PLP-Dependent Enzymes: a Powerful Tool for Metabolic Synthesis of Non-Canonical Amino Acids1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Theoretical Study of the Tryptophan Synthase Enzyme Reaction Network
A Theoretical Study of the Tryptophan Synthase Enzyme Reaction Network Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Chemie Spezialisierung: Physikalische und theoretische Chemie Eingereicht an der Mathematisch-Naturwissenschaftlichen Fakult¨at der Humboldt-Universit¨at zu Berlin von Dimitri Loutchko Pr¨asidentin der Humboldt-Universit¨atzu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Mathematisch-Naturwissenschaftlichen Fakult¨at Prof. Dr. Elmar Kulke 1. Gutachter: Prof. Dr. Gerhard Ertl 2. Gutachter: Prof. Dr. Klaus Rademann 3. Gutachter: Prof. Dr. Yannick de Decker Tag der m¨undlichen Pr¨ufung:09.07.2018 ii Abstract iii Abstract The channeling enzyme tryptophan synthase provides a paradigmatic example of a chemical nanomachine. It catalyzes the biosynthesis of tryptophan from serine and indole glycerol phos- phate. As a single macromolecule, it possesses two distinct catalytic subunits and implements 13 different elementary reaction steps. A complex pattern of allosteric regulation is involved in its operation. The catalytic activity in a subunit is enhanced or inhibited depending on the state of the other subunit. The gates controlling arrival and release of the ligands can become open or closed depending on the chemical states. The intermediate product indole is directly channeled within the protein from one subunit to another, so that it is never released into the solution around it. In this thesis, the first single-molecule kinetic model of the enzyme is proposed and analyzed. All its transition rate constants are extracted from available experimental data, and thus, no fitting parameters are employed. Numerical simulations reveal strong correlations in the states of the active centers and the emergent synchronization of intramolecular processes in tryptophan synthase. -
First Insights Into the Mode of Action of a "Lachrymatory Factor Synthase"
Phytochemistry 72 (2011) 1939–1946 Contents lists available at ScienceDirect Phytochemistry journal homepage: www.elsevier.com/locate/phytochem First insights into the mode of action of a ‘‘lachrymatory factor synthase’’ – Implications for the mechanism of lachrymator formation in Petiveria alliacea, Allium cepa and Nectaroscordum species ⇑ Quan He a, Roman Kubec b, Abhijit P. Jadhav a, Rabi A. Musah a, a Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA b Department of Applied Chemistry, University of South Bohemia, Branišovská 31, 370 05 Cˇeské Budeˇjovice, Czech Republic article info abstract Article history: A study of an enzyme that reacts with the sulfenic acid produced by the alliinase in Petiveria alliacea L. Received 16 December 2010 (Phytolaccaceae) to yield the P. alliacea lachrymator (phenylmethanethial S-oxide) showed the protein Received in revised form 11 July 2011 to be a dehydrogenase. It functions by abstracting hydride from sulfenic acids of appropriate structure Available online 15 August 2011 to form their corresponding sulfines. Successful hydride abstraction is dependent upon the presence of a benzyl group on the sulfur to stabilize the intermediate formed on abstraction of hydride. This dehy- Keywords: drogenase activity contrasts with that of the lachrymatory factor synthase (LFS) found in onion, which Petiveria alliacea catalyzes the rearrangement of 1-propenesulfenic acid to (Z)-propanethial S-oxide, the onion lachryma- Phytolaccaceae tor. Based on the type of reaction it catalyzes, the onion LFS should be classified as an isomerase and Lachrymatory factor synthase Sulfenic acid would be called a ‘‘sulfenic acid isomerase’’, whereas the P. alliacea LFS would be termed a ‘‘sulfenic acid Sulfenic acid dehydrogenase dehydrogenase’’. -
A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium Smegmatis Is Involved in De Novo Cysteine Biosynthesis
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2020 A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis Saroj Kumar Mahato University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Cell Biology Commons, Molecular Biology Commons, and the Pathogenic Microbiology Commons Citation Mahato, S. K. (2020). A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3639 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Cell and Molecular Biology by Saroj Kumar Mahato Purbanchal University Bachelor of Science in Biotechnology, 2016 May 2020 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Young Min Kwon, Ph.D. Thesis Director ___________________________________ ___________________________________ Suresh Thallapuranam, Ph.D. Inés Pinto, Ph.D. Committee Member Committee Member ABSTRACT Mycobacteria include serious pathogens of humans and animals. Mycolicibacterium smegmatis is a non-pathogenic model that is widely used to study core mycobacterial metabolism. This thesis explores mycobacterial pathways of cysteine biosynthesis by generating and study of genetic mutants of M. smegmatis. Published in vitro biochemical studies had revealed three independent routes to cysteine synthesis in mycobacteria involving separate homologs of cysteine synthase, namely CysK1, CysK2, and CysM. -
Hydroxylation of the Eukaryotic Ribosomal Decoding Center Affects Translational Accuracy
Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy Christoph Loenarza,1, Rok Sekirnika,2, Armin Thalhammera,2, Wei Gea, Ekaterina Spivakovskya, Mukram M. Mackeena,b,3, Michael A. McDonougha, Matthew E. Cockmanc, Benedikt M. Kesslerb, Peter J. Ratcliffec, Alexander Wolfa,4, and Christopher J. Schofielda,1 aChemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom; bTarget Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom; and cCentre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom Edited by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved January 24, 2014 (received for review July 31, 2013) The mechanisms by which gene expression is regulated by oxygen Enzyme-catalyzed hydroxylation of intracellularly localized are of considerable interest from basic science and therapeutic proteins was once thought to be rare, but accumulating recent perspectives. Using mass spectrometric analyses of Saccharomyces evidence suggests it is widespread (11). Motivated by these cerevisiae ribosomes, we found that the amino acid residue in findings, we investigated whether the translation of mRNA to closest proximity to the decoding center, Pro-64 of the 40S subunit protein is affected by oxygen-dependent modifications. A rapidly ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes growing eukaryotic cell devotes most of its resources to the tran- posttranslational hydroxylation. We identify RPS23 hydroxylases scription, splicing, and transport of ribosomal proteins and rRNA as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglu- (12). We therefore reasoned that ribosomal modification is a tarate dependent oxygenases; their catalytic domain is closely re- candidate mechanism for the regulation of protein expression. -
Significance of Urinary Hydroxyproline in Man
SIGNIFICANCE OF URINARY HYDROXYPROLINE IN MAN Darwin J. Prockop, Albert Sjoerdsma J Clin Invest. 1961;40(5):843-849. https://doi.org/10.1172/JCI104318. Find the latest version: https://jci.me/104318/pdf SIGNIFICANCE OF URINARY HYDROXYPROLINE IN MAN By DARWIN J. PROCKOP AND ALBERT SJOERDSMA (From the Section of Experimental Therapeutics, National Heart Institute, Bethesda, Md.) (Submitted for publication September 27, 1960; accepted January 12, 1961) Since nearly all of the hydroxyproline of the of Marfan's syndrome (2) reflect a rapid rate of body is found in collagen, it has been suggested collagen degradation. (1, 2) that the urinary excretion of this imino An incidental discovery in the study was that acid may be an important index of collagen me- the increase in urinary hydroxyproline after in- tabolism. The origin of urinary hydroxyproline, gestion of gelatin represents an increased excre- however, is not definitely established. The iso- tion of hydroxyproline peptides. This appears to topic studies of Stetten (3) in rats indirectly sug- be the first demonstration that significant amounts gested that most of the free and peptide hydroxy- of peptides can be excreted following ingestion of proline in the body arises from the breakdown of a protein. collagen, since she found that hydroxyproline-N'5 was not significantly incorporated into collagen. MATERIALS AND METHODS Ziff, Kibrick, Dresner and Gribetz (1), on the The 8 subjects utilized in the study were hospitalized other hand, observed an increased excretion of for periods of 3 to 12 weeks; 3 were patients with Mar- hydroxyproline when it was added to the diet of fan's syndrome, 2 of whom were previously shown to have elevated excretions of hydroxyproline (2). -
This Article Appeared in a Journal Published by Elsevier. the Attached
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Recent advances in genetic code engineering in Escherichia coli Michael Georg Hoesl and Nediljko Budisa The expansion of the genetic code is gradually becoming a modifications (PTMs). These reactions are selectively core discipline in Synthetic Biology. It offers the best possible and timely coordinated chemistries performed by dedi- platform for the transfer of numerous chemical reactions and cated enzymes and enzymatic complexes, usually in processes from the chemical synthetic laboratory into the specialized cell compartments. biochemistry of living cells. The incorporation of biologically occurring or chemically synthesized non-canonical amino Certainly, one of the main goals of Synthetic Biology is acids into recombinant proteins and even proteomes via to generate new and emergent biological functions in reprogrammed protein translation is in the heart of these streamlined cells which are equipped with ‘tailor-made efforts. Orthogonal pairs consisting of aminoacyl-tRNA biochemical production lines’. However, it is extremely synthetase and its cognate tRNA proved to be a general difficult to mimic nature’s complex machineries such as tool for the assignment of certain codons of the genetic code the PTM-apparatus. -
Abstract a Practical Synthesis of N -Fmoc Protected L-Threo- -Hydroxyaspartic Acid Derivatives for Coupling
CYCLIC LIPODEPSIPEPTIDES AS LEAD STRUCTURES FOR THE DISCOVERY OF NEW ANTIBIOTICS by Nina Bionda A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL May 2013 ACKNOWLEDGEMENTS First and foremost, I want to thank my advisor, Dr. Predrag Cudic, for his guidance throughout my PhD endeavors, the endless discussions about science and life in general, and for teaching me to give my best every step of the way. You have been instrumental in my scientific education and for that I am forever in your debt. Immense gratitude goes to Dr. Lepore for embracing the difficult role of a co-advisor and fulfilling it truly beyond what I have expected. I will always appreciate your advice. I also wish to express my heartfelt thanks to my dissertation committee members, Dr. Laszlo Otvos Jr., Dr. Stefan Vetter and Dr. Andrew C. Terentis, for their valuable time and thoughtful suggestions, comments and critiques. I would also like to extend my appreciation to all of the faculty and students of the Department of Chemistry and Biochemistry that I have had contact with during my PhD studies. To Dr. Richard Houghten and everyone at the Torrey Pines Institute for Molecular Studies, thank you for providing me with a “home” for the last two and a half years of my PhD. And special thanks to Dr. Maré Cudic for sharing her scientific experience and the simple things of the everyday life. To Dr. -
The Role of Polyamine Uptake Transporters on Growth and Development of Arabidopsis Thaliana
THE ROLE OF POLYAMINE UPTAKE TRANSPORTERS ON GROWTH AND DEVELOPMENT OF ARABIDOPSIS THALIANA Jigarkumar Patel A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2015 Committee: Paul Morris, Advisor Wendy D Manning Graduate Faculty Representative Vipaporn Phuntumart Scott Rogers Ray Larsen © 2015 Jigarkumar Patel All Rights Reserved iii ABSTRACT Paul Morris, Advisor Transgenic manipulation of polyamine levels has provided compelling evidence that polyamines enable plants to respond to environmental cues by activation of stress and developmental pathways. Here we show that the chloroplasts of A. thaliana and soybeans contain both an arginine decarboxylase, and an arginase/agmatinase. These two enzymes combine to synthesize putrescine from arginine. Since the sequences of plant arginases show conservation of key residues and the predicted 3D structures of plant agmatinases overlap the crystal structure of the enzyme from Deinococcus radiodurans, we suggest that these enzymes can synthesize putrescine, whenever they have access to the substrate agmatine. Finally, we show that synthesis of putrescine by ornithine decarboxylase takes place in the ER. Thus A. thaliana has two, and soybeans have three separate pathways for the synthesis of putrescine. This study also describes key changes in plant phenotypes in response to altered transport of polyamines. iv Dedicated to my father, Jayantilal Haribhai Patel v ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Paul F. Morris, for helping me learn and grow during my Ph.D. Dr. Morris has an open door policy, and he was always available to answer my questions and provide helpful suggestions. -
Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation
G C A T T A C G G C A T genes Review Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation Christian Diwo 1 and Nediljko Budisa 1,2,* 1 Institut für Chemie, Technische Universität Berlin Müller-Breslau-Straße 10, 10623 Berlin, Germany; [email protected] 2 Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada * Correspondence: [email protected] or [email protected]; Tel.: +49-30-314-28821 or +1-204-474-9178 Received: 27 November 2018; Accepted: 21 December 2018; Published: 28 December 2018 Abstract: The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution. -
A Common X-Linked Inborn Error of Carnitine Biosynthesis May Be a Risk Factor for Nondysmorphic Autism
A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism Patrícia B. S. Celestino-Sopera,1, Sara Violanteb,c,1, Emily L. Crawfordd, Rui Luoe, Anath C. Lionelf, Elsa Delabyg, Guiqing Caih, Bekim Sadikovica, Kwanghyuk Leea, Charlene Loa, Kun Gaoe, Richard E. Persona, Timothy J. Mossa, Jennifer R. Germana, Ni Huangi, Marwan Shinawia,j,2, Diane Treadwell-Deeringj,k, Peter Szatmaril, Wendy Robertsm, Bridget Fernandezn, Richard J. Schroero, Roger E. Stevensono, Joseph D. Buxbaumh, Catalina Betancurg, Stephen W. Schererf,m, Stephan J. Sandersp, Daniel H. Geschwinde, James S. Sutcliffed, Matthew E. Hurlesi, Ronald J. A. Wandersb, Chad A. Shawa, Suzanne M. Leala, Edwin H. Cook, Jr.q, Robin P. Goin-Kochela,j,r, Frédéric M. Vazb,1, and Arthur L. Beaudeta,j,r,1,3 Departments of aMolecular and Human Genetics, kPsychiatry, and rPediatrics, Baylor College of Medicine, Houston, TX 77030; jTexas Children’s Hospital, Houston, TX 77030; bLaboratory Genetic Metabolic Disease, Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; cMetabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; dDepartment of Molecular Physiology and Biophysics, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232; eDepartment of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, -
RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I
RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I Cat. no. 330231 PAHS-129ZR For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Rotor-Gene Q, other Rotor-Gene cyclers Format R Description The Human Amino Acid Metabolism I RT² Profiler PCR Array profiles the expression of 84 key genes important in biosynthesis and degradation of functional amino acids. Of the 20 amino acids required for protein synthesis, six of them (arginine, cysteine, glutamine, leucine, proline, and tryptophan), collectively known as the functional amino acids, regulate key metabolic pathways involved in cellular growth, and development, as well as other important biological processes such as immunity and reproduction. For example, leucine activates mTOR signaling and increases protein synthesis, leading to lymphocyte proliferation. Therefore, a lack of leucine can compromise immune function. Metabolic pathways interrelated with the biosynthesis and degradation of these amino acids include vitamin and cofactor biosynthesis (such as SAM or S-Adenosyl Methionine) as well as neurotransmitter metabolism (such as glutamate). This array includes genes for mammalian functional amino acid metabolism as well as genes involved in methionine metabolism, important also for nutrient sensing and sulfur metabolism. Using realtime PCR, you can easily and reliably analyze the expression of a focused panel of genes involved in functional amino acid metabolism with this array. For further details, consult the RT² Profiler PCR Array Handbook. Shipping and storage RT² Profiler PCR Arrays in the Rotor-Gene format are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. -
Microorganism Solutions
C297-E086 Microorganism Species Analysis and Component Analysis – Detection and Identification of Microorganisms and Metabolite Analysis – Shimadzu’s Microorganism Solutions JQA-0376 Founded in 1875, Shimadzu Corporation, a leader in the development of advanced technologies, has a distinguished history of innovation built on the foundation of contributing to society through science and technology. We maintain a global network of sales, service, technical support and applications centers on six continents, and have established long-term relationships with a host of highly trained distributors located in over 100 countries. For information about Shimadzu, and to contact your local office, please visit our Web site at www.shimadzu.com Microorganism SHIMADZU CORPORATION. International Marketing Division 3. Kanda-Nishikicho 1-chome, Chiyoda-ku, Tokyo 101-8448, Japan Solutions Phone: 81(3)3219-5641 Fax. 81(3)3219-5710 URL http://www.shimadzu.com The contents of this brochure are subject to change without notice. AnalysisAnalysis Printed in Japan 3295-12904-15A-NS TotalTotal SolutionsSolutions forfor MicroorganismMicroorganism AnalysisAnalysis andand TestingTesting Shimadzu Supports Everybody Working with Microorganisms While we cannot easily see microorganisms, they are closely linked to our lives. From ancient times, microorganisms have expanded Microorganisms are researched and utilized for a wide range of purposes in many research and industry fields. the human diet by providing fermented foods including alcohol and pickles. In recent years, microorganisms have become The major purposes are inspection and control, identification, searching for new microorganisms, functional investigations, and indispensable in the production of useful substances, such as antibiotics, taste components, and vitamins. Microorganisms are also industrial applications. essential for environmental sustainability and improvements, including wastewater treatment, soil cleanup, and atmospheric balance.