Global and Regional Potential of Renewable Energy Sources

Total Page:16

File Type:pdf, Size:1020Kb

Global and Regional Potential of Renewable Energy Sources ON THE GLOBAL AND REGIONAL POTENTIAL OF RENEWABLE ENERGY SOURCES Over het mondiale en regionale potentieel van hernieuwbare energiebronnen (met een samenvatting in het Nederlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT UTRECHT OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. DR. W.H. GISPEN, INGEVOLGE HET BESLUIT VAN HET COLLEGE VOOR PROMOTIES IN HET OPENBAAR TE VERDEDIGEN OP VRIJDAG 12 MAART 2004 DES MIDDAGS OM 12.45 UUR door Monique Maria Hoogwijk geboren op 22 november 1974 te Enschede Promotor: Prof. Dr. W.C. Turkenburg Verbonden aan de Faculteit Scheikunde van de Universiteit Utrecht Promotor: Prof. Dr. H.J.M. de Vries Verbonden aan de Faculteit Scheikunde van de Universiteit Utrecht Dit proefschrift werd mede mogelijk gemaakt met financiële steun van het Rijksinstituut voor Volksgezondheid en Milieu (RIVM). CIP GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Hoogwijk, Monique M. On the global and regional potential of renewable energy sources/ Monique Hoogwijk – Utrecht: Universiteit Utrecht, Faculteit Scheikunde Proefschrift Universiteit Utrecht. Met lit. opg. − Met samenvatting in het Nederlands ISBN: 90-393-3640-7 Omslagfoto: NASA Omslag ontwerp: Dirk-Jan Treffers en Monique Hoogwijk, met dank aan Jacco Farla ON THE GLOBAL AND REGIONAL POTENTIAL OF RENEWABLE ENERGY SOURCES Aan mijn ouders CONTENTS Chapter one: Introduction 9 1. Energy and sustainable development 9 2. Future energy scenarios 11 2.1 Scenarios on future energy system and energy models 11 2.2 The SRES scenarios 13 3. The potential of wind, solar and biomass energy 16 4. Renewable electricity in the IMAGE/TIMER 1.0 model 17 4.1 The IMAGE/TIMER 1.0 model 17 4.2 Restriction to wind, solar PV and biomass electricity 18 4.3 The electricity simulation in TIMER 1.0 19 5. Central research question 20 6. Outline of this thesis 22 Chapter two: Exploration of the ranges of the global potential of biomass for energy 25 1. Introduction 26 2. Methodology 27 2.1 Biomass categories 27 2.2 Approach 29 3. The potential for energy farming on agricultural land 29 3.1 Availability of surplus agricultural land (Category I) 29 3.2 Availability of marginal/degraded land for energy farming (Category II) 33 3.3 Productivity and primary energy potential of energy crops 34 3.4 Summary of the potential of energy crops 35 4. The potential supply of biomass residues 36 4.1 Agricultural residues (Category III) 36 4.2 Forest residues (Category IV) 36 4.3 Animal residues (Category V) 37 4.4 Organic waste (Category VI) 37 5. Bio-material production (Category VII) 37 6. Integration and discussion 39 6.1 Integration 39 6.2 Discussion 40 7. Conclusions 41 Chapter three: Potential of biomass energy under four land-use scenarios. Part A: the geographical and technical potential 43 1. Introduction 44 2. Definitions and system boundaries 46 2.1 Categories of potentials 46 2.2 Description of primary biomass categories 47 2.3 Restriction to woody energy crops 48 2.4 Restriction of conversion technologies. 49 3. Methodology, framework, scenarios and main assumptions 49 3.1 The IMAGE 2.2 model: the Terrestrial Environment System (TES) 51 3.2 The quantification of the SRES Scenarios of the IPCC 54 3.3 Land availability (Ai): different categories of land for energy plantations 56 3.4 The land-claim exclusion factor 57 3.5 The management factor for energy crops 60 4. Results for land availability and energy crop productivity 61 4.1 Land availability 61 4.2 The productivity of energy crops 65 5. Results for the theoretical and geographical potential 67 5.1 The theoretical potential of biomass energy 67 5.2 The global geographical potential of energy crops 67 5.3 Regional variation in geographical potential 68 6. The technical potential of biomass energy 72 7. Sensitivity analysis and discussion 73 7.1 Sensitivity of the available area from abandoned agricultural land 73 7.2 Comparison of the geographical potential with previous studies 77 7.3 Discussion of results 79 8. Summary and conclusion 80 Chapter four: Potential of biomass energy under four land-use scenarios. Part B: exploration of regional and global cost-supply curves 85 1. Introduction 86 2. Methodology 87 2.1 Crop choice and land-use scenarios 87 2.2 The cost-supply curve of primary biomass energy from energy crops 88 2.3 The cost-supply of secondary biomass: liquid fuel and bio-electricity 93 3. Inputs to assess the production cost of energy crops 95 3.1 Land productivity and geographical potential 95 3.2 Land rental cost 97 3.3 Capital, labour cost, substitution coefficient and learning 98 3.4 Transportation cost 99 3.5 Conversion to liquid fuel and bioelectricity 100 4. The cost-supply curves of primary biomass energy 102 5. The cost-supply curve of secondary biomass energy 107 6. Sensitivity analysis 108 7. Discussion 111 7.1 Comparison with other studies 111 7.2 Limitations of this study 112 8. Summary and conclusion 113 Chapter five: Assessment of the global and regional technical and economic potential of onshore wind-energy 117 1. Introduction 118 2. Approach and definitions 120 3. Theoretical potential 121 4. The geographical potential 122 5. The technical potential 127 5.1 Wind regime 127 5.2 Wind turbine output; amount of full-load hours 129 5.3 Wind power density per km2 130 5.4 Results 132 6. The cost of wind electricity: the economic potential using regional cost supply curves 134 6.1 Approach 134 6.2 Results 135 7. Discussion of the results 137 7.1 Sensitivity analysis 137 7.2 Comparison with previous studies 141 7.3 Discussion of main assumptions 143 8. Conclusions 145 List of variables 146 Chapter six: Assessment of the global and regional technical and economic potential of photovoltaic energy 149 1. Introduction 150 2. Approach 152 2.1 System definitions and boundaries 152 2.2 Definition of potential 154 3. Theoretical potential: the solar radiation 155 4. The geographical potential 158 4.1 Suitable area 158 4.2 Results on the geographical potential 163 5. The technical potential 164 5.1 How to estimate the technical potential 164 5.2 Results of the technical potential assessment 165 6. The economic potential of PV electricity 166 6.1 The cost of PV electricity 166 6.2 The cost of PV electricity and the PV cost-supply curve 167 7. Future perspective of PV electricity 170 8. Sensitivity analysis 172 9. Discussion 176 10. Summary and conclusions 178 List of variables 181 Chapter seven: Exploring the impact on cost and electricity production of high penetration levels of intermittent electricity in OECD Europe and the USA 185 1. Introduction 186 2. Regional static cost-supply curves of wind and solar PV 188 3. Factors determining the overall production cost of wind and solar PV in the electricity system 192 3.1 Additional cost factors with increasing penetration levels 193 3.2 Related aspects for the overall cost development of intermittent electricity 195 3.3 Technological learning: declining capital costs 197 4. Simulation of wind/solar PV penetration: the use of the TIMER-EPG model 197 4.1 General description of TIMER-EPG 197 4.2 Investment strategy 198 4.3 Electricity demand 199 4.4 Spinning reserve and back-up capacity 200 4.5 Supply and cost of conventional electricity 200 4.6 Supply of wind and solar PV electricity 201 4.7 Discarded wind and solar PV electricity 202 4.8 Operational strategy 202 4.9 Technological learning: declining capital costs 203 5. Results 203 5.1 Intermittent electricity production and load factor (Experiment A) 203 5.2 Discarded electricity from intermittent sources (Experiment A) 205 5.3 Costs of wind electricity (Experiment A) 207 5.4 Fuel savings (Experiment B) 209 5.5 Potential CO2 abatement costs (Experiment B) 210 6. Sensitivity analysis (Experiment B) 212 7. Discussion 214 8. Summary and conclusions 217 Chapter eight: Summary and conclusions 221 Chapter eight: Samenvatting en conclusies 231 References 242 Dankwoord 254 Curriculum Vitae 256 CHAPTER ONE INTRODUCTION 1. Energy and sustainable development Energy plays a crucial role in the development of economies and their people. The energy system, considered as the whole of the energy supply sector, which converts the primary energy to energy carriers, and the end-use technologies needed to convert these energy carriers to deliver the demanded energy services (see Figure 1), has developed significantly over time. Two main transitions can be distinguished in the history of the energy system (Grübler et al., 1995; Grübler, 1998). The first was the transition from wood to coal in the industrialising countries, initiated by the steam engine in the late 18th century. The use of coal, which could more easily be transported and stored, allowed higher power densities and related services to be site independent. By the turn of the 20th century nearly all primary energy in industrialised countries was supplied by coal. The second transition was related to the proliferation of electricity, resulting in a diversification of both energy end- use technologies and energy supply sources. Electricity was the first energy carrier that could easily be converted to light, heat or work at the point of end use. Furthermore, the introduction of the internal combustion engine increased mobility, as cars, buses and aircraft were built, and stimulated the use of oil for transportation. These innovations together lead to a shift in the mix of commercial energy sources from mainly coal towards domination of coal, oil and later natural gas and increased the global commercial primary energy use from 1850 to 1990 by a factor of about 40 (Grübler, 1998).
Recommended publications
  • Cryosphere, Instability, Sea Level Rise Session 1
    Miljø- og Planlægningsudvalget, Det Energipolitiske Udvalg MPU alm. del - Bilag 278,EPU alm. del - Bilag 140 Offentligt Session 1 Chairs Prof. Dorthe Dahl-Jensen & Dr. Konrad Steffen Cryosphere, Instability, Sea Level Rise The Ice and snow in the climate system is reacting to global warming and the changes of the ice and snow cover strongly feeds back into the climate system. The glaciers, ice caps and glaciers are retreating and as a consequence sea level is rising. The predicted global warming during the next 100 years will reach levels where several of the ice masses will cross the threshold for being stable and disappear. Permafrost is under strong retreat which causes major infrastructure problems and also releases greenhouse gasses into the atmosphere. Sea ice is changing and the sea ice in the northern polar ocean has retreated in the last few years and might totally disintegrate during the next decade. The decrease of the cryosphere will cause sea level to rise but good future predictions calls for more improved models starting with an understanding of the processes that leads to the increase of discharge of ice especially from the ice streams in the ice sheets. We invite you to submit abstracts to the IARU Climate Congress, session 1 on Cryosphere, Instability, Sea Level Rise that relates to the subjects described above. Prof. Dorthe Dahl-Jensen Dorthe Dahl-Jensen is Prof. in Ice Physics at the Niels Bohr Institute, University of Copenhagen. She heads the Centre of Excellence for Ice and Climate with the focus to use ice core data to improve our understanding of the past, the present and the future climate.
    [Show full text]
  • Climate Change Impact Assessment and Adaptation Under Uncertainty
    Climate change impact assessment and adaptation under uncertainty Arjan Wardekker 2011 1 Research presented in this thesis was carried out at the Department of Science, Technology and Society (STS), Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht, The Netherlands, and at the Information Services and Methodology Team (IMP), Netherlands Environmental Assessment Agency (PBL), Bilthoven, The Netherlands. Copyright © 2011, Arjan Wardekker. All rights reserved. Cite as: Wardekker, J.A. (2011). Climate change impact assessment and adaptation under uncertainty. PhD dissertation. Utrecht University, Utrecht. (for the journal-published chapters (3-6), preferably cite the journal articles) Cover design: Filip de Blois (based on an idea by Arjan Wardekker). Globe image used: “The Blue Marble” (2002 east version) by NASA. Printed by: Proefschriftmaken.nl || Printyourthesis.com. ISBN: 978-90-8891-281-8. 2 Climate change impact assessment and adaptation under uncertainty Effectbeoordeling en aanpassing aan klimaatverandering onder onzekerheid (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 15 juni 2011 des ochtends te 10.30 uur door Johannes Adrianus Wardekker geboren op 5 September 1981 te Amersfoort 3 Promotor: Prof.dr. W.C. Turkenburg Co-promotoren: Dr. J.P. van der Sluijs Prof.dr. A.C. Petersen Dit proefschrift werd mede mogelijk gemaakt met financiële steun van het Planbureau voor de Leefomgeving (PBL) en nationaal onderzoeksprogramma Klimaat voor Ruimte. The research presented in this thesis has been made possible through the financial support of the Netherlands Environmental Assessment Agency (PBL) and national research programme Climate changes Spatial Planning.
    [Show full text]
  • The Potentials of Renewable Energy1
    The Potentials of Renewable Energy1 Thematic Background Paper January 2004 Authors: Thomas B Johansson International Institute for Industrial Environmental Economics, Lund University, Lund, Sweden Kes McCormick International Institute for Industrial Environmental Economics, Lund University, Lund, Sweden Lena Neij International Institute for Industrial Environmental Economics, Lund University, Lund, Sweden Wim Turkenburg Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht, The Netherlands 1 This Thematic Background Paper (TBP) draws heavily from other texts that the authors have authored or co- authored, such as the World Energy Assessment: Update of the Overview (2003), the World Energy Assessment: Energy and the Challenge of Sustainability (2000), and Energy for Sustainable Development: A Policy Agenda (2002). Disclaimer This is one of 12 Thematic Background Papers (TBP) that have been prepared as thematic background for the International Conference for Renewable Energies, Bonn 2004 (renewables 2004). A list of all papers can be found at the end of this document. Internationally recognised experts have prepared all TBPs. Many people have commented on earlier versions of this document. However, the responsibility for the content remains with the authors. Each TBP focuses on a different aspect of renewable energy and presents policy implications and recommendations. The purpose of the TBP is twofold, first to provide a substantive basis for discussions on the Conference Issue Paper (CIP) and, second, to provide some empirical facts and background information for the interested public. In building on the existing wealth of political debate and academic discourse, they point to different options and open questions on how to solve the most important problems in the field of renewable energies.
    [Show full text]
  • On the Global and Regional Potential of Renewable Energy Sources
    ON THE GLOBAL AND REGIONAL POTENTIAL OF RENEWABLE ENERGY SOURCES Over het mondiale en regionale potentieel van hernieuwbare energiebronnen (met een samenvatting in het Nederlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT UTRECHT OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. DR. W.H. GISPEN, INGEVOLGE HET BESLUIT VAN HET COLLEGE VOOR PROMOTIES IN HET OPENBAAR TE VERDEDIGEN OP VRIJDAG 12 MAART 2004 DES MIDDAGS OM 12.45 UUR door Monique Maria Hoogwijk geboren op 22 november 1974 te Enschede Promotor: Prof. Dr. W.C. Turkenburg Verbonden aan de Faculteit Scheikunde van de Universiteit Utrecht Promotor: Prof. Dr. H.J.M. de Vries Verbonden aan de Faculteit Scheikunde van de Universiteit Utrecht Dit proefschrift werd mede mogelijk gemaakt met financiële steun van het Rijksinstituut voor Volksgezondheid en Milieu (RIVM). CIP GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Hoogwijk, Monique M. On the global and regional potential of renewable energy sources/ Monique Hoogwijk – Utrecht: Universiteit Utrecht, Faculteit Scheikunde Proefschrift Universiteit Utrecht. Met lit. opg. − Met samenvatting in het Nederlands ISBN: 90-393-3640-7 Omslagfoto: NASA Omslag ontwerp: Dirk-Jan Treffers en Monique Hoogwijk, met dank aan Jacco Farla ON THE GLOBAL AND REGIONAL POTENTIAL OF RENEWABLE ENERGY SOURCES Aan mijn ouders CONTENTS Chapter one: Introduction 9 1. Energy and sustainable development 9 2. Future energy scenarios 11 2.1 Scenarios on future energy system and energy models 11 2.2 The SRES scenarios 13 3. The potential of wind, solar and biomass energy 16 4. Renewable electricity in the IMAGE/TIMER 1.0 model 17 4.1 The IMAGE/TIMER 1.0 model 17 4.2 Restriction to wind, solar PV and biomass electricity 18 4.3 The electricity simulation in TIMER 1.0 19 5.
    [Show full text]
  • Sustainability Framework for Carbon Capture and Storage
    SUSTAINABILITY FRAMEWORK FOR CARBON CAPTURE AND STORAGE SUSTAINABILITY FRAMEWORK FOR CARBON CAPTURE AND STORAGE Monique Hoogwijk 1) Andrea Ramírez 2) Chris Hendriks 1) 1) Ecofys Netherlands B.V. 2) Utrecht University, Copernicus Institute for Sustainable Development and Innovation, Research group Science, Technology and Society January 2007 EEP03017 – WP1.1 Copyright Ecofys 2007 II Preface and acknowledgements This research is part of a larger carbon dioxide capture and storage (CCS) program in the Neth- erlands called CATO, which has as main goal to assess whether or no CCS is a viable option to be implemented in the Netherlands. This report is the outcome of a project conducted in 2005 – 2006. For this project several workshops have been held. We would like to thank the participants Jos Bruggink (VU Amsterdam/ECN); Dancker Daamen (Leiden University), Sander de Bruyn (CE), Wouter de Ridder (MNP), Bert de Vries (UU-STS/MNP), Louis H.J. Goossens (TU Delft), Pe- ter Hofman (UT Twente), Daniel Jansen (ECN), Anne Kets (Rathenau Instituut), Karel Mulder (TU Delft), Jos Post (RIVM), Marko Hekkert (Copernicus Instituut, UU), Christoph Tönjes (Clingendaal), Eise Spikers (Groningen University), Mart van Bracht (TNO), Maarten Gnoth (Electrabel), Hans Hage (CORUS), Jos Maas (Shell), Jan Maas (DELTA), Huub Paes (Electra- bel), Bert Stuij (SenterNovem), Chris te Stroet (TNO), Wim Turkenburg (UU, Copernicus In- stituut) and, Bram Van Mannekes (NoGePa). Finally, the authors wish to thank Dr. Dancker Damen (Leiden University) for his comments on the interpretation and analysis of the survey’s results and Erika de Visser (Ecofys), Joris Koorn- neef and Klaas van Alphen (Utrecht University) for their support during the workshops.
    [Show full text]
  • Catching Carbon to Clear the Skies Experiences and Highlights of the Dutch R&D Programme on CCS 90016 ECO-CATO Boekjem 08-04-2009 14:49 Pagina 2
    90016 ECO-CATO boekjeM 08-04-2009 14:48 Pagina 1 Catching carbon to clear the skies Experiences and highlights of the Dutch R&D programme on CCS 90016 ECO-CATO boekjeM 08-04-2009 14:49 Pagina 2 Index 3–Foreword 4–Chapter 1 – The origins of CATO 9–Interview – Kelly Thambimuthu 10 – Chapter 2 – Carbon dioxide capture and storage: the broad picture 19 – Interview – Sible Schöne 20 – Chapter 3 – Highlights of CATO 21 – Highlight 3.1 – CATO CO2 catcher puts laboratory results into practice 24 – Highlight 3.2 – From research to pilot plant: sorption-enhanced water-gas-shift 27 – Highlight 3.3 – Trapping CO2 in solid rock 31 – Highlight 3.4 – Storing CO2 in coal seams: new and promising 34 – Highlight 3.5 – Monitoring effective storage in a gas field 37 – Highlight 3.6 – Exploring an empty gas field as a site for CO2 storage 40 – Highlight 3.7 – The importance of public opinion 43 – Interview – Stan Dessens 44 – Highlight 3.8 – Hints for policy makers: How to bring CCS to market 49 – Highlight 3.9 – A sustainability framework for carbon capture and storage 53 – Interview – Michiel Groeneveld 54 – Chapter 4 – CCS in Dutch Enercy Policy 61 – Interview – Kay Damen 62 – Chapter 5 – Looking back and forward 68 – References 70 – Participants in CATO 71 – Colofon 90016 ECO-CATO boekjeM 08-04-2009 14:49 Pagina 3 3 Foreword Energy policy is a high priority area for the government of the Netherlands. It is our ambition for 2020 to be one of the most sustainable and efficient energy economies of Europe.
    [Show full text]
  • On the Global and Regional Potential of Renewable Energy Sources
    ON THE GLOBAL AND REGIONAL POTENTIAL OF RENEWABLE ENERGY SOURCES Over het mondiale en regionale potentieel van hernieuwbare energiebronnen (met een samenvatting in het Nederlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT UTRECHT OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF. DR. W.H. GISPEN, INGEVOLGE HET BESLUIT VAN HET COLLEGE VOOR PROMOTIES IN HET OPENBAAR TE VERDEDIGEN OP VRIJDAG 12 MAART 2004 DES MIDDAGS OM 12.45 UUR door Monique Maria Hoogwijk geboren op 22 november 1974 te Enschede Promotor: Prof. Dr. W.C. Turkenburg Verbonden aan de Faculteit Scheikunde van de Universiteit Utrecht Promotor: Prof. Dr. H.J.M. de Vries Verbonden aan de Faculteit Scheikunde van de Universiteit Utrecht Dit proefschrift werd mede mogelijk gemaakt met financiële steun van het Rijksinstituut voor Volksgezondheid en Milieu (RIVM). CIP GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Hoogwijk, Monique M. On the global and regional potential of renewable energy sources/ Monique Hoogwijk – Utrecht: Universiteit Utrecht, Faculteit Scheikunde Proefschrift Universiteit Utrecht. Met lit. opg. − Met samenvatting in het Nederlands ISBN: 90-393-3640-7 Omslagfoto: NASA Omslag ontwerp: Dirk-Jan Treffers en Monique Hoogwijk, met dank aan Jacco Farla ON THE GLOBAL AND REGIONAL POTENTIAL OF RENEWABLE ENERGY SOURCES Aan mijn ouders CONTENTS Chapter one: Introduction 9 1. Energy and sustainable development 9 2. Future energy scenarios 11 2.1 Scenarios on future energy system and energy models 11 2.2 The SRES scenarios 13 3. The potential of wind, solar and biomass energy 16 4. Renewable electricity in the IMAGE/TIMER 1.0 model 17 4.1 The IMAGE/TIMER 1.0 model 17 4.2 Restriction to wind, solar PV and biomass electricity 18 4.3 The electricity simulation in TIMER 1.0 19 5.
    [Show full text]
  • Impact of International Climate Policies on CO2 Capture and Storage Deployment Illustrated in the Dutch Energy System
    Energy Policy 39 (2011) 2000–2019 Contents lists available at ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol Impact of international climate policies on CO2 capture and storage deployment Illustrated in the Dutch energy system Machteld van den Broek a,n, Paul Veenendaal b, Paul Koutstaal b, Wim Turkenburg a, Andre´ Faaij a a Copernicus Institute, Utrecht University, Utrecht, The Netherlands b Netherlands Bureau for Economic Policy Analysis (CPB), The Hague, The Netherlands article info abstract Article history: A greenhouse gas emission trading system is considered an important policy measure for the Received 26 February 2010 deployment of CCS at large scale. However, more insights are needed whether such a trading system Accepted 13 January 2011 leads to a sufficient high CO2 price and stable investment environment for CCS deployment. To gain Available online 12 February 2011 more insights, we combined WorldScan, an applied general equilibrium model for global policy Keywords: analysis, and MARKAL-NL-UU, a techno-economic energy bottom-up model of the Dutch power Climate mitigation policy generation sector and CO2 intensive industry. WorldScan results show that in 2020, CO2 prices may Applied general equilibrium model vary between 20 h/tCO2 in a GRAND COALITION scenario, in which all countries accept greenhouse gas Linear optimisation model targets from 2020, to 47 h/tCO2 in an IMPASSE scenario, in which EU-27 continues its one-sided emission trading system without the possibility to use the Clean Development Mechanism. MARKAL-NL-UU model results show that an emission trading system in combination with uncertainty does not advance the application of CCS in an early stage, the rates at which different CO2 abatement technologies (including CCS) develop are less crucial for introduction of CCS than the CO2 price development, and the combination of biomass (co-)firing and CCS seems an important option to realise deep CO2 emission reductions.
    [Show full text]
  • Exploring the Evolution of Biofuel Supply Chains
    Delft University of Technology Exploring the evolution of biofuel supply chains An agent-based modeling approach Moncada Escudero, Jorge DOI 10.4233/uuid:21e0dc88-1a6d-4cfd-8831-40201be6f5bd Publication date 2018 Document Version Final published version Citation (APA) Moncada Escudero, J. (2018). Exploring the evolution of biofuel supply chains: An agent-based modeling approach. https://doi.org/10.4233/uuid:21e0dc88-1a6d-4cfd-8831-40201be6f5bd Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. EXPLORING THE EVOLUTION OF BIOFUEL SUPPLY CHAINS AN AGENT-BASED MODELING APPROACH EXPLORING THE EVOLUTION OF BIOFUEL SUPPLY CHAINS AN AGENT-BASED MODELING APPROACH Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen, voorzitter van het College voor Promoties, in het openbaar te verdedigen op vrijdag 23 november 2018 om 10:00 uur door Jorge Andrés MONCADA ESCUDERO Professional Doctorate in Engineering.
    [Show full text]
  • Room for Climate Debate Perspectives on the Interaction Between Climate Politics, Science and the Media
    Room for climate debate Perspectives on the interaction between climate politics, science and the media Jeroen P. van der Sluijs, Rinie van Est and Monique Riphagen (editors) Room for climate debate Perspectives on the interaction between climate politics, science and the media Jeroen P. van der Sluijs, Rinie van Est and Monique Riphagen (editors) Rathenau Instituut – Technology Assessment Board of the Rathenau Instituut Drs. W.G. van Velzen (chairman) Prof. dr. C.D. Dijkstra Dr. A. Esmeijer Prof. dr. H.W. Lintsen Prof. dr. H. Maassen van den Brink Prof. mr. J.E.J. Prins Prof. dr. A. Zuurmond Mr. drs. J. Staman (secretary) Room for climate debate: perspectives on the interaction between climate politics, science and the media Jeroen P. van der Sluijs, Rinie van Est and Monique Riphagen (editors) Rathenau Instituut – Technology Assessment Rathenau Instituut Anna van Saksenlaan 51 P.O. Box 95366 2509 CJ The Hague The Netherlands Telephone: +31 70 342 15 42 Telefax: +31 70 363 34 88 E-mail: [email protected] Website: www.rathenau.nl Publisher: Rathenau Instituut Quote preferably as: Jeroen P. van der Sluijs, Rinie van Est and Monique Riphagen (eds.) (2010), Room for climate debate: perspectives on the interaction between climate politics, science and the media. The Hague, Rathenau Instituut. Editors Jeroen P. van der Sluijs, Rinie van Est and Monique Riphagen Final editing Gaston Dorren and Hans van Scharen Translation Ruth Rose Cover photo Dreamstime, Eric Gevaert Cover design MaryAnn Smit, BOVEN DE BANK for graphic design & dtp, Amsterdam Print: SIL’S drukwerk, Amsterdam © Jeroen P.van der Sluijs, Rinie van Est and Monique Riphagen 2010 Permission to make digital or hard copies of portions of this work for creative, personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full preferred citation mentioned above.
    [Show full text]
  • International Energy Initiative
    ACTIVITIES REPORT 2003-2004 international energy initiative To promote the efficient production and use of energy for sustainable development http://www.ieiglobal.org January 2005 IEI Offices IEI Staff President President c/o Princeton Environmental Institute Eric D. Larson Guyot Hall, Princeton University Princeton, NJ 08544 USA Phone: +1-609-258-4966 Executive Director Fax: +1- 609-258-7715 Gilberto De Martino Jannuzzi Email: [email protected] REI – Asia Executive Director Director: Antonette D’Sa in care of REI – Latin America Research Associate: K.V.Narasimha Murthy Regional Energy Initiative – Asia Research Assistant: B.T.Chandru 25/5 Borebank Road Accounts Manager: K.M.Basavarajappa Benson Town Office Assistant: G.Saravanan Bangalore 560 046 India Phone: +91-80-23538426 Fax: +91-80-23538426 REI – Latin America E-mail: [email protected] Director: Gilberto De Martino Jannuzzi Office Assistant: Andreia Maria dos Santos Regional Energy Initiative – Latin America Secretary: Maira de S. A. Camargo Caixa Postal 6163 Research Assistant: Rodolfo D. M. Gomes Campinas, São Paulo Legal Advisor (Pro bono): Ana Maria P.C. Jannuzzi CEP 13083-970 Brazil Phone: +55-19-3249-0288 Research Collaborator: Guilherme Queiroz Fax: +55-19-3289-3125 Research Collaborator: Edson Vendrusculo E-mail: [email protected] Research Collaborator: Thomaz Borges Research Student: Gheisa Esteves Regional Energy Initiative – Africa Research Student: Herculano Xavier (closed January 2004) University of Cape Town Research Student: Paulo Santana Private Bag Rondebosch 7701 Research Student: Godfrey Sanga South Africa Energy for Sustainable Development REI – Africa (through January 2004) 25/5 Borebank Road Director: Anton Eberhard Benson Town Research Assistant: Alix Clark Bangalore 560 046 India Secretary: Shireen Arnold Phone: +91-80-23536563 Fax: +91-80-23538426 E-mail: [email protected] Energy for Sustainable Development Executive Editor: Svati Bhogle IEI Board of Directors Technical Editor: K.
    [Show full text]
  • Symposium:Energy Energy for a for a Carbon-Constrainedcarbon-Constrained World World
    Symposium:Energy Energy for a for a Carbon-ConstrainedCarbon-Constrained World World AprilApril 3, 2017 Andlinger Center for Energy and the Environment Andlinger Center forPrinceton Energy University and the Environment Princeton University A Public SymposiumMaeder HallHonoring Auditorium, Andlinger Center Honoring Robert H. Williams, 7:45 a.m. Continental breakfast Senior Research Scientist,R onOBE the RT H. WILLIAMS Senior8:15 Research a.m. Welcome Scientist and introductions occasion of his retirement from Yueh-Lin (Lynn) Loo, Princeton University Eric D. Larson, Princeton University Princetonon University. the occasion of his retirement from Princeton University 8:30 a.m. Integrated approaches to mitigation of climate change and other sustainability concerns Sponsored by the Andlinger Center for EnergyThomas and B. Johansson the Environment,, Lund University, the PrincetonSweden Environmental Institute, School of and the School of Engineering and Applied Science Engineering 8:55 a.m. The future of energy ef ciency and renewables and Applied Howard Geller, Southwest Energy Ef ciency Project Science Sam Baldwin, U.S. Department of Energy 10:10 a.m. Fossil fuels in a carbon-constrained world School of Engineering and Applied Science Michael Celia, Princeton University Stefano Consonni, Politecnico di Milano, Italy Vello Kuuskraa, Advanced Resources International 11:25 a.m. The future of nuclear power Frank von Hippel, Princeton University 11:50 Lunch (registration required) 1:20 p.m. The future of transportation Joan Ogden, University of California - Davis Free and open to the public. 1:45 p.m. Technology cost buydown for large-scale low-carbon energy systems For details and to register, visit Chris Greig, University of Queensland, Australia http://acee.princeton.edu/ 2:05 p.m.
    [Show full text]