Acoustic Anti-Predator Strategies in Insects

Total Page:16

File Type:pdf, Size:1020Kb

Acoustic Anti-Predator Strategies in Insects Chapter 5 Adaptive Sounds and Silences: Acoustic Anti-Predator Strategies in Insects William E. Conner Abstract There has been a recent resurgence of interest in the evolution of adap- tive coloration and a new appreciation of the mechanisms, functions, and evolution of crypsis, aposematic coloration, and mimicry. I here apply these principles to the acoustic modality using insect examples and discuss adaptive silence, acoustic crypsis, stealth, acoustic aposematism, acoustic mimicry, and sonar jamming. My goal is to inspire students of bioacoustics to explore the full richness of the acous- tic interactions between predator and prey in behavioral, physiological, and evolu- tionary contexts similar to those used by visual ecologists. 5.1 Introduction Adaptive coloration encompasses a variety of concepts, including the beautiful and intricate exemplars of crypsis, warning coloration, and mimicry plus many other lesser-studied visual phenomena such as masquerade, countershading, and disruptive coloration. Early naturalists and insect lovers played a critical role in defining the behavioral significance of the color patterns of animals. Among them were Erasmus Darwin (1794), the father of Charles Darwin, who commented on the utility of concealing coloration for animals; Edward B. Poulton (1890), who coined the term “aposematism” for warning coloration; and Henry W. Bates and Fritz Müller, who defined Batesian mimicry (1862) and Müllerian mimicry (1878), respectively. Yet adaptive coloration is but a reflection of selective pres- sures imposed by predators that hunt visually as appreciated by a primarily visual audience—man. Predators that rely on sound rather than vision have selected for an entirely different suite of characteristics, and it is those adaptive sounds and W. E. Conner (*) Department of Biology, Wake Forest University, Winston-Salem, NC 27106, USA e-mail: [email protected] B. Hedwig (ed.), Insect Hearing and Acoustic Communication, 65 Animal Signals and Communication 1, DOI: 10.1007/978-3-642-40462-7_5, © Springer-Verlag Berlin Heidelberg 2014 66 W. E. Conner silences that I examine here. I admit to being inspired by a book titled Avoiding Attack: the Evolutionary Ecology of Crypsis, Warning Signals and Mimicry by Ruxton, Sherratt, and Speed (2004), and I happily recommend it to those looking for an insightful and a detailed treatment of adaptive coloration. The authors by their own admission, however, focus exclusively on the visual modality and rarely mention sound (but see Ruxton 2011). Given the number of predators that hunt orienting by sound that omission should be corrected. I hope to do that here. Many predators use a combination of sensory modalities to hunt insects: vision, hearing, and olfaction are the major ones, with a bias toward vision in diurnal ani- mals and toward hearing and olfaction in those that hunt at night. Acoustic spe- cialists include nocturnal hunters such as owls, rodents, felids, canids which are all passive listeners, and bats which are both passive listeners and active echolo- cators. Insect counteradaptations often affect both types. The key predators are vertebrates which allow us to appreciate, at least in a rudimentary way, the prob- lems associated with finding prey and interpreting acoustic prey signals. I will focus on the antipredator adaptations of terrestrial insects vis-à-vis these predators. I would be remiss not to include parasites as well. Whenever an insect uses the acoustic modality to communicate, it becomes vulnerable to parasites that eaves- drop on their sound signals (Zuk and Kolluru 1998; see Chap. 4 by Hedwig and Robert). Parasitism may prove equally important in shaping the acoustic commu- nication systems of insects. Defenses can be divided into two categories: primary and secondary (Edmunds 1974). Primary defenses are those that prevent detection by the predator. Secondary defenses promote survival after detection. The primary defenses discussed below are adaptive silence, stealth as in the modern military sense of the word, and acoustic crypsis. Secondary defenses will include preven- tion of localization, acoustic aposematism, mimicry, and sonar jamming. 5.2 Avoiding Detection: Primary Defenses Before proceeding, it would be wise to define a concept that is too frequently used without a precise definition: crypsis. To put it simply, crypsis is avoiding detection while remaining in plain sight. It includes a range of color and pattern strategies that prevent detection (Stevens and Merilaita 2009), including background match- ing, a general matching of the color, intensity, and pattern of the background; self-shadow concealment, the use of pattern to cancel telltale shadows that betray position; obliterative shading, similar shading that cancels other three-dimensional cues to recognition; disruptive coloration, markings that disrupt outlines and other recognition patterns; flicker-fusion camouflage, the blurring of fast-moving stripes to match general background color; distractive markings that draw attention away from recognition cues; transparency, allowing the background to show through decreasing visibility; and silvering, a high degree of reflectivity that prevents sil- houettes in nondirectional light (for details see Stevens and Merilaita 2011). All of these examples describe visual phenomena. I would like to extend the definitions 5 Adaptive Sounds and Silences: Acoustic Anti-Predator Strategies in Insects 67 of Stevens and Merilaita (2009) to include all traits—visual, chemical, tactile, electric, and, here, acoustic cues—that minimize the probability of being detected when potentially detectable to an observer. 5.2.1 Adaptive Silence In his massive tome on Adaptive Coloration in Animals H. B. Cott (1940) states that “cryptic silence is to the ear what cryptic appearance is to the eye.” His exam- ples refer to the stealth with which predators approach prey, but the concept can equally be applied to prey characteristics. Technically this is more akin to hiding in the visual modality, and some have referred to it as acoustic avoidance (Curio 1976). Certain moths, for instance, interrupt their sexual displays in the pres- ence of acoustic predators (see Chap. 6 by Greenfield). Males of lesser waxmoth, Achroia grisella, advertise their presence to potential mates by producing ultra- sonic 100 μs pulses at a rate of 100/s. Females are attracted by and walk toward those acoustic displays. In the presence of sounds mimicking, the search calls of gleaning bats with long pulse lengths >1 ms and lower pulse rates <30/s, the male moths shut down their acoustic advertisement calls (Spangler 1984; Greenfield and Baker 2003) to avoid predator detection. Similar adaptive silences have been reported in katydids and crickets (Spangler 1984; Belwood and Morris 1987; Faure and Hoy 2000; Bailey and Haythornthwaite 1998; ter Hofstede et al. 2010). The advantages and costs of such a strategy are straightforward; silence not only prevents detection by predators that hunt by listening, but also it prevents commu- nication with conspecifics. Tradeoffs in such cases are inevitable. “Whispering” moths illustrate another antidetection strategy (Nakano 2008). Male Asian corn borer moths, Ostrinia furnicalis, use specialized sex-specific scales on the forewings and mesothorax to produce very low intensity courtship songs with frequencies between 40 and 80 kHz. The male produces the sounds in the immediate vicinity of the female’s ear. The implication is that the song pro- vides a private communication channel between the male singer and the female listener, protecting the pair from conspecific competitors and predators. A variety of moths produce similar hushed songs, presenting new technical challenges to researchers studying moth courtship (Nakano 2009). One of the most interesting examples of adaptive silence can be found in the cricket Teleogryllus oceanicus (Zuk et al. 2006, see Chap. 4 by Hedwig and Robert). In field crickets, the male stridulates by scissoring the wings and slid- ing a scraper on one wing across a file on the other. Females are attracted to the males’ songs. T. oceanicus, an Australian and Pacific Island species, has been forced to alter that strategy. The species was introduced to the Hawaiian Islands in the late 1990s. On the islands of Oahu, Hawaii, and Kauai, it overlaps in distribu- tion with the acoustically orienting parasitoid fly Ormia ochracea. Like the female cricket, the female fly is attracted to the male cricket’s calling song. After locat- ing the male cricket, the fly deposits her young on and in the vicinity of the male. 68 W. E. Conner The voracious larvae burrow into the male, killing him as they develop. Within a remarkably rapid timeframe of about 20 generations intense selection by the fly has resulted in a morphological change in the wings of the male crickets on Kauai (Zuk et al. 2011). So-called flatwing males have wings similar in appearance to those of females. They have lost their file and scraper and are thereby silenced. These males produce no calling song and do not attract the parasitoid. It is not clear how the silent flatwing males now attract mates, although it has been sug- gested that they function as satellite males, waiting in the vicinity of calling males, and intercepting females as they move toward them (Cade 1980). 5.2.2 Stealth In addition to shutting down acoustic signals that could attract gleaning preda- tors, a prey insect may be able to dampen its echo signature to aerial hawking and gleaning bats
Recommended publications
  • A Defence of Biodiversity As the Goal of Conservation Biology
    A Defence of Biodiversity as the Goal of Conservation Biology Charles Gibson A thesis submitted for the degree of Doctor of Philosophy in Philosophy The University of Otago Dunedin New Zealand December 2018 i Dedication For my son Caelin, Who was born when this project began But was arguing with me by the time it was completed. May you have as much grass to run on as I did. ii Abstract Biodiversity has been the goal of conservation for thirty years but recent work by biodiversity eliminativists has raised serious challenges to its suitability as the primary goal of conservation. This project groups those challenges into three major arguments: the conceptual case for biodiversity’s elimination, the empirical case for biodiversity’s elimination, and the value compass case for biodiversity’s elimination. Aside from discussing biodiversity as a property, this thesis will also discuss biodiversity as a concept (as in biodiversity), and refer to the word biodiversity (as in ‘biodiversity’). In the conceptual case for biodiversity’s elimination, eliminativists argue that biodiversity misdirects the efforts of conservation and is not a scientifically coherent concept. In the empirical case, eliminativists argue that biodiversity is not operationalisable. In the value compass case, eliminativists argue that biodiversity does not reliably track biological value. I will argue that all three cases for biodiversity’s elimination are unsuccessful. Biodiversity is a complex concept with multiple dimensions of biological diversities but understanding it as a homeostatic property cluster avoids the conceptual case for its elimination. The empirical case is unsuccessful because the surrogacy strategy for measuring biodiversity can be defended against its limitations and the expanding multiplicity of biodiversity measures is overblown.
    [Show full text]
  • Integrative Biology
    Downloaded from https://academic.oup.com/iob/article/2/1/obaa046/6064153 by guest on 19 March 2021 Integrative OrganismalA Journal of the Society Biology for Integrative and Comparative Biology academic.oup.com/icb Integrative Organismal Biology Integrative Organismal Biology, pp. 1–11 doi:10.1093/iob/obaa046 A Journal of the Society for Integrative and Comparative Biology RESEARCH ARTICLE Extreme Duty Cycles in the Acoustic Signals of Tiger Moths: Sexual and Natural Selection Operating in Parallel Y. Fernandez,1,*N.J.Dowdy *,† and W. E. Conner* Downloaded from https://academic.oup.com/iob/article/2/1/obaa046/6064153 by guest on 19 March 2021 *Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA; †Department of Zoology, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233, USA 1E-mail: [email protected] Synopsis Sound production in tiger moths (Erebidae: Resumen La produccion de sonido en arctidos (Erebidae: Arctiinae) plays a role in natural selection. Some species Arctiinae) juega un papel fundamental en la seleccion nat- use tymbal sounds as jamming signals avoiding bat preda- ural. Algunas especies de polillas utilizan los sonidos pro- tion. High duty cycle signals have the greatest efficacy in ducidos por los organos timbalicos como senales~ de inter- this regard. Tiger moth sounds can also be used for intra- ferencia para evitar ser depredados por los murcielagos. specific communication. Little is known about the role of Llamadas con alto porcentaje de estimulacion efectiva sue- sound in the mating behavior of jamming species or the len ser mas eficientes con este fin.
    [Show full text]
  • Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated with Unpalatability
    ORIGINAL RESEARCH published: 16 December 2019 doi: 10.3389/fevo.2019.00480 Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated With Unpalatability Nicolas J. Dowdy 1,2* and William E. Conner 1 1 Department of Biology, Wake Forest University, Winston-Salem, NC, United States, 2 Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States Many aposematic animals are well-known to exhibit generally sluggish movements. However, less is known about their escape responses when under direct threat of predation. In this study, we characterize the anti-bat escape responses of 5 species of tiger moth (Erebidae: Arctiinae), a subfamily of Lepidoptera which possess ultrasound-sensitive ears. These ears act as an early-warning system which can detect the ultrasonic cries of nearby echolocating bats, allowing the moths to enact evasive flight behaviors in an effort to escape predation. We examine the role that unpalatability plays in predicting the likelihood that individuals of a given species will enact escape behaviors in response to predation. We hypothesized that more unpalatable species would be less likely to exhibit escape maneuvers (i.e., more nonchalant) than their less unpalatable counterparts. Our results demonstrate significant interspecific variation in Edited by: the degree to which tiger moths utilize evasive flight behaviors to escape bat predators Piotr Jablonski, as well as in their degree of unpalatability. We provide evidence for the existence of a Seoul National University, South Korea nonchalance continuum of anti-bat evasive flight response among tiger moths and show Reviewed by: Changku Kang, that species are arrayed along this continuum based on their relative unpalatability to Carleton University, Canada bat predators.
    [Show full text]
  • Lepidóptera): Sistemática, Diversidad, Distribución, Implicaciones Para La Conservación Y Para La Determinación De Zonas De Vida Especiales En Guatemala
    Las familias Saturniidae, Arctiidae y Sphingidae (Lepidóptera): sistemática, diversidad, distribución, implicaciones para la conservación y para la determinación de zonas de vida especiales en Guatemala Proyecto 43-00 José Monzón (Universidad del Valle de Guatemala) Mercedes Barrios (Centro de Estudios Conservacionistas) Anna Cristina Bailey (U. V. G.) Julio 2003 CONTENIDO PALABRAS CLAVE 1 1. INTRODUCCION 1 2. ANTECEDENTES 2 2.1. JUSTIFICACIONES 2.2. RIQUEZA DE ESPECIES Y BIOGEOGRAFTA 2.3. SPHINGIDAE 2.4. SATURNIDAE 2.5. ARCTIIDAE 2.6. ASPECTOS LEGALES 2.6.1. CONVENIOSOBRE LA DIVERSIDADBIOL~GICA (NACIONES UNIDAS). 2.6.2. DECRETO68-86 (LEYPROTECCION Y ORA MIENTO DEL MEDIOAMBIENTE) 2.6.3. DECRETO4-89. LEYDE AREASPROTEGIDAS Y SU REGLAMENTO 2.6.4. ALIANZACENTROAMERICANA PARA EL DESARROLLOSOSTENIBLE. 3. OBJETIVOS 7 3.1. OBJETIVO GENERAL 3.2. OBJETIVOS ESPECIFICOS 4.1. RECOPILACI~NDE INFORMACION 4.2. COLECTAS DE CAMPO 4.3. TRABAJO DE LABORATORIO 4.4. PRESENTACION DE RESULTADOS 5. RESULTADOS 10 5.1. RECOPILACION DE INFORMACION 10 5.1.1. REVISIONLITERARIA 1O 5.1.2. REVISIÓNDE JNFORMACIÓN DISPONIBLE EN INTERNET 10 5.1 -3. ELABORACI~NDE BASE DE DATOS 10 5.2. COLECTAS DE CAMPO 11 5.2.1. COLECTASA NIVEL NACIONAL 11 5.2.2. COLECTASEN EL BIOTOPOUNIVERSITARIO PARA LA CONSERVACIÓNDEL QUETZAL 12 5.2.2.1. Colectas de especies y ejemplares 5.2.2.2. Colección sinóptica educativa y afiches para el Biotopo del Quetzal 6. DISCUSION 15 7. CONCLUSIONES 16 8. RECOMENDACIONES 17 10 11. ANEXOS 22 .as familias Saturniidae, Arctiidae y Sphingidae (Lepidóptera): sistemática, diversidad, distribución, implicaciones para la conservación y para la determinación de zonas de vida especiales en Guatemala José Monzón (Universidad del Valle de Guatemala) Mercedes Barrios (Centro de Estudios Conservacionistas) Anna Cristina Bailey (U.
    [Show full text]
  • 7 X 11.5 Long Title.P65
    Cambridge University Press 978-0-521-15257-0 - Animal Camouflage: Mechanisms and Function Edited by Martin Stevens and Sami Merilaita Excerpt More information 1 Animal camouflage Function and mechanisms Martin Stevens and Sami Merilaita 1.1 Introduction One cannot help being impressed by the near-perfect camouflage of a moth matching the colour and pattern of the tree on which it rests, or of the many examples in nature of animals resembling other objects in order to be hidden (Figure 1.1). The Nobel Prize winning ethologist Niko Tinbergen referred to such moths as ‘bark with wings’ (Tinbergen 1974), such was the impressiveness of their camouflage. On a basic level, camouflage can be thought of as the property of an object that renders it difficult to detect or recognise by virtue of its similarity to its environment (Stevens & Merilaita 2009a). The advantage of being concealed from predators (or sometimes from prey) is easy to understand, and camouflage has long been used as a classical example of natural selection. Perhaps for this reason, until recently, camouflage was subject to little rigorous experimentation – its function and value seemed obvious. However, like any theory, the possible advantages of camouflage, and how it works, need rigorous scientific testing. Furthermore, as we shall see below and in this book in general, the concept of concealment is much richer, more complex and interesting than scientists originally thought. The natural world is full of amazing examples of camouflage, with the strategies employed diverse and sometimes extraordinary (Figure 1.2). These include using mark- ings to match the colour and pattern of the background, as do various moths (e.g.
    [Show full text]
  • The Bat–Moth Arms Race Hannah M
    © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 1589-1602 doi:10.1242/jeb.086686 REVIEW Evolutionary escalation: the bat–moth arms race Hannah M. ter Hofstede1,* and John M. Ratcliffe2,* ABSTRACT exclusive to the interactions between bats and moths. Most Echolocation in bats and high-frequency hearing in their insect prey adaptations that make bats better moth hunters also make them make bats and insects an ideal system for studying the sensory more effective hunters of other insects, and such adaptations are ecology and neuroethology of predator–prey interactions. Here, we therefore not moth specific. Likewise, some moths use their ears to review the evolutionary history of bats and eared insects, focusing on detect not only bats but also insect-eating birds or mates (Conner, the insect order Lepidoptera, and consider the evidence for 1999; Nakano et al., 2015). antipredator adaptations and predator counter-adaptations. Ears The evolutionary histories of predator and prey also differ. The ∼ evolved in a remarkable number of body locations across insects, with order Lepidoptera (moths and butterflies) originated 150 million the original selection pressure for ears differing between groups. years ago (mya; Misof et al., 2014), long before the origin of bats, Although cause and effect are difficult to determine, correlations which first took to the wing sometime between 60 and 95 mya between hearing and life history strategies in moths provide evidence (Bininda-Emonds et al., 2007). Although powered flight is a for how these two variables influence each other. We consider life defining characteristic of bats, laryngeal echolocation may have ∼ history variables such as size, sex, circadian and seasonal activity evolved only 50 mya (Simmons et al., 2008; Teeling, 2009; patterns, geographic range and the composition of sympatric bat Veselka et al., 2010).
    [Show full text]
  • Journal of Textiles and Polymers
    Part A: English Edition Journal of Textiles and Polymers Vol. 9, No. 3, 21-28, July 2021 http://dx.doi.org/10.48302/jtp.2021.136075 ORIGINAL PAPER Multi-dimensional Analytical Base Method for Evaluating Camouflage Patterns Elaheh Daneshvar, Mohammad Amani Tehrani*, and Fatemeh Zeighami Received: 12 December 2020, Accepted: 17 April 2021 Abstract- Precise evaluation of camouflage patterns is very a camouflage effect to safeguard the army forces in battles. important to achieve an effective protective cover. Recently, Although the early military uniforms had no camouflage researchers have focused on proposing computational pattern, the recently produced uniforms contain camouflage methods for camouflage evaluation using algorithms of patterns due to the development of military tactics [1]. image feature extraction. Although the available indexes Therefore, the military forces attempt to produce more determine the similarity of camouflage patterns to the successful camouflage patterns concerning the strategic environmental background, they generally suffer from a regions. In this regard, the evaluation of camouflage lack of quantified camouflage principles. The main idea of this paper is to propose a new evaluation metric by defining patterns is an important step to produce an effective seven camouflage factors to evaluate camouflage patterns. camouflage pattern [2]. Researchers proposed different To this end, several conceptual factors of camouflage quantitative metrics based on image feature extraction to that are vital for a camouflage pattern were defined. evaluate camouflage patterns [2-8]. Accordingly, if a pattern does not contain the mentioned Indeed, all the available evaluation methods of camouflage factors, it cannot be considered as an effective camouflage patterns are computable approaches based protective pattern.
    [Show full text]
  • Defeating Crypsis: Detection and Learning of Camouflage Strategies
    Defeating Crypsis: Detection and Learning of Camouflage Strategies Jolyon Troscianko1*, Alice E. Lown1, Anna E. Hughes2, Martin Stevens1 1 Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, United Kingdom, 2 Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom Abstract Camouflage is perhaps the most widespread defence against predators in nature and an active area of interdisciplinary research. Recent work has aimed to understand what camouflage types exist (e.g. background matching, disruptive, and distractive patterns) and their effectiveness. However, work has almost exclusively focused on the efficacy of these strategies in preventing initial detection, despite the fact that predators often encounter the same prey phenotype repeatedly, affording them opportunities to learn to find those prey more effectively. The overall value of a camouflage strategy may, therefore, reflect both its ability to prevent detection by predators and resist predator learning. We conducted four experiments with humans searching for hidden targets of different camouflage types (disruptive, distractive, and background matching of various contrast levels) over a series of touch screen trials. As with previous work, disruptive coloration was the most successful method of concealment overall, especially with relatively high contrast patterns, whereas potentially distractive markings were either neutral or costly. However, high contrast patterns incurred faster decreases in detection times over trials compared to other stimuli. In addition, potentially distractive markings were sometimes learnt more slowly than background matching markings, despite being found more readily overall. Finally, learning effects were highly dependent upon the experimental paradigm, including the number of prey types seen and whether subjects encountered targets simultaneously or sequentially.
    [Show full text]
  • Merilaita, S., Scott-Samuel, N., & Cuthill, I. (2017). How Camouflage
    Merilaita, S. , Scott-Samuel, N., & Cuthill, I. (2017). How camouflage works. Philosophical Transactions B: Biological Sciences, 372, 20160341. [20160341]. https://doi.org/10.1098/rstb.2016.0341 Peer reviewed version Link to published version (if available): 10.1098/rstb.2016.0341 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via The Royal Society Philpspphical Transactions at http://rstb.royalsocietypublishing.org/content/372/1724/20160341#sec-14 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Phil. Trans. R. Soc. B. article template Phil. Trans. R. Soc. B. doi:10.1098/not yet assigned How camouflage works Sami Merilaita1, Nicholas E. Scott-Samuel2, Innes C. Cuthill3 1 Department of Biosciences, Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland 2 Department of Experimental Psychology, University of Bristol, 12A Priory Road, Bristol BS8 1TN, UK 3 School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK Keywords: defensive coloration, signal-to-noise ratio, crypsis, visual search, animal coloration *Author for correspondence ([email protected]). †Present address: Department of Biosciences, Åbo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland Summary For camouflage to succeed, an individual has to pass undetected, unrecognized or untargeted, and so it is the processing of visual information that needs to be deceived.
    [Show full text]
  • Imperfect Camouflage: How to Hide in a Variable World?
    Imperfect camouflage: how to hide in a royalsocietypublishing.org/journal/rspb variable world? Anna Hughes1, Eric Liggins2 and Martin Stevens1 1Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK Review 2QinetiQ, Cody Technology Park, Ively Road, Farnborough, Hampshire GU14 0LX, UK AH, 0000-0003-2677-1965; MS, 0000-0001-7768-3426 Cite this article: Hughes A, Liggins E, Stevens M. 2019 Imperfect camouflage: how to hide in Camouflage is an important anti-predator strategy for many animals and a variable world? Proc. R. Soc. B 286: is traditionally thought of as being tightly linked to a specific visual background. While much work focuses on optimizing camouflage against 20190646. one background, this may not be relevant for many species and contexts, http://dx.doi.org/10.1098/rspb.2019.0646 as animals may encounter many different habitats throughout their lives due to temporal and spatial variation in their environment. How should camouflage be optimized when an animal or object is seen against multiple visual backgrounds? Various solutions may exist, including Received: 2 April 2019 colour change to match new environments or use of behaviour to maintain Accepted: 25 April 2019 crypsisbychoosingappropriatesubstrates. Here, we focus on a selection of approaches under a third alternative strategy: animals may adopt (over evolution) camouflage appearances that represent an optimal solution against multiple visual scenes. One approach may include a generalist or compromise strategy, where coloration matches several backgrounds Subject Category: to some extent, but none closely. A range of other camouflage types, Evolution including disruptive camouflage, may also provide protection in multiple environments.
    [Show full text]
  • RESEARCH ARTICLE Sonar Jamming in the Field: Effectiveness and Behavior of a Unique Prey Defense
    4278 The Journal of Experimental Biology 215, 4278-4287 © 2012. Published by The Company of Biologists Ltd doi:10.1242/jeb.076943 RESEARCH ARTICLE Sonar jamming in the field: effectiveness and behavior of a unique prey defense Aaron J. Corcoran* and William E. Conner Wake Forest University, Department of Biology, Winston-Salem, NC 27106, USA *Author for correspondence ([email protected]) SUMMARY Bats and insects provide a model system for integrating our understanding of predator–prey ecology, animal behavior and neurophysiology. Previous field studies of bat–insect interactions have been limited by the technological challenges involved with studying nocturnal, volant animals that use ultrasound and engage in battles that frequently last a fraction of a second. We overcame these challenges using a robust field methodology that included multiple infrared cameras calibrated for three- dimensional reconstruction of bat and moth flight trajectories and four ultrasonic microphones that provided a spatial component to audio recordings. Our objectives were to document bat–moth interactions in a natural setting and to test the effectiveness of a unique prey defense – sonar jamming. We tested the effect of sonar jamming by comparing the results of interactions between bats and Groteʼs tiger moth, Bertholdia trigona, with their sound-producing organs either intact or ablated. Jamming was highly effective, with bats capturing more than 10 times as many silenced moths as clicking moths. Moths frequently combined their acoustic defense with two separate evasive maneuvers: flying away from the bat and diving. Diving decreased bat capture success for both clicking and silenced moths, while flying away did not. The diving showed a strong directional component, a first for insect defensive maneuvers.
    [Show full text]
  • Bats, That Is Yet to Be Seen
    Janice Pease (315)328-5793 [email protected] 130 Beebe Rd, Potsdam, N.Y. 13676 August 23, 2018 Via Email Honorable Kathleen H. Burgess, Secretary to the PSC Re: Case 16- F-0268, Application of Atlantic Wind LLC for a certificate of Environmental Compatibility and Public Need Pursuant to Article 10 for Construction of the North Ridge Wind Energy Project in the Towns of Parishville and Hopkinton, St. Lawrence County. Dear Secretary Burgess: Industrial wind is devastating to the bat populations, adding to the many factors which play a role in reducing their numbers worldwide. While the wind industry likes to suggest that the advantage turbines provide to help reduce climate change (inadvertently benefitting all creatures) far outweighs their negative impact on the bats, that is yet to be seen. The data is simply not available to calculate the environmental/financial net losses accurately. With industrial wind’s intermittent and unreliable energy, the advantages are not nearly as the wind lobbyists suggest. The fragmentation/depletion of critical habitat due to wind turbines massive land use affects all animal species reliant on that space, ricocheting down the food chain. The loss of habitat as well as loss of carbon-sinks make the industrial turbine a very unlikely savior for any species. The net loss has simply not been calculated. Farmers are easily drawn into the debate by hosting these “farms”, while receiving large financial payouts. These same farmers are seemingly unaware of the immense benefit that bats provide by eating insect pests, saving farmers billions/year. The weakening of the local ecosystems will most certainly result in lower crop yields as well as contribute to financial losses as well.
    [Show full text]