Integrative Biology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insect Survey of Four Longleaf Pine Preserves
A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia. -
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm). -
A Defence of Biodiversity As the Goal of Conservation Biology
A Defence of Biodiversity as the Goal of Conservation Biology Charles Gibson A thesis submitted for the degree of Doctor of Philosophy in Philosophy The University of Otago Dunedin New Zealand December 2018 i Dedication For my son Caelin, Who was born when this project began But was arguing with me by the time it was completed. May you have as much grass to run on as I did. ii Abstract Biodiversity has been the goal of conservation for thirty years but recent work by biodiversity eliminativists has raised serious challenges to its suitability as the primary goal of conservation. This project groups those challenges into three major arguments: the conceptual case for biodiversity’s elimination, the empirical case for biodiversity’s elimination, and the value compass case for biodiversity’s elimination. Aside from discussing biodiversity as a property, this thesis will also discuss biodiversity as a concept (as in biodiversity), and refer to the word biodiversity (as in ‘biodiversity’). In the conceptual case for biodiversity’s elimination, eliminativists argue that biodiversity misdirects the efforts of conservation and is not a scientifically coherent concept. In the empirical case, eliminativists argue that biodiversity is not operationalisable. In the value compass case, eliminativists argue that biodiversity does not reliably track biological value. I will argue that all three cases for biodiversity’s elimination are unsuccessful. Biodiversity is a complex concept with multiple dimensions of biological diversities but understanding it as a homeostatic property cluster avoids the conceptual case for its elimination. The empirical case is unsuccessful because the surrogacy strategy for measuring biodiversity can be defended against its limitations and the expanding multiplicity of biodiversity measures is overblown. -
Moths of Ohio Guide
MOTHS OF OHIO field guide DIVISION OF WILDLIFE This booklet is produced by the ODNR Division of Wildlife as a free publication. This booklet is not for resale. Any unauthorized INTRODUCTION reproduction is prohibited. All images within this booklet are copyrighted by the Division of Wildlife and it’s contributing artists and photographers. For additional information, please call 1-800-WILDLIFE. Text by: David J. Horn Ph.D Moths are one of the most diverse and plentiful HOW TO USE THIS GUIDE groups of insects in Ohio, and the world. An es- Scientific Name timated 160,000 species have thus far been cata- Common Name Group and Family Description: Featured Species logued worldwide, and about 13,000 species have Secondary images 1 Primary Image been found in North America north of Mexico. Secondary images 2 Occurrence We do not yet have a clear picture of the total Size: when at rest number of moth species in Ohio, as new species Visual Index Ohio Distribution are still added annually, but the number of species Current Page Description: Habitat & Host Plant is certainly over 3,000. Although not as popular Credit & Copyright as butterflies, moths are far more numerous than their better known kin. There is at least twenty Compared to many groups of animals, our knowledge of moth distribution is very times the number of species of moths in Ohio as incomplete. Many areas of the state have not been thoroughly surveyed and in some there are butterflies. counties hardly any species have been documented. Accordingly, the distribution maps in this booklet have three levels of shading: 1. -
Arctiidae: Arctiinae
GENERAL NOTES joumai of the Lepidopterists' Society .58(3) , 2004,173-177 DEFENSIVE FLOCCULENT EMISSIONS IN A TIGER MOTH, HOMOEOCERA STICTOSOMA (ARCTIIDAE:ARCTIINAE) Additional key words: anti predator, Euchromiini, Panama, subabdominal pouch, moth, chemical defense. Tiger moths (Arctiidae) exhibit a wide range of an subabdominal flo cculcnt throughout the Euchromiini tipredator adaptations, including ultrasound reception (R. Simmons, pers. com.), little is known of its func and production, refl ex immobilization, wasp mimicry, tion. Conner et al. (2000) provided experimental evi and chemical secretions in the form of foams and liq dence for its role in courtship in one species, Cosmo uids (see Beebe & Kenedy 19.57, Blest 1964, Roth soma myrodora Dyar, whereby males increase their schild et al. 1979, Fullard 1990, Conner 1999, Weller probability of mating by enveloping the female with et a1. 1999). While performing field studies in Panama flocculent. Females covered with this material, in over the course of several years, we observed what ap turn, are thought to be chemically protected against pears to be a novel mode of defense for the Lepi spiders, due to the high pyrrolizidine alkaloid content doptera- the expulsion of abdominal 'flocculent' mate of the flocculent filaments. Flocculent has also been rial in a neotropical tigcr moth, Homoeoeera documented to playa role in courtship in two other stietosoma Druce (Arctiidae, Arctiinae, Euchromiini) species, Syntomeicia melanthus, which actively re (Jacobson & Weller 2002). In this note we summarize leases flocculent (Sanderford 1992), and S. ipomoeae, our observations on the behavior associated with floc which flashes its flocculent briefly, but does not release culent release, and describe some structural and it during courtship (Johnson 2002). -
Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated with Unpalatability
ORIGINAL RESEARCH published: 16 December 2019 doi: 10.3389/fevo.2019.00480 Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated With Unpalatability Nicolas J. Dowdy 1,2* and William E. Conner 1 1 Department of Biology, Wake Forest University, Winston-Salem, NC, United States, 2 Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States Many aposematic animals are well-known to exhibit generally sluggish movements. However, less is known about their escape responses when under direct threat of predation. In this study, we characterize the anti-bat escape responses of 5 species of tiger moth (Erebidae: Arctiinae), a subfamily of Lepidoptera which possess ultrasound-sensitive ears. These ears act as an early-warning system which can detect the ultrasonic cries of nearby echolocating bats, allowing the moths to enact evasive flight behaviors in an effort to escape predation. We examine the role that unpalatability plays in predicting the likelihood that individuals of a given species will enact escape behaviors in response to predation. We hypothesized that more unpalatable species would be less likely to exhibit escape maneuvers (i.e., more nonchalant) than their less unpalatable counterparts. Our results demonstrate significant interspecific variation in Edited by: the degree to which tiger moths utilize evasive flight behaviors to escape bat predators Piotr Jablonski, as well as in their degree of unpalatability. We provide evidence for the existence of a Seoul National University, South Korea nonchalance continuum of anti-bat evasive flight response among tiger moths and show Reviewed by: Changku Kang, that species are arrayed along this continuum based on their relative unpalatability to Carleton University, Canada bat predators. -
Commodity Risk Assessment of Nerium Oleander Plants from Turkey
SCIENTIFIC OPINION ADOPTED: 25 March 2021 doi: 10.2903/j.efsa.2021.6569 Commodity risk assessment of Nerium oleander plants from Turkey EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Elisavet Chatzivassiliou, Jane Debode, Charles Manceau, Ciro Gardi, Olaf Mosbach-Schulz and Roel Potting Abstract The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation EU/2018/2019 as ‘High risk plants, plant products and other objects’. This Scientific Opinion covers plant health risks posed by bare rooted and potted plants of Nerium oleander that are imported from Turkey, taking into account the available scientific information, including the technical information provided by the Turkish NPPO. The relevance of any pest for this opinion was based on evidence following defined criteria. One species, the EU non-regulated pest Phenacoccus solenopsis, fulfilled all relevant criteria and was selected for further evaluation. For this pest, the risk mitigation measures proposed in the technical dossier from Turkey were evaluated taking into account the possible limiting factors. For this pest, an expert judgement is given on the likelihood of pest freedom taking into consideration the risk mitigation measures acting on the pest, including uncertainties associated with the assessment. The Expert Knowledge Elicitation indicated, with 95% certainty, that between 9,719 and 10,000 plants per 10,000 would be free of P. -
Butterflies and Moths of Yavapai County, Arizona, United States
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail -
Lepidóptera): Sistemática, Diversidad, Distribución, Implicaciones Para La Conservación Y Para La Determinación De Zonas De Vida Especiales En Guatemala
Las familias Saturniidae, Arctiidae y Sphingidae (Lepidóptera): sistemática, diversidad, distribución, implicaciones para la conservación y para la determinación de zonas de vida especiales en Guatemala Proyecto 43-00 José Monzón (Universidad del Valle de Guatemala) Mercedes Barrios (Centro de Estudios Conservacionistas) Anna Cristina Bailey (U. V. G.) Julio 2003 CONTENIDO PALABRAS CLAVE 1 1. INTRODUCCION 1 2. ANTECEDENTES 2 2.1. JUSTIFICACIONES 2.2. RIQUEZA DE ESPECIES Y BIOGEOGRAFTA 2.3. SPHINGIDAE 2.4. SATURNIDAE 2.5. ARCTIIDAE 2.6. ASPECTOS LEGALES 2.6.1. CONVENIOSOBRE LA DIVERSIDADBIOL~GICA (NACIONES UNIDAS). 2.6.2. DECRETO68-86 (LEYPROTECCION Y ORA MIENTO DEL MEDIOAMBIENTE) 2.6.3. DECRETO4-89. LEYDE AREASPROTEGIDAS Y SU REGLAMENTO 2.6.4. ALIANZACENTROAMERICANA PARA EL DESARROLLOSOSTENIBLE. 3. OBJETIVOS 7 3.1. OBJETIVO GENERAL 3.2. OBJETIVOS ESPECIFICOS 4.1. RECOPILACI~NDE INFORMACION 4.2. COLECTAS DE CAMPO 4.3. TRABAJO DE LABORATORIO 4.4. PRESENTACION DE RESULTADOS 5. RESULTADOS 10 5.1. RECOPILACION DE INFORMACION 10 5.1.1. REVISIONLITERARIA 1O 5.1.2. REVISIÓNDE JNFORMACIÓN DISPONIBLE EN INTERNET 10 5.1 -3. ELABORACI~NDE BASE DE DATOS 10 5.2. COLECTAS DE CAMPO 11 5.2.1. COLECTASA NIVEL NACIONAL 11 5.2.2. COLECTASEN EL BIOTOPOUNIVERSITARIO PARA LA CONSERVACIÓNDEL QUETZAL 12 5.2.2.1. Colectas de especies y ejemplares 5.2.2.2. Colección sinóptica educativa y afiches para el Biotopo del Quetzal 6. DISCUSION 15 7. CONCLUSIONES 16 8. RECOMENDACIONES 17 10 11. ANEXOS 22 .as familias Saturniidae, Arctiidae y Sphingidae (Lepidóptera): sistemática, diversidad, distribución, implicaciones para la conservación y para la determinación de zonas de vida especiales en Guatemala José Monzón (Universidad del Valle de Guatemala) Mercedes Barrios (Centro de Estudios Conservacionistas) Anna Cristina Bailey (U. -
Lepidoptera: Arctiidae
Belvosia sp. (Diptera: Tachinidae) Parasitizing Halysidota sp. (Lepidoptera: Arctiidae) Caterpillars on Ficus benjamina (Moraceae) in Brazil Author(s): Wagner De Souza Tavares, Enio Nunez, José Eduardo Serrão, Marcus Alvarenga Soares, Carlos Frederico Wilcken and José Cola Zanuncio Source: Florida Entomologist, 97(1):272-276. Published By: Florida Entomological Society https://doi.org/10.1653/024.097.0138 URL: http://www.bioone.org/doi/full/10.1653/024.097.0138 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 272 Florida Entomologist 97(1) March 2014 BELVOSIA SP. (DIPTERA: TACHINIDAE) PARASITIZING HALYSIDOTA SP. (LEPIDOPTERA: ARCTIIDAE) CATERPILLARS -
General Herbivore Outbreak Following an El Ni˜No-Related Drought in A
Journal of Tropical Ecology (2004) 20:625–633. Copyright © 2004 Cambridge University Press DOI: 10.1017/S0266467404001725 Printed in the United Kingdom General herbivore outbreak following an El Nino-related˜ drought in a lowland Panamanian forest Sunshine A. Van Bael∗†, Annette Aiello∗, Anayansi Valderrama∗, Enrique Medianero∗, Mirna Samaniego∗ and S. Joseph Wright∗ ∗Smithsonian Tropical Research Institute, Box 2072, Balboa, Republic of Panama †Department of Animal Biology, University of Illinois, Urbana, IL 61801, USA (Accepted 10 February 2004) Abstract: A severe outbreak of Lepidoptera followed the 1997–98 El Nino˜ Southern Oscillation event, during which the climate in central Panama was unusually dry. The outbreak involved the larvae of at least 12 species of Lepidoptera and occurred at a seasonally dry, deciduous forest site, where extensive background data were available regarding climate, tree species and non-outbreak herbivory levels. Most Lepidoptera were associated with only one or two larval host plant species belonging to the same family, and the majority were monophagous during this study. During the outbreak, caterpillar densities for the major outbreak species averaged 1.6 larvae per young leaf and 0.18 larvae per leaf for leaves of all ages. For canopy trees and lianas, the mean level of leaf damage was 13.8%, ranging from 1–100%. Seven out of 20 tree species sustained most of the damage, with 21–37% of the leaf area consumed. Relative to non-outbreak years, damage levels increased by more than 250% during the outbreak. Single-species outbreaks were observed in other areas with a similar drought, but wetter forests in central Panama did not experience outbreaks during this period. -
Prosiding Seminar Nasional Biologi USU 2014
Editor: Dr. Hesti Wahyuningsih, MSi. (Univ. Sumatera Utara, Medan) Dr. Saleha Hanum, MSi. (Univ. Sumatera Utara, Medan) Dr. Salomo Hutahaean (Univ. Sumatera Utara, Medan) Prof. Dr. Mansyurdin, MS. (Univ. Andalas, Padang) Prof. Dr. Manihar Situmorang, MSc., PhD. (Univ. Negeri, Medan) Prof. Dr. Ramadanil Pitopang, MSi. (Univ. Tadulako, Palu) Prosiding SEMINAR NASIONAL BIOLOGI Medan, 15 Februari 2014 “Optimalisasi Riset Biologi Dalam Bidang Pertanian, Peternakan, Perikanan, Kelautan, Kehutanan, Farmasi dan Kedokteran” Editor : Dr. Hesti Wahyuningsih, MSi. (Univ. Sumatera Utara, Medan) Dr. Saleha Hanum, MSi. (Univ. Sumatera Utara, Medan) Dr. Salomo Hutahaean (Univ. Sumatera Utara, Medan) Prof. Dr. Mansyurdin, MS. (Univ. Andalas, Padang) Prof. Dr. Manihar Situmorang, MSc., PhD. (Univ. Negeri, Medan) Prof. Dr. Ramadanil Pitopang, MSi. (Univ. Tadulako, Palu) Departemen Biologi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sumatera Utara Medan 2014 USU Press Art Design, Publishing & Printing Gedung F, Pusat Sistem Informasi (PSI) Kampus USU Jl. Universitas No. 9 Medan 20155, Indonesia Telp. 061-8213737; Fax 061-8213737 usupress.usu.ac.id © USU Press 2014 Hak cipta dilindungi oleh undang-undang; dilarang memperbanyak menyalin, merekam sebagian atau seluruh bagian buku ini dalam bahasa atau bentuk apapun tanpa izin tertulis dari penerbit. ISBN 979 458 744 3 Perpustakaan Nasional Katalog Dalam Terbitan (KDT) Prosiding Seminar Nasional Biologi; Optimalisasi Riset Biologi dalam Bidang Pertanian, Peternakan, Perikanan, Kelautan, Kehutanan, Farmasi dan Kedokteran / Editor: Hesti Wahyuningsih...[et.al.] – Medan: Usu Press, 2014 x, 441 p.: ilus.; 29 cm ISBN: 979-458-744-3 Dicetak di Medan, Indonesia ii LAPORAN KETUA PANITIA SEMINAR NASIONAL BIOLOGI 2014 Yang saya hormati ….. Bapak Rektor Universitas Sumatera Utara, atau yang mewakili.