An Infrared Coronagraphic Survey for Substellar Companions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
II Publications, Presentations
II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class. -
Hubble Space Telescope Observer’S Guide Winter 2021
HUBBLE SPACE TELESCOPE OBSERVER’S GUIDE WINTER 2021 In 2021, the Hubble Space Telescope will celebrate 31 years in operation as a powerful observatory probing the astrophysics of the cosmos from Solar system studies to the high-redshift universe. The high-resolution imaging capability of HST spanning the IR, optical, and UV, coupled with spectroscopic capability will remain invaluable through the middle of the upcoming decade. HST coupled with JWST will enable new innovative science and be will be key for multi-messenger investigations. Key Science Threads • Properties of the huge variety of exo-planetary systems: compositions and inventories, compositions and characteristics of their planets • Probing the stellar and galactic evolution across the universe: pushing closer to the beginning of galaxy formation and preparing for coordinated JWST observations • Exploring clues as to the nature of dark energy ACS SBC absolute re-calibration (Cycle 27) reveals 30% greater • Probing the effect of dark matter on the evolution sensitivity than previously understood. More information at of galaxies http://www.stsci.edu/contents/news/acs-stans/acs-stan- • Quantifying the types and astrophysics of black holes october-2019 of over 7 orders of magnitude in size WFC3 offers high resolution imaging in many bands ranging from • Tracing the distribution of chemicals of life in 2000 to 17000 Angstroms, as well as spectroscopic capability in the universe the near ultraviolet and infrared. Many different modes are available for high precision photometry, astrometry, spectroscopy, mapping • Investigating phenomena and possible sites for and more. robotic and human exploration within our Solar System COS COS2025 initiative retains full science capability of COS/FUV out to 2025 (http://www.stsci.edu/hst/cos/cos2025). -
• Context. Young Exoplanetary Systems with Ages 600 Ma (I.E. Hyades-Like Or Younger) Can Provide Constraints on the Time Scal
• Context. Young exoplanetary systems with ages 600 Ma (i.e. Hyades-like or younger) can provide constraints on the time scale and mechanism of planet formation, and on the planet evolution (orbital migration, late heavy bombardment...). Apart from the very young “planet” candidates found by direct imaging (around e.g. HR 8799, 2M1207-39 or AB Pic), some young planet candidates have been found with the radial velocity method, such as HD 70573b (Setiawan et al. 2007) in the Hercules-Lyra subgroup of the Local Association or the controversial TW Hya b (Setiawan et al. 2008). [left, top: histogram of planet ages, from Joergens (2009, ASTROCAM school)] • Aims. We search for bright Hipparcos stars with radial-velocity planets that are member candidates in young moving groups (Montes et al. 2001), such as the Hyades, IC 2391, Ursa Majoris and Castor superclusters and the Local Association ( = 100-600 Ma), and very young moving groups like Pictoris or TW Hydrae ( < 100 Ma). Generally, these stars are discarded from accurate radial-velocity searches based on activity indicators, but there might be young stars that passed the rejection filter (e.g. HD 81040, ~ 700 Ma; Sozzetti et al. 2006). • Methods. On 2009 Sep 1, the Extrasolar Planets Encyclopaedia (exoplanet.eu) tabulated 346 planet candidates in 295 planetary systems detected by radial velocity (35 multiple planet systems). Of them, 228 have Hipparcos stars as host stars. We have computed Galactocentric space velocities UVW derived from star coordinates, proper motions, and parallactic distances (from van Leeuwen 2007), and systemic radial velocities, Vr (), from a number of works, including Nordström et al. -
3. Extrasolar Planets How Planets Were Discovered in the Solar System
3. Extrasolar Planets How planets were discovered in the solar system Many are bright enough to see with the naked eye! More distant planets are fainter (scattered light flux - 4 ∝ apl ) and were discovered by imaging the sky at different times and looking for fast-moving things which must be relatively nearby (Kuiper belt objects and asteroids etc are still discovered in this way) but People are still some (e.g., Neptune) were predicted based on searching for planet X perturbations to the orbit of known planets in the solar system (e.g., Gaudi & Bloom Problem for detecting planets is that there is a lot of 2005 say Gaia will area of sky the planets could be hiding in, so narrow detect 1M out to searches to ecliptic planet (although tenth planet J 2000AU) has i=450) and use knowledge of dynamics to predict planet locations Can we do the same thing in extra-solar systems? Extra-solar planet Not quite so easily! The geometry of the problem is SS planet different, which means that: Earth • you don’t get a continuous motion across the sky • although we have narrowed down the region where the planet can be • but the planet is very far away and so it is faint, scattered light flux -2 -2 ∝ d* apl where d* is measured in pc (1pc=206,265AU) • which is compounded by the fact that it is close to a very bright star So how do we detect extrasolar planets? Mostly using indirect detection techniques: Effect on motion of parent star • Astrometric wobble • Timing shifts • Doppler wobble method Effect on flux we detect from parent star • Planetary transits -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Chromospheric Activity, Lithium and Radial Velocities of Single Late-Type Stars Possible Members of Young Moving Groups ⋆ ⋆⋆
1 Abstract. We present here high resolution echelle spec- tra taken during three observing runs of 14 single late- type stars identified in our previous studies (Montes et al. 2001b, hereafter Paper I) as possible members of differ- ent young stellar kinematic groups (Local Association (20 - 150 Myr), Ursa Major group (300 Myr), Hyades super- cluster (600 Myr), and IC 2391 supercluster (35 Myr)). Radial velocities have been determined by cross correla- tion with radial velocity standard stars and used together with precise measurements of proper motions and paral- laxes taken from Hipparcos and Tycho-2 Catalogues, to calculate Galactic space motions (U, V , W ) and to ap- ply Eggen’s kinematic criteria. The chromospheric activ- ity level of these stars have been analysed using the in- formation provided for several optical spectroscopic fea- tures (from the Ca ii H & K to Ca ii IRT lines) that are formed at different heights in the chromosphere. The Li i λ6707.8 A˚ line equivalent width (EW) has been de- termined and compared in the EW (Li i) versus spectral type diagram with the EW (Li i) of stars members of well- known young open clusters of different ages, in order to ob- tain an age estimation. All these data allow us to analyse in more detail the membership of these stars in the differ- ent young stellar kinematic groups. Using both, kinematic and spectroscopic criteria we have confirmed PW And, V368 Cep, V383 Lac, EP Eri, DX Leo, HD 77407, and EK Dra as members of the Local Association and V834 Tau, π1 UMa, and GJ 503.2 as members of the Ursa Ma- jor group. -
Phd Thesis: Search for Planets Around Young Stars with the Radial Velocity Technique
Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by: Diplom-Physiker Patrick Weise Born in Bremen Oral examination: October 13, 2010 Search for planets around young stars with the radial velocity technique Referees: Prof. Dr. Thomas Henning Prof. Dr. Immo Appenzeller Suche nach Planeten um junge Sterne mit der Radialgeschwindigkeitsmethode Zusammenfassung Riesenplaneten entstehen in zirkumstellaren Scheiben um junge Sterne. Es existieren zwei verschiedene theroretische Beschreibungen, wonach Riesenplaneten durch grav- itative Instabilität oder Kern-Akkretion entstehen. Beide Modelle können auch zusam- men unter bestimmten Bedingungen zutreffen, aber die Kern-Akkretion scheint der dominante Prozess zu sein. Bisher wurde jedoch die Planetenentstehung noch nicht direkt beobachtet. Aus diesem Grund soll in dieser Arbeit nach sub-stellaren Be- gleitern um junge Sterne (1–100 Mjahre) gesucht werden, da die Eigenschaften junger Planeten wichtige Hinweise auf die Prozesse der Planetenentstehung geben können. In dieser Arbeit wurden echelle Spectren von 100 jungen Sternen aufgenommen und deren Eigenschaften charakterisiert. Thie Radialgeschwindigkeit wurde durch Kreuz- Korrelation der Spektren mit Vorlagen in MACS gewonnen. Weiterhin wurde die stel- lare Aktivität durch die Analyse des Linien Bisektors und anderer Indikatoren, charak- terisiert. FÃijr 12 der untersuchten Sterne ist die Variation der Radialgeschwindigkeit durch die Modulation der stellaren Aktivität mit der Rotationsperiode gegeben. Weit- erhin wurden sechs Riesenplaneten und ein Brauner Zwerg im Orbit um junge Sterne (2–90 Myr) gefunden. Dennoch ist die Anzahl der gefundenen sub-stellaren Begleiter zu wenig und das Alter der Sterne zu ungenau um Aussagen zu der Entstehung von Planeten zu treffen. -
Messenger-No117.Pdf
ESO WELCOMES FINLANDINLAND AS ELEVENTH MEMBER STAATE CATHERINE CESARSKY, ESO DIRECTOR GENERAL n early July, Finland joined ESO as Education and Science, and exchanged which started in June 2002, and were con- the eleventh member state, following preliminary information. I was then invit- ducted satisfactorily through 2003, mak- II the completion of the formal acces- ed to Helsinki and, with Massimo ing possible a visit to Garching on 9 sion procedure. Before this event, howev- Tarenghi, we presented ESO and its scien- February 2004 by the Finnish Minister of er, Finland and ESO had been in contact tific and technological programmes and Education and Science, Ms. Tuula for a long time. Under an agreement with had a meeting with Finnish authorities, Haatainen, to sign the membership agree- Sweden, Finnish astronomers had for setting up the process towards formal ment together with myself. quite a while enjoyed access to the SEST membership. In March 2000, an interna- Before that, in early November 2003, at La Silla. Finland had also been a very tional evaluation panel, established by the ESO participated in the Helsinki Space active participant in ESO’s educational Academy of Finland, recommended Exhibition at the Kaapelitehdas Cultural activities since they began in 1993. It Finland to join ESO “anticipating further Centre with approx. 24,000 visitors. became clear, that science and technology, increase in the world-standing of ESO warmly welcomes the new mem- as well as education, were priority areas Astronomy in Finland”. In February 2002, ber country and its scientific community for the Finnish government. we were invited to hold an information that is renowned for its expertise in many Meanwhile, the optical astronomers in seminar on ESO in Helsinki as a prelude frontline areas. -
Radio Astronom1y G
£t,: ,/ NATIONAL RADIO ASTRONOMY OBSERVATORY QUARTERLY REPORT October 1 - December 31, 1989 RADIO ASTRONOM1Y G.. '8 tO- C~oe'' n,'evI! I E. Vi. t-Li 1 2 1990 TABLE OF CONTENTS A. TELESCOPE USAGE ... .... ...... ............ 1 B. 140-FOOT OBSERVING PROGRAMS . .... .......... ... 1 C. 12-METER TELESCOPE ....... ..... ., .... ........ 5 D. VERY LARGE ARRAY ....... 1...................8 E. SCIENTIFIC HIGHLIGHTS .... ........ 19 F. PUBLICATIONS ............. G. CENTRAL DEVELOPMENT LABORATORY ........ 20 H. GREEN BANK ELECTRONICS . .. .a.. ...... 21 I. 12-METER ELECTRONICS ...... .. 0. I. 22 J. VLA ELECTRONICS ...... 0..... ..... .... a. 24 K. AIPS .... .............. ...... ............. 26 L. VLA COMPUTER ............. .. .0. .0. ... 27 M. VERY LONG BASELINE ARRAY . .. .0 .0 .0 .0 .0 . .0 .. 27 N. PERSONNEL .. ...... .... .0.0 . .0. .0. .. e. 30 APPENDIX A: List of NRAO Preprints A. TELESCOPE USAGE The NRAO telescopes have been scheduled for research and maintenance in the following manner during the fourth quarter of 1989. 140-ft 12-m VLA Scheduled observing (hrs) 1901.75 1583.50 1565.2 Scheduled maintenance and equipment changes 132.00 107.75 259.8 Scheduled tests and calibrations 20.75 425.75 327.1 Time lost 139.25 208.25 107.0 Actual observing 1762.50 1375.25 1458.2 B. 140-FOOT OBSERVING PROGRAMS The following line programs were conducted during this quarter. No. Observer(s) Program A-95 Avery, L (Herzberg) Observations at 18.2, 18.6, and Bell, M. (Herzberg) 23.7 GHz of cyanopolyynes in carbon Feldman, P. (Herzberg) stars part II. MacLeod, J. (Herzberg) Matthews, H. (Herzberg) B-493 Bania, T. (Boston) Measurements at 8.666 GHz of 3He + Rood, R. (Virginia) emission in HII regions and planetary Wilson, T. -
Dust and Molecular Shells in Asymptotic Giant Branch Stars⋆⋆⋆⋆⋆⋆
A&A 545, A56 (2012) Astronomy DOI: 10.1051/0004-6361/201118150 & c ESO 2012 Astrophysics Dust and molecular shells in asymptotic giant branch stars,, Mid-infrared interferometric observations of R Aquilae, R Aquarii, R Hydrae, W Hydrae, and V Hydrae R. Zhao-Geisler1,2,†, A. Quirrenbach1, R. Köhler1,3, and B. Lopez4 1 Zentrum für Astronomie der Universität Heidelberg (ZAH), Landessternwarte, Königstuhl 12, 69120 Heidelberg, Germany e-mail: [email protected] 2 National Taiwan Normal University, Department of Earth Sciences, 88 Sec. 4, Ting-Chou Rd, Wenshan District, Taipei, 11677 Taiwan, ROC 3 Max-Planck-Institut für Astronomie, Königstuhl 17, 69120 Heidelberg, Germany 4 Laboratoire J.-L. Lagrange, Université de Nice Sophia-Antipolis et Observatoire de la Cˆote d’Azur, BP 4229, 06304 Nice Cedex 4, France Received 26 September 2011 / Accepted 21 June 2012 ABSTRACT Context. Asymptotic giant branch (AGB) stars are one of the largest distributors of dust into the interstellar medium. However, the wind formation mechanism and dust condensation sequence leading to the observed high mass-loss rates have not yet been constrained well observationally, in particular for oxygen-rich AGB stars. Aims. The immediate objective in this work is to identify molecules and dust species which are present in the layers above the photosphere, and which have emission and absorption features in the mid-infrared (IR), causing the diameter to vary across the N-band, and are potentially relevant for the wind formation. Methods. Mid-IR (8–13 μm) interferometric data of four oxygen-rich AGB stars (R Aql, R Aqr, R Hya, and W Hya) and one carbon- rich AGB star (V Hya) were obtained with MIDI/VLTI between April 2007 and September 2009. -
Meeting Program
A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ. -
Chapter 1 a Theoretical and Observational Overview of Brown
Chapter 1 A theoretical and observational overview of brown dwarfs Stars are large spheres of gas composed of 73 % of hydrogen in mass, 25 % of helium, and about 2 % of metals, elements with atomic number larger than two like oxygen, nitrogen, carbon or iron. The core temperature and pressure are high enough to convert hydrogen into helium by the proton-proton cycle of nuclear reaction yielding sufficient energy to prevent the star from gravitational collapse. The increased number of helium atoms yields a decrease of the central pressure and temperature. The inner region is thus compressed under the gravitational pressure which dominates the nuclear pressure. This increase in density generates higher temperatures, making nuclear reactions more efficient. The consequence of this feedback cycle is that a star such as the Sun spend most of its lifetime on the main-sequence. The most important parameter of a star is its mass because it determines its luminosity, ef- fective temperature, radius, and lifetime. The distribution of stars with mass, known as the Initial Mass Function (hereafter IMF), is therefore of prime importance to understand star formation pro- cesses, including the conversion of interstellar matter into stars and back again. A major issue regarding the IMF concerns its universality, i.e. whether the IMF is constant in time, place, and metallicity. When a solar-metallicity star reaches a mass below 0.072 M ¡ (Baraffe et al. 1998), the core temperature and pressure are too low to burn hydrogen stably. Objects below this mass were originally termed “black dwarfs” because the low-luminosity would hamper their detection (Ku- mar 1963).