Page:16
File Type:pdf, Size:1020Kb
Screening and deconvoluting complex mixtures of catalyst components in reaction development Elena Wolf To cite this version: Elena Wolf. Screening and deconvoluting complex mixtures of catalyst components in reaction de- velopment. Organic chemistry. Université de Strasbourg, 2015. English. NNT : 2015STRAF039. tel-01375978 HAL Id: tel-01375978 https://tel.archives-ouvertes.fr/tel-01375978 Submitted on 24 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE 222 Laboratoire de Catalyse Chimique Institut de Science et d’Ingénierie Supramoléculaires THÈSE de DOCTORAT présentée par : Eléna WOLF Soutenue le 02 Octobre 2015 pour obtenir le grade de : Docteur de l’Université de Strasbourg Discipline/ Spécialité : Chimie organique Screening and Deconvoluting Complex Mixtures of Catalyst Components in Reaction Development THÈSE dirigée par : Prof. EBBESEN Thomas Directeur de thèse, Université de Strasbourg Prof. LEHN Jean-Marie Co-directeur de thèse, Université de Strasbourg RAPPORTEURS : Dr TARAN Frédéric Rapporteur, CEA Saclay Dr GILLINGHAM Dennis Rapporteur, Université de Bâle EXAMINATEUR: Dr MORAN Joseph Examinateur, Université de Strasbourg 2 “We cannot change the cards we are dealt, just how we play the hand” – Randy Pausch 3 4 Table of contents Table of contents ...................................................................................................................... 5 Acknowledgements .................................................................................................................. 9 Abreviations............................................................................................................................ 11 Résumé .................................................................................................................................... 13 CHAPTER 1: General introduction ..................................................................................... 30 1.1 Towards a new paradigm in reaction/catalyst development .............................................. 30 1.1.1 The multidimensional problem of catalytic reaction development ............................. 30 1.1.2 From rational strategy to random generated systems ................................................. 31 1.1.2.1 High-throughput screening technology ................................................................ 31 1.1.2.2 Combinatorial chemistry ...................................................................................... 32 1.2 Representative applications in catalyst development ........................................................ 33 1.3 Application to reaction discovery ...................................................................................... 37 1.4 Alternative screening approaches ...................................................................................... 41 1.4.1 Molecular tags ............................................................................................................. 41 1.4.2 Tag free approaches .................................................................................................... 47 1.5 Critical summary ................................................................................................................ 49 1.6 Aim of the thesis ................................................................................................................ 50 CHAPTER 2: Neutral Lewis Acids – Effective and Chemoselective Catalysts for Direct Alcohol Substitution .............................................................................................................. 54 2.1 Introduction ........................................................................................................................ 54 2.1.1 Overview of alcohol activation ................................................................................... 54 2.1.2 Carbocationic intermediates and SN1 pathways ......................................................... 55 2.1.3 General overview on acid catalyzed π-activated alcohol activation ........................... 56 2.1.3.1 Substitution via Brønsted acid catalysis .............................................................. 56 2.1.3.2 Substitution via Lewis acid catalysis ................................................................... 58 2.1.3.3 Boronic Acid Catalysis (BAC) ............................................................................ 61 2.2 B(C6F5)3 in nitromethane, a winning combination ............................................................ 65 2.2.1 Hydration states of B(C6F5)3 ....................................................................................... 65 2.2.2 Solvent dependance .................................................................................................... 66 2.2.3 Comparing B(C6F5)3 with other boron catalysts ......................................................... 67 2.2.4 Chemoselectivity ......................................................................................................... 68 5 2.2.5 Conclusion .................................................................................................................. 70 2.3 Tertiary aliphatic alcohol activation .................................................................................. 72 2.3.1 State of the art ............................................................................................................. 72 2.3.2 Azidation with B(C6F5)3 in nitromethane ................................................................... 74 2.3.2.1 Solvent effect ....................................................................................................... 74 2.3.2.2 The catalytic effect of nitro compounds .............................................................. 75 2.3.2.3 B(C6F5)3nH2O, a superior Brønsted acids .......................................................... 76 2.3.2.4 Kinetic concentration dependence studies and aggregate .................................... 77 2.3.2.5 General scope in azidation reaction ..................................................................... 78 2.3.3 Conclusion .................................................................................................................. 80 2.4 Chapter 2 conclusion ......................................................................................................... 80 CHAPTER 3: Discovery of a highly active in situ generated dioxaborolanedione catalyst by screening mixtures ............................................................................................................ 82 3.1 Introduction ........................................................................................................................ 82 3.1.1 In situ generation of catalyst libraries as mixtures and deconvolution strategies ....... 82 3.1.2 Boronic acids as ideal candidates for screening mixtures .......................................... 83 3.1.2.1 Complexes of boronic acid derivatives with bidentate ligands ........................... 83 3.1.2.2 Boron complexes in catalysis ............................................................................... 84 3.2 Application of the combinatorial approach ........................................................................ 86 3.2.1 Choice of the library components ............................................................................... 86 3.2.2 Library of boronic acids .............................................................................................. 87 3.2.3 Library of O-ligands ................................................................................................... 87 3.2.4. Dehydrative Friedel-Crafts as a model reaction ........................................................ 88 3.2.4.1 Step 1: Screen Catalyst Mixtures ......................................................................... 88 3.2.4.2 Step 2: Deconvolution of mixtures to find the best catalyst ................................ 89 3.3 Linear optimization ............................................................................................................ 91 3.3.1 Linear optimization of the ligand ................................................................................ 91 3.3.2 Linear optimization of the boronic acid ...................................................................... 92 3.4 In situ formation of dioxaborolanedione 100 ..................................................................... 93 3.4.1 1:1 complex ................................................................................................................. 93 3.4.2 Monitoring catalyst assembly in 19F NMR ................................................................. 94 3.4.2.1 Different oxalic acid ratios ................................................................................... 94 3.4.2.2 Addition of water ................................................................................................