Neogene Molluscs, Shallow Marine Paleoenvironments, and Chronostratigraphy of the Guajira Peninsula, Colombia

Total Page:16

File Type:pdf, Size:1020Kb

Neogene Molluscs, Shallow Marine Paleoenvironments, and Chronostratigraphy of the Guajira Peninsula, Colombia Swiss J Palaeontol (2015) 134:45–75 DOI 10.1007/s13358-015-0074-1 Neogene molluscs, shallow marine paleoenvironments, and chronostratigraphy of the Guajira Peninsula, Colombia 1,2 2 3,4,5 3,6 Austin J. W. Hendy • Douglas S. Jones • Federico Moreno • Vladimir Zapata • Carlos Jaramillo3 Received: 6 January 2015 / Accepted: 30 March 2015 / Published online: 9 June 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract The Neogene sedimentary fill of the Cocinetas and Ware formations found in Cocinetas Basin. The basal Basin in northern Colombia preserves a rich record of unit in the Neogene succession, the Uitpa Formation, marine invertebrates and can be analyzed in the context of comprises mudstones redeposited sandstones and molluscs a high-resolution stratigraphy and excellent chronostratig- typical of bathyal to outer shelf environments at its base. It raphy. Molluscan fossils are highly diverse and often well is a shallowing-up sequence and is conformable with the preserved, offering a window into the rapidly changing overlying Jimol Formation, which comprises coarse- paleoenvironments and biogeography of northern South grained lithic calcarenite, coquina, and mudstone that America during parts of the Early to Middle Miocene and represent a regressive–transgressive–regressive sequence. latest Pliocene to Pleistocene. Before the evolutionary and This sequence includes foreshore and transition zone biogeographic implications of these fossils can be under- through lower inner shelf environments, but generally stood, however, their associated depositional environments poorly preserved invertebrate assemblages. The con- and geologic ages must be determined. Here, we present formably overlying Castilletes Formation contains a varied preliminary results from paleoenvironmental, biostrati- suite of depositional environments with better-developed graphic, and strontium isotope chronostratigraphic analyses shell beds and thicker successions of intervening siltstone. of sediments and fossils from the Uitpa, Jimol, Castilletes, A significant unconformity exists between the Castilletes Formation and the overlying Ware Formation, which rep- resents a deltaic to coastal shoreface deposition environ- ment, rich in shallow marine molluscs from a variety of ecotopes. Biostratigraphic assessment and strontium iso- topic results from the Jimol and Castilletes formations indicate that these units contain fossils of latest Early Electronic supplementary material The online version of this Miocene through Middle Miocene age, while those of the article (doi:10.1007/s13358-015-0074-1) contains supplementary material, which is available to authorized users. Ware are approximately Late Pliocene in age. These results help to place the shallow marine assemblages of Cocinetas & Austin J. W. Hendy Basin into a wider geologic context that aids our under- [email protected] standing of how these faunas relate to the broader evolu- 1 Natural History Museum of Los Angeles County, tionary and biogeographic history of the southern Los Angeles, USA Caribbean during the Neogene. Additionally, the isotope 2 dating and paleoecology of this fauna help to place co- Florida Museum of Natural History, University of Florida, Gainesville, USA occurring terrestrial and aquatic vertebrate assemblages into a local paleoenvironmental and chronostratigraphic 3 Smithsonian Tropical Research Institute, Panama, USA framework. 4 University of Rochester, Rochester, NY, USA 5 Corporacio´n Geolo´gica ARES, Bogota´, Colombia Keywords Jimol Formation Á Castilletes Formation Á 6 Ecopetrol S.A., Bogota´, Colombia Ware Formation Á Mollusca Á Guajira Peninsula Á Colombia 46 A. J. W. Hendy et al. Introduction formations. Both Olsson and Richards (1961) and Thomas (1972), as well as Bu¨rgl (1960), Renz (1960) and Rollins Marine invertebrate paleontology of Cenozoic sediments (1960, 1965) barely scratch the surface of the tremendous on the Guajira Peninsula of Colombia has received fossil biodiversity captured in the strata of the Guajira relatively little attention, despite substantial interest in the Peninsula, and none of these works explored fully the po- stratigraphy and tectonic features of the region and the tential of these fossils for biostratigraphic or paleoenvi- extensive paleontological research that has been conducted ronmental analysis. in the neighboring sedimentary basins of northern The Neogene fossil record in the Cocinetas Basin is Venezuela (Jung 1965; Landau and Marques da Silva particularly well exposed and offers the opportunity to 2010) and southern Caribbean Islands (e.g., Jung 1969). document more fully the biodiversity and biogeography of The Cocinetas Basin on the eastern flank of La Guajira the southern Caribbean and northern South America during Peninsula, northern Colombia (Fig. 1a), provides an ex- two intervals: the Early to Middle Miocene and the Late tensive and well-exposed sedimentary and paleontological Pliocene (Moreno et al. 2015). Similar Miocene faunas record of the last 30 million years. The only published (Fig. 1a) include the Culebra Formation of Panama (e.g., work that has dealt specifically with fossil marine inver- Woodring 1957), the very diverse Cantaure Formation on tebrate systematics and biostratigraphy of the Guajira re- the Paraguana Peninsula (Jung 1965), the La Rosa, Agua gion is a short paper on molluscs from the Macarao Clara, Querales, and Socorro formations in the Falco´n (Eocene) and Siamana (Oligocene) formations by Olsson Basin (Hodson 1926; Hodson et al. 1927; Hodson and and Richards (1961), which had a poor stratigraphic control Hodson 1931a, b; Johnson et al. 2009; Quiroz and and geographic accuracy. More comprehensive systematic Jaramillo 2010) in Venezuela, Early Miocene strata of research was undertaken by Thomas (1972) in the form of Trinidad (Maury 1912; Jung 1969) and the Baitoa For- an unpublished dissertation, which focused primarily on mation of the Dominican Republic (e.g., Maury 1917; molluscs, presumably from either the Jimol or Castilletes Saunders et al. 1986). Correlated Pliocene faunas (Fig. 1) may be found in the Cayo Agua Formation of Panama A (Olsson 1922), San Gregorio Formation of Falco´n Basin 13 7 (Hodson et al. 1927; Hodson and Hodson 1931a, b), Mare 12 and Playa Grande formations of eastern Venezuela (Weisbord 1962, 1964a, b), Araya Formation of Cubagua Caribbean Plate Island (Landau and Marques da Silva 2010), Bowden Formation of Jamaica (Woodring 1925, 1928), and Mao Limestone of the Dominican Republic (Saunders et al. 5 Study area 1986). Nevertheless, with the exception of the Dominican inset 9 Republic, none of these faunas have been studied within 3 11 2 4 10 6 the context of well-developed stratigraphy and independent 8 1 South American Plate chronostratigraphic framework. Extensive new fieldwork in Cocinetas Basin, including Guajira Cocinetas B Pen. Basin Important geological mapping, lithofacies description, and extensive Paraguana faunas Cuiza F. Peninsula and systematic collection of marine and terrestrial inver- 1 Early-Middle Ocu F. Falcon Miocene tebrates has been conducted since 2011. The present paper Basin 7 Late Pliocene builds on a revised stratigraphy for the Neogene sedimentary fill of Cocinetas Basin by Moreno et al. (2015). We provide a detailed chronostratigraphic frame- Fig. 1 a Location of Cocinetas Basin in the Guajira Peninsula of work derived from 87Sr/86Sr isotopic analyses and describe northern Colombia and other important Early-Middle Miocene (Bur- digalian–Langhian) and Late Pliocene units in the southern the biodiversity, biostratigraphy, and paleoenvironmental Caribbean: 1 upper Culebra Formation (Panama), 2 La Rosa significance of nearly 250 field localities (c. 8000 speci- Formation (Venezuela), 3 Agua Clara, Querales, and Soccoro mens) collected or surveyed during this recent fieldwork formations (Venezuela), 4 Castillo Formation (Venezuela), 5 Can- and from historic collections. taure Formation (Venezuela), 6 Brasso and Manzanilla formations (Trinidad and Tobago), 7 Baitoa Formation (Dominican Republic), 8 Cayo Agua Formation (Panama), 9 San Gregorio Formation Geological setting (Venezuela), 10 Mare and Playa Grande formations (Venezuela), 11 Araya Formation (Venezuela), 12 Bowden Formation (Jamaica), 13 Cocinetas Basin, located on the southeast Guajira Penin- Mao Limestone (Dominican Republic). b Map of northern Colombia and Venezuela showing location of Cocinetas Basin in the context of sula (Fig. 1b), is one of many pull-apart sedimentary basins major regional faults found along the northern margin of South America Neogene molluscs, shallow marine paleoenvironments… 47 Macuira Range 70°30’ W Siapana Jarara Range A 12° N 12° N D C Key F Quaternary Puerto Lopez Ware Fm G Caslletes Fm Bahia Tortugas Jimol Fm H Uipta Fm Siamana Fm Cocinas Macarao Fm Range Cretaceous E Caslletes Pre-Cretaceous Sample locality 10 km Town/village 70°30’ W Bahia Cocinetas Flor de Guajira B Fig. 2 Geological map of southeastern Cocinetas Basin showing distribution of sedimentary units, sampling localities, and points of interest. These include a Arroyo Uipta, b Patsu´a, c Paraguacho´n, d Patajau, e Kaitamana, f Yotohoro, g Bahia Tucacas, h Macaraipao (Muessig 1984; Pindell and Barrett 1990; Macellari 1995). The southern, western, and northern boundaries are de- Renz Rollins Moreno Epoch Stage limited by the Cocinas (coincident with Cuiza Fault), Jar- (1960) (1965) et al. (2014) ara, and Macuira ranges, respectively (Fig. 2). Deposition Age (Ma) Age (Ma) Late Piacenzian Ware
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Revised Stratigraphy of Neogene Strata in the Cocinetas Basin, La Guajira, Colombia
    Swiss J Palaeontol (2015) 134:5–43 DOI 10.1007/s13358-015-0071-4 Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia F. Moreno • A. J. W. Hendy • L. Quiroz • N. Hoyos • D. S. Jones • V. Zapata • S. Zapata • G. A. Ballen • E. Cadena • A. L. Ca´rdenas • J. D. Carrillo-Bricen˜o • J. D. Carrillo • D. Delgado-Sierra • J. Escobar • J. I. Martı´nez • C. Martı´nez • C. Montes • J. Moreno • N. Pe´rez • R. Sa´nchez • C. Sua´rez • M. C. Vallejo-Pareja • C. Jaramillo Received: 25 September 2014 / Accepted: 2 February 2015 / Published online: 4 April 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract The Cocinetas Basin of Colombia provides a made exhaustive paleontological collections, and per- valuable window into the geological and paleontological formed 87Sr/86Sr geochronology to document the transition history of northern South America during the Neogene. from the fully marine environment of the Jimol Formation Two major findings provide new insights into the Neogene (ca. 17.9–16.7 Ma) to the fluvio-deltaic environment of the history of this Cocinetas Basin: (1) a formal re-description Castilletes (ca. 16.7–14.2 Ma) and Ware (ca. 3.5–2.8 Ma) of the Jimol and Castilletes formations, including a revised formations. We also describe evidence for short-term pe- contact; and (2) the description of a new lithostratigraphic riodic changes in depositional environments in the Jimol unit, the Ware Formation (Late Pliocene). We conducted and Castilletes formations. The marine invertebrate fauna extensive fieldwork to develop a basin-scale stratigraphy, of the Jimol and Castilletes formations are among the richest yet recorded from Colombia during the Neogene.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Scacchi, Species Solecurtidae
    BASTERIA, 58: 35-40, 1994 Solecurtus multistriatus (Scacchi, 1835), a good marine bivalve species from the Mediterranean Sea (Bivalvia, Heterodonta: Solecurtidae) Paolo Mariottini 1 Istituto di Scienze Biochimiche, Universita di Parma, 1-43100 Parma, Italy Carlo Smriglio Via di Valle Aurelia 134, 1-00167 Rome, Italy & Cesare Ciommei Via Montebruno 12, 1-00168 Rome, Italy Solecurtus multistriatus (Scacchi, 1835) from the Mediterranean Sea is here reported as a bona fide species; the authors give additional data about its morphology, ecology and distribution. Key words: Bivalvia, Solecurtidae, Solecurtus, morphology, distribution, Mediterranean Sea, Italy. INTRODUCTION In the Mediterranean Sea the genus Solecurtus Blainville, 1824, is represented by three species: S. scopula (Turton, 1822), S. strigilatus (Linne, 1758) and S. multistriatus (Scacchi, 1835). The last taxon was based by Scacchi (1835) (and not Scacchi, 1834, according to Cretella et ah, 1992) on a fossil specimen collected near Gravina, Puglia (Italy). Here the original description is given: "Testa ovali-oblonga, subaequilatera, antice oblique striata, striis approximatis angulo acuto in/lexis. Lata lin. 8, alta lin. 3". In the description 'lin.' (which stands for linea) is a standard size unit. The one adopted by the authors of that time corresponded to 2.25 mm; but, in this case, it is also possible that 'linea' represents a local Sicilian size unit (1.8 mm) as reported by Giannuzzi-Savelli et al. (1986). The author clearly stated that this species differs from the fossil and Recent specimens of "Solene bianco del Renieri" candidus of S. and of [S. (Renier, 1804), synonym scopula] "Solene strigilato" (S. strigilatus) . Nowadays the status of S.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • Squires Catalogue
    Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Tasmanian Museum and Art Gallery Don Squires Hobart, Tasmania Honorary Curator of Palaeontology May, 2012 Type and Figured Palaeontological Specimens in the Tasmanian Museum and Art Gallery A CATALOGUE Compiled by Don Squires Honorary Curator of Palaeontology cover image: Trigonotreta stokesi Koenig 1825, the !rst described Australian fossil taxon occurs abundantly in its type locality in the Tamar Valley, Tasmania as external and internal moulds. The holotype, a wax cast, is housed at the British Museum (Natural History). (Clarke, 1979) Hobart, Tasmania May, 2012 Contents INTRODUCTION ..........................................1 VERTEBRATE PALAEONTOLOGY ...........122 PISCES .................................................. 122 INVERTEBRATE PALAEONTOLOGY ............9 AMPHIBIA .............................................. 123 NEOGENE ....................................................... 9 REPTILIA [SP?] ....................................... 126 MONOTREMATA .................................... 127 PLEISTOCENE ........................................... 9 MARSUPIALIA ........................................ 127 Gastropoda .......................................... 9 INCERTAE SEDIS ................................... 128 Ostracoda ........................................... 10 DESCRIBED AS A VERTEBRATE, MIOCENE ................................................. 14 PROBABLY A PLANT ............................. 129 bivalvia ...............................................
    [Show full text]
  • Acanthochitona Pygmea (Pilsbry, 1893)
    Lista de especies del phylum Mollusca registradas para el Caribe colombiano Abra aequalis (Say, 1822) Abra longicallis (Sacchi, 1837) Abralia veranyi (Rüppell, 1844) Acanthochitona pygmea (Pilsbry, 1893) Acanthochitona rodea (Pilsbry, 1893) Acanthochitona spiculosa (Reeve, 1847) Acanthochitona venezuelana Lyons, 1888 Acanthopleura granulata (Gmelin, 1791) Acar domingensis (Lamarck, 1819) Acesta colombiana (H.E. Vokes, 1970) Acmaea antillarum (Sowerby, 1831) Acmaea leucopleura (Gmelin, 1791) Acmaea pustulata (Helbling, 1779) Acteocina candei (d'Orbigny, 1842) Acteocina recta (d'Orbigny, 1841) Acteon danaida Dall, 1881 Acteon punctostriatus (C.B. Adams, 1840) Actinotrophon actinophorus (Dall, 1889) Adrana gloriosa (A. Adams, 1855) Adrana patagonica (d'Orbigny, 1846) Adrana scaphoides Rehder, 1939 Adrana tellinoides (Sowerby, 1823) Aesopus obesus (Hinds, 1843) Aesopus stearnsi (Tryon, 1883) Agathotoma badia (Reeve, 1846) Agathotoma candidísima (C.B. Adams, 1850) Agatrix smithi (Dall, 1888) Agladrillia rhodochroa (Dautzenberg, 1900) Akera bayeri Marcus y Marcus, 1967 Alaba incerta (d'Orbigny, 1842) Alvania avernas (C.B. Adams, 1850) Alvania auberiana (d'Orbigny, 1842) Alvania colombiana Romer y Moore, 1988 Amaea mitchelli (Dall, 1889) Amaea retiñera (Dall, 1889) Americardia media (Linné, 1758) Amusium laurenti (Gmelin, 1791) Amusium payraceum (Gabb, 1873) Amygdalum politum (Verrill y Smith, 1880) Amygdalum sagittatum Rehder, 1934 Anachis cf. fraudans Jung, 1969 Anachis coseli Díaz y Mittnacht, 1991 Anachis hotessieriana (d'Orbigny, 1842)
    [Show full text]
  • Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?
    Mar. Drugs 2015, 13, 5237-5275; doi:10.3390/md13085237 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds? Kirsten Benkendorff 1,*, David Rudd 2, Bijayalakshmi Devi Nongmaithem 1, Lei Liu 3, Fiona Young 4,5, Vicki Edwards 4,5, Cathy Avila 6 and Catherine A. Abbott 2,5 1 Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 2 School of Biological Sciences, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (D.R.); [email protected] (C.A.A.) 3 Southern Cross Plant Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 4 Medical Biotechnology, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (F.Y.); [email protected] (V.E.) 5 Flinders Centre for Innovation in Cancer, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia 6 School of Health Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-8201-3577. Academic Editor: Peer B. Jacobson Received: 2 July 2015 / Accepted: 7 August 2015 / Published: 18 August 2015 Abstract: Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds.
    [Show full text]
  • Pectinidae, Bival- Biological Lines. Peamussium, Une Espèce Est
    Bull. Inst. r. Sci. nat. Belg. 47 32 Brux. Bull. K. Belg. Inst. Nat. Wet. 30.11.1971 SYSTEMATIC REVISION OF ENTOLIUM, PROPEAMUSSIUM (AMUSIIDAE) AND SYNCYCLONEMA (PECTINIDAE, BIVALVIA, MOLLUSCA) OF THE EUROPEAN BOREAL CRETACEOUS by Annie Dhondt (Brussels) (With 4 plates) SUMMARY The present paper contains a systematic revision of the genera Entolium and Propeamussium (Amusiidae) and Syncyclonema (Pectinidae, Bival- via, Mollusca) in European Cretaceous boréal seas. In Entolium two species are described, in Propeamussium one, and in Syncyclonema eight of which one (S. hagenowi) is new to science, two (S. gamsensis and 5. haggi) are renamed and a former variety is given spécifie status (S. haldonensis). Stress is laid on redefining the species, mostly along biological lines. Material has been studied from as many localities as possible; a nomen- clatorial critical revision is undertaken; type-specimens have been located; type-strata and type-localities are indicated. RESUME La présente étude contient la révision systématique des genres Entolium et Propeamussium (Amusiidae) et Syncyclonema (Pectinidae, Bivalvia, Mollusca) qui ont vécu dans les mers boréales du Crétacé d'Europe. Pour le genre Entolium, deux espèces sont décrites; pour le genre Pro¬ peamussium, une espèce est décrite; pour le genre Syncyclonema huit espèces sont décrites : de celles-ci une est nouvelle (S. hagenowi), deux autres ont reçu un nouveau nom (S. gamsensis & S. haggi) et une der- 2 A. DHONDT 47, 32 nière considérée jusqu'ici comme variété est élevée au rang d'espèce (S. haldonensis). Les espèces sont redéfinies d'après des critères biologiques; les spéci¬ mens étudiés viennent d'autant de localités que possible; une révision cri¬ tique de la nomenclature a été faite; les types ont été recherchés; les localités-types avec leur niveau stratigraphique sont indiquées.
    [Show full text]
  • Gastropod Fauna of the Cameroonian Coasts
    Helgol Mar Res (1999) 53:129–140 © Springer-Verlag and AWI 1999 ORIGINAL ARTICLE Klaus Bandel · Thorsten Kowalke Gastropod fauna of the Cameroonian coasts Received: 15 January 1999 / Accepted: 26 July 1999 Abstract Eighteen species of gastropods were encoun- flats become exposed. During high tide, most of the tered living near and within the large coastal swamps, mangrove is flooded up to the point where the influence mangrove forests, intertidal flats and the rocky shore of of salty water ends, and the flora is that of a freshwater the Cameroonian coast of the Atlantic Ocean. These re- regime. present members of the subclasses Neritimorpha, With the influence of brackish water, the number of Caenogastropoda, and Heterostropha. Within the Neriti- individuals of gastropod fauna increases as well as the morpha, representatives of the genera Nerita, Neritina, number of species, and changes in composition occur. and Neritilia could be distinguished by their radula Upstream of Douala harbour and on the flats that lead anatomy and ecology. Within the Caenogastropoda, rep- to the mangrove forest next to Douala airport the beach resentatives of the families Potamididae with Tympano- is covered with much driftwood and rubbish that lies on tonos and Planaxidae with Angiola are characterized by the landward side of the mangrove forest. Here, Me- their early ontogeny and ecology. The Pachymelaniidae lampus liberianus and Neritina rubricata are found as are recognized as an independent group and are intro- well as the Pachymelania fusca variety with granulated duced as a new family within the Cerithioidea. Littorini- sculpture that closely resembles Melanoides tubercu- morpha with Littorina, Assiminea and Potamopyrgus lata in shell shape.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italics refer to Figures and page numbers in bold refer to Tables. acanthodians 74, 75, 77, 78 ostracode case study 106,107, 108-111 accuracy and database management 172, 173 Astraspis 77 acrotetides 26 athyridides 27 Actinodonta 41 Atlantic, Caribbean and East Pacific (ACEP) realm Actinostereon gregareum 133 153, 160, 163, 164 age of fossils, reliability assessment 173,174 atrypides 27 Allonychia 43 Australia 63,183 Aloconconcha 38 Australia/New Guinea block collision 160-162 alpha diversity 2, 99 Autolamellibranchia 39-45 Amadeus Basin 72 Avalonia 19 Ambonychia 43 biodiversity 86, 92, 95 Ambonychiopsis 43 brachiopod diversity profiles 31 Amorphognathus Biofacies 90 conodonts 88, 89, 91 amphibian diversity 183-187,188, 188,189, 191,192, Ordovician bivalves 36 193 Ordovician palaeogeography 28 analytical time averaging 174 palaeolatitudes 95 Ananterodonta 41 anaspids 74, 75, 78 Anatolepis 70, 72, 76, 79 Babinka 4142 Andean Basin Jurassic bivalve populations Baltica diversity 128, 134-136 biodiversity 92, 95 effect of Hispanic Corridor 131-134 conodont provinces 90 extinction rates 129, 130 Ordovician 18-19, 19-20, 28 immigration rates 131 rynchonelliformean brachiopods 15, 18 Angarella 19 Baltoscandian conodont provinces 86 angiosperms 1, 5, 5-6 Bambachian megaguilds 25 Cenozoic biodiversity 158 Bavarilla hofensis 56, 58 Cretaceous radiation 141,143-144 Belodella 90 Antarctic Peninsula 145, 146-147 Belodina 90 Anomalocoelia 43 Bennettitales 144,145 Anomalodesmata 44-45 beta (between habitat) diversity 2, 99, 157
    [Show full text]