A Guide to the Identification of Seahorses (Chinese Edition) (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

A Guide to the Identification of Seahorses (Chinese Edition) (PDF) A Guide to the Identification of Seahorses ঔ੺Ᏸᙊဦᝥ ̚ᛌώ ࣧү۰ċSara A. Lourie, Sarah J. Foster, Ernest W. T. Cooper, and Amanda C. J. Vincent զކᇃߌăౘܖᛌ۰Ĉ (ࡁտ؎ࣶົ(TRAFFIC East Asia-Taipeiٽ෶ۏበ۰ĈέΔ౎Ϡ 2006ѐ12͡ ğۍࡁտ؎ࣶົ(TRAFFIC North America) Ğࡻ͛ٽ෶ۏОҖċঔ੺ࡁտࢍ൪(Project Seahorse)ᄃΔ࡚౎Ϡ ğۍચԊĞ͛̚ڒ āāāҖ߆ੰྺຽ؎ࣶົ ĄົܛᝋٙѣĈ2004 ࡻᛳֲ࣯ࣖͧ̂ጯᄃ͵ࠧҋ൒ૄۍ © ᝋٙѣ۰ࠎ Laurence RichardsonĄۍٙѣᘱဦ̝ © ăᄃ Laurence Richardson(ົܛҋ൒ૄົܛϏགྷΐो̂ࡻᛳֲ࣯ࣖͧ̂ጯ (UBC)ăWWF (͵ࠧҋ൒ૄ А३ࢬТຍĂ༰ͤͽЇң͞ёኑᄦĂΒ߁ᇆОăᐂᄦăχфٕᐼхĂᄃ೸οώ३۞ְ̝ ઼ۏĂCITES (ᘓᓜ඗჌౎Ϡજങ˭ڶ΍఍ଐځЇңొ̶͛фٕဦ̰ͯटĄд୻຾гො ᒉӀϫ۞̝நϤኑᄦώܧࡗ)༊Ԋᄃ৪३఍ΞͽͽેҖර஽࿲̳ࡗăିֈٕ׎΁̳ٽᅫ෶ ΍ҋঔځᝋٙѣ۰ְ̝А३ࢬТຍĄώ३ొЊٕБొ̰ट̝ኑᄦӮᅮොۍ३̰टĂ൑ื ࡁտ؎ࣶົĄٽ෶ۏ੺ࡁտࢍ൪ᄃΔ࡚౎Ϡ ώ३ү۰۞៍ᕇ̙υ൒΃ܑ Project Seahorse (ঔ੺ࡁտࢍ൪)ăࡻᛳֲ࣯ࣖͧ̂ጯĂĂ ࡁտ௡ᖐ)ĂWWF ٕ IUCN (઼ᅫܲֈᓑ༖) ̝ຍ֍Ąٽ෶ۏTRAFFIC (౎Ϡ :઼઼࡚छঔ߶ၱ̂ঈგநԊᄃ઼࡚થຽొ(በཱིٺĂొЊᙒӄֽҋۍώ३۞ᇤᆷᄃ΍ ᛉ̙υ൒΃઼઼ܑ࡚छঔ߶ޙNA03NMF4630332)Ą൒҃ώ३ү۰۞ኢࢗă൴னăඕኢᄃ Ąڱၱ̂ঈგநԊ઼ٕ࡚થຽొ۞࠻ ώ३ֹϡ̝гநડાЩჍᄃ̰टܑࢗĂԆБ՟ѣᇆडঔ੺ࡁտࢍ൪ăTRAFFICăٕߏ׎ ၗ۞ᄮؠĂᄃ׎ᙝٕࠧࠧቢ̝ထ̶ᄮؠĄېЇң઼छăᅳ˿ٕડા̝გᔑٺ͚޺௡ᖐ၆ ᝋᄃොΊથᇾٙѣᝋࠎWWFٙѣĄۍTRAFFICᇾౢ̝ TRAFFICߏWWF ᄃIUCN ̝ܢᛳ፟ၹĄĄ ͛ᚥ͔ϡޙᛉĈ ࡁտ؎ࣶົĄරٽ෶ۏLourie, S. A. et al . 2004. ঔ੺ᏰᙊဦᝥĄঔ੺ࡁտࢍ൪ᄃΔ࡚౎Ϡ Ąົܛૄۏ஽࿲পડĈࡻᛳֲ࣯ࣖͧ̂ጯᄃ͵ࠧ౎Ϡ ᛷĄٮࢬঔ੺࠹ͯࠎ͉π߶ঔ੺Hippocampus ingens ĂϤWolcott Henryދ -࠹ͯࠎ઀ᒌঔ੺జ༊ј็௚۞̚ᘽՄֽమ઴ĄΠᙝ஼̚۞ࠎ႓Ϩ˞۞੼݄ঔ੺H. barغދ bouri Ąνᙝ஼̚۞݋஄ᗔ඾઀ᒌ۞܎ԍঔ੺ H. comes ഌঔ੺ H. spinosissimus Ăˬ೹ঔ ࡁտ؎ࣶົ۞ Ernestٽ෶ۏ੺ H. trimaculatus ᄃ͉π߶ঔ੺ H. ingens Ąᛷᇆ۰ࠎΔ࡚౎Ϡ W. T. CopperĄ Ԕ Ҭ੺ᐝĂЯѩ଀Щć׎ېӚĂܜ۞ې଀̙ည౦۞౦Ąձѣ඾ࣧඌܜঔ੺̙ߏ੺Ă҃ߏ ঔ੺ଂֈ׊ఠ̚ြ̈זฯঔ੺ཛొ۞ֈ׊ఠĂۡٺᓄത͞ёՀপҾĂߏϤᅬঔ੺૟Ӊய Ąۏ΍ĂΞᄲߏ̂ҋ൒̚˘ཏ؈প҃ѣ኷۞જ ᒚధкڼć็௚̚ᘽ૟ঔ੺ˢᘽĂΞͽھᇃޝ˵ˠᙷֹϡঔ੺Ϥֽ̏˳Ăঔ੺۞ϡ౉ ͹ࢋϫ۞г̂ొ̶ߏдֲ߷гડĂּт۞ٽঽăٕઇࠎྃ֗۞ᘽՄć҃Б஧઀ঔ੺෶় ׶ᄂ៉ඈгĄ؂ౙăࢶപăາΐ઼̂̚ ॏᇢᄃകिг۞৔ᗼඈЯ৵Ăঔ੺۞ϠхП፟˵͟ৈᚑࢦćЯѩᘓᓜ඗჌۞ޘ࿅ٺϤ ቙ࡗ઼̂ົ˯Ă఼࿅૟ঔبࡗĞCITESğд2002ѐٙᓝᏱ۞ௐ12̳ٽᅫ෶઼ۏ౎Ϡજങ 2004ѐ5͡15͟ϠٺᐂII۞೩९Ă֭ܢ੺ᛳĞGenus HippocampusğனϠٙѣ჌ЕˢCITES ซҖგநĄٽड़Ăฟؕ၆׎઼ᅫ෶ ۡ˘ֈ൑઼ࠧ۞ჟৠĂܲٺјࠎCITES۞ົ઼ࣶĂҭѣᝦڱԧ઼ᔵЯ઼ᅫгҜপঅĂ൑ ۍ͛̚۞ۍࡁտ؎ࣶົበᛌ΍ٽ෶ۏ჌۞გநćᚶА݈؎ኛέΔ౎Ϡۏ᎕ໂ੨ЪCITES ࠹ТٺඈĂૄ͢ڒݡă̈́ሤ૲هCITESᏰᙊဦᝥրЕ--౧ᙷă៥౦ăᐸᙷăኄኅăࠚᕷࡔ ࠹ᙯಏҜ̝ણ҂ĄعĂ̫ѐপҾበᛌঔ੺Ᏸᙊဦᝥ̚ᛌώĂֻ߆هந۞ ซҖё༊̝გநନ߉ܮ჌Ăࣕۏϫ۞ĂੵΞ೩ֻ࠹ᙯಏҜϒቁᏰᙊঔ੺̝ۍώဦᝥ΍ γĂ˵ԓ୕͔੓ۤົЧࠧ၆ঔ੺ܲֈ̍ү۞ࢦෛćঔ੺ߏঔ߶Ϡၗր̚ໂপঅ҃਑ऴ۞ αࢬᒖঔ۞ᄂ៉ֽᄲĂ׍ѣՀপঅ۞ຍཌྷĄٺ၆ܫ჌Ă߀ାঔ੺ಶߏ߀ାঔ߶Ă࠹ۏ Җ߆ੰྺຽ؎ࣶົ ᖰᙊ ܜચԊ Ԋڒ ࡁտ؎ࣶົ ᖎ̬ٽ෶ۏέΔ౎Ϡ ࡁտ௡ᖐĞTrade Records Analysis of Flora & Fauna in Commerce, ᖎჍٽ෶ۏᅫ౎Ϡ઼ ĂၹјБ஧౎ވ௡ᖐĂϫ݈дБ஧̣̂߷Вѣ˟˩ˬ࣎Ᏹ̳ع߆ܧTRAFFICğࠎ઼ᅫّ ႾീშྮĄ۞ٽ෶ۏϠ TRAFFICࠎ͵ࠧҋ൒ૄܛົĞWorld Wide Fund for NatureĂᖎჍWWFğᄃ઼ᅫҋ൒ܲֈ ᛳ௡ᖐĂЧTRAFFIC̶͚Ᏹ̳ܢᓑ༖ĞThe World Conservation UnionĂᖎჍ IUCNğ۞ ૜̷ЪүĂ͍׎ߏ࢑యර஽࿲̳ࡗĞConvention on Internationalܝ࠹ᙯొع࠰ᄃ༊г߆ވ Trade in Endangered Species of Wild Fauna and FloraĂᖎჍ CITESğְચ۞ࡊጯ፟ၹᄃგந გٽ෶ۏϲ౎Ϡޙعӄ߆םξಞă೩ֻܲֈ࠹ᙯ߆ඉᏙྙăٽ෶ۏ፟ၹĂႾീБ஧౎Ϡ ҋٺ၆ົ̙ٽ෶ۏˠ̖ĄTRAFFIC۞јϲϫᇾߏቁܲ౎Ϡڱր௚̈́੊ቚ࠹ᙯેҖᄃેט ਎Ąރ൒ྤ໚۞ܲֈౄј 1991ѐ1͡дέΔјϲĄώົТॡႾീٺࡁտ؎ࣶົĞTRAFFIC Taipeiğٽ෶ۏέΔ౎Ϡ አ̚ᗁᘽࠧВТܲֈᘽϡ౎םĂڶଐ۞ٽӀϡᄃ෶ۏࡁտᄂ៉ᄃ׹ಛֲ߷гડ౎Ϡજങ ໚Ă֭ᄃ࠹ᙯಏҜЪүଯજܲֈ̍үĄྤۏϠ ăᇇ઼ăཌྷ઼ڱĈᆓ፜ăࢶപăέΔă͟ώă઼̂̚ౙăͧӀॡăވTRAFFICЧгᏱ̳ ؃ăܧăݑރӀă༄׏ăܻᘲ೻ăЛͰӀă઼࡚ăΐो̂ăግҘ࣯ă͂ϝкႬă֙͐̂ Ąޘκֲă੺ֽҘֲă෸ݑă፫߷̈́Оإ ̰टϫᐂ ᄫᔁ ii 1.0 ݈֏ 1 1 ڱ͞ 2.0 ጯপّ 3ۏঔ੺۞ܲֈᄃϠ 3.0 3.1 ܲֈ 3 ጯপّ 5ۏϠ 3.2 ঔ੺ԛၗጯᄃᝥؠ 7 4.0 4.1 ԛၗጯ 7 ᝥؠ 7 4.2 ჌۞ೡࢗ 20ۏ 5.0 ણ҂͛ᚥ 88 ჌Ᏸᙊܑ 94ۏᐂ A. ঔ੺ܢ ჌Ᏸᙊᑭរܑ 95ۏᐂ B. тңֹϡܢ ᐂ C. ઀ঔ੺۞ဦည 97ܢ ঔ੺ H. histrix ᄃऱ྿ঔ੺ H. kuda ۞̶ᙷ 103ו .ᐂ Dܢ 104 ڶې჌۞̶οۏᐂ E. Ч઼ঔ੺ܢ ჌۞૾Ғဦּ 109ۏᐂ F. ঔ੺ܢ ဦϫᐂ ঔ੺۞γొԛၗ 9 ..1 ͚ᇣࡦ᜴۞ᒖ 11 ..2 ઀ঔ੺ᇾώ۞ԛၗྤफ़ቑּ 95 ..3 ܑॾϫᐂ ჌౵̂۞វ੼੃ᐂ 13ۏঔ੺ ..1 ࣃ (HL/SnL) 14ͧܜᄃӚܜ჌۞ᐝۏঔ੺ ..2 ჌۞ԍᒖᇴ 15ۏঔ੺ ..3 ჌۞ࡦ᜴᜴୧ᇴ 17ۏঔ੺ ..4 ჌۞਒᜴᜴୧ᇴ 18ۏঔ੺ ..5 ჌۞ᖻ຅ᒖᇴă͚ᇣࡦ᜴̝ᒖᇴᄃԍᒖᇴăᐙഌᄃீഌᇴ 19ۏঔ੺ ..6 ჌ᑭߤܑ 96ۏͽဦ3۞ᇾώࠎּĂԆј۞ ..7 i ࡭ᔁ ĂࢋຏᔁధкˠĄঔ੺ࡁտࢍ൪۞James Hrynyshyn७ࢎ͘Ί̚۞гဦĂۍώ͘Ί଀ͽ΍ ӄĄຏᔁAdriana Suarez Blanch, Maylynnםͷࠎ͘Ίਨቇٙ̚ѣဦּ۞໤౯೩ֻ˞൑ᆊ۞ EnglerᄃAndrew Short७ࢎௐ4.0༼̝̚ᑭ৶ܑĂ֭ീྏ׎ዋϡّĄĄ ຏᔁ Rhema Bjorkland, Sheila Einsweiler, Boris Kwan, Richard Labossiere, Samuel Lee, Stephen Nash, Steven Price, Adrianne Sinclair ׶ Chris Woodsࠎ͘Ί۞ਨቇ೩ֻ׍߽၅˧ͷ ѣϡ۞ຍ֍ĄKimberly Davis, Craig HooverᄃTRAFFIC North America۞Tina Leonard၆ѩ ͘Ί۞ᚯ౯ᄃఢ൪ѣ඾࠹༊̂۞੒ᚥĄ˘ ԆјĄĄڱຏᔁௐ5.0༼̚೩̝̈́ࡁտˠࣶĂࡶ൑΁ࣇٙԆј̝ણ҂ྤफ़Ăௐ5.0༼Ϻ൑ ௐ5.0༼ٙ̚ѣ۞૾Ғဦᄲᄃ͘ᘱဦ൪Ăੵ˞̜κ೻֑˚ঔ੺ H. denise γĂౌߏLaurence ۞༼Richardson۞үݡĄ̜κ೻֑˚ঔ੺ H. denise ۞͘ᘱဦߏϤSara A. Lourie೩ֻĄௐ4.0 ᐂC۞໰ͯ݋ߏϤErnest W. T. CopperᄦүĄܢ͘ᘱဦ൪ᄃ ཌă࡚ۏдώ͘Ί۞ᚯ౯ᄃᄦү࿅඀̚ĂԧࣇপҾຏᔁCITES৪३఍ă઼࡚Ⴂຽၱ౎Ϡજ छঔ߶ၱ̂ঈგநԊ (NOAA) ۞͚޺ᄃခᐽĄ઼઼ ăNOAA ̝ࠞ༁ᒨܲົܛૄ ຏᔁDonner Canadian Foundation ׶ Curtis and Edith Munson Ч࣎ঔ੺ٺֈࢍ൪གྷ෱ֹѩࢍ൪଀ͽ;ኜ၁ҖĄࠎѩဦᝥበᇤٙซҖ۞ࡁտĂགྷ෱ֽҋ ࢍ൪۞ЪүϾҡĂΒ߁John G. Sheddͪ୉ᐡ(઼࡚)ĂGuylianμҹ˧(ͧӀॡ)Ăͽ̈́William ࿴ග Amanda Vincent)Ąώဦᝥٙॲፂ̝ௐ˘ώঔ੺ᝥؠ޽ݑߏϤRufford) ܛDawson ረጯ ܲ۩ăࡻ઼ҋ൒ᒖဩࡁտ؎ࣶົăࡻ઼࠱छጯົᄃࡻ઼ਝົܛૄ ăMaurice Laingົܛૄ ֈ̈௡ٙᙒӄĄ ચԊᙒӄѩᖙᛌࢍ൪Ăͽ̈́ΐो̂ࡻڒώဦᝥ଀ͽОҖĂበ۰ࢋຏᔁҖ߆ੰྺຽ؎ࣶົ кۏ၆ώ३ᖙᛌᄃበᏭ۞͚޺Ą֭ຏᔁ̚δࡁտੰϠົܛᛳֲ࣯ࣖͧ̂ጯ׶͵ࠧҋ൒ૄ ᇃߌ౾̀۞૞ຽᖙᛌᄃ޽ጱĄܖᇹّࡁտ͕̚ ii ᐂ IIܢࡦ౦ϫࡦ౦ϫ౦ϫ#ঔᐷࡊ(Order Gasterosteiformes / Family Syngnathidae) 7=H9Gו 1.0 ݈֏ ቙ࡗ઼̂ົب˟˩ࡗĞCITESğௐ̳ٽᅫ෶઼ۏ2002ѐ11͡3Ҍ15͟Ăᘓᓜ඗჌౎Ϡજങ ܢ჌Еˢ̳ࡗۏдംӀ۞ཐгͰ࣯ᓝҖćົ̚Ըை఼࿅૟ঔ੺ᛳĞĞHippocampusğ۞ٙѣ 2004ѐ5͡15͟Ϡड़Ąٺ჌Ă֭ͷۏᐂII۞ ͹გ༊Ԋᄃ׎΁۞࠹ᙯಏҜĂυืѣਕ˧Ᏸᙊ઼ᅫع჌Ă߆ۏᐂܢࠎѣड़ར၁ଠგCITES ֍۞ঔ੺ĄٙͽপҾበᇤѩ˘ဦᝥĂֻ࠹ᙯˠ̀ણ҂Ą૱̚ٽ෶ ૞ຽˠ̀ણ҂Ą൒ܧ૞ຽᄃۏ჌ᏰᙊԫఙĂ೩ֻගϠۏ૟ϒቁ۞ٺѩ˘ဦᝥ̝ϫ۞д Ă၁׍࠹༊۞߄ጼّĄְٽܧѩϫ۞֭זĂЯࠎధкঔ੺჌ᙷγ៍˩̶࠹ҬĂࢋ྿҃ ߏౄјঔ੺୉ཏٽĄᔵ൒дߙֱડાĂ߿ঔ੺෶ٽΒ߁߿ঔ੺ᄃ઀ঔ੺۞෶ٽঔ੺۞෶ Ğ֍ٽүࠎ็௚ᘽՄ۞઀ঔ੺෶ٺߏᛳٽϠхᑅ˧۞͹ࢋЯ৵ćҭ̂кᇴ۞ঔ੺઼ᅫ෶ ઀ঔ੺Ă˵ಶߏѪ˸ᇾώ۞ᝥؠĄٺğćٙͽѩဦᝥдనࢍ˯඾ࢦ༼3.0 ڱ͞ 2.0 ჌۞ᝥۏĂϤLourie et al ٙ඾̝Ķঔ੺ĈБ஧ۍ჌۞ೡࢗ͹ࢋߏॲፂ1999ѐ΍ۏώဦᝥ၆ फ़Ăࢦາ࣒ࢎăፋநĂ֭ΐˢາ۞̰टĄLourieྤ۞ۍؠᄃܲֈ޽ݑķ2Ąώဦᝥ૟̝݈΍ ϤHorne3ᄃKuiter4, 5, 6ٙซҖ۞ࡁտ̍үĂ݋ߏࠎώ३ܕet al ඾ࢗВೡࢗ˞32჌ঔ੺2Ąາ ჌۞ೡֶࢗፂĄՀஎˢ۞ঔ੺ԛၗᄃ᏷็ࡁտĂੵ˞ਕซ˘Վгቁᄮώဦဦۏ׎΁ঔ੺̚ ჌۞гҜĂТॡĂԧࣇ˵ᄮࠎঔ੺۞̶ᙷវր͟າ͡ளĂঔ੺າ჌۞൴ۏֱ˘ᝥٙЕ۞ ۏۏ჌۞ѣड़გநĂᔘߏѣυࢋ૟ঔ੺۞ۏᐂܢĄӈֹтѩĂࠎར၁CITESޞன˵ߏ޽͟Ξ ჌дѩ୻຾۞ܑЕĄٙͽώဦᝥֶፂ1999ѐঔ੺ࡁտࢍ൪۞ܑЕĂΐˢາᆧ۞̜κ೻֑ ჌Ąۏঔ੺H. denise Ă૟ঔ੺В̶ј33࣎˚ дLourie et al ඾ࢗ۞̶οဦ̚Ϊពϯ̏ቁؠ۞̶οгᕇྤफ़2Ąώဦᝥ࣒ϒ఺̶ֱοဦĂ ჌ٙ΍ன۞઼ۏ჌̂࡭۞̶οቑಛĄՏ˘ঔ੺ۏ˘உᄏٙѣቁؠᄃΞਕ۞̶οĂ൪΍Տ छĂॲፂቁؠ۞ٕΞਕ۞̶ο̶ј׌᛼ೡࢗĄĄ 2ĄͽᎶཛঔ੺Ꮆཛঔ੺ H. abdominalis ׶ۍLourie et al ඾ࢗ̚۞25಼ঔ੺͘ᘱဦдώဦᝥ̚ࢦາГ ΃ࣧώߏҘ፫ঔ੺Ҙ፫ঔ੺ H. angustus ᄃۡϲঔ੺ۡϲঔ੺ H. erectus ۞ဦĂפ੼݄ঔ੺ H. barbouri ۞ဦֽ ࢦາ७ϒ܎ԍঔ੺ H. comes ᄃ୧৳ঔ੺ H. zebra ۞ဦć֭າᆧ˞ฯّዷࡦঔ੺ H. camelopardalis되ّ୧৳ঔ੺ H. zebraဦĄາᆧ33჌ঔ੺۞૾ᘱဦĄٙѣဦ൪۞ᘱᄦ ᄃ࣒ؠౌߏॲፂ̏ѣ۞ঔ੺ᇾώٕঔ੺ࡁտࢍ൪೩ֻ۞࠹ͯٙᄦү҃јĄ ᐂAăBߏॲፂLourie et al 2ĂLourie and Randall 2003 8ٙ೩ֻ۞ྤੈᄃ઀ᒌᇾܢௐ4.0༼ᄃ ॰̚۞ᇴࣃࠎிᇴĞࢍᇴغĄܑ2Ҍ5ពϯՏ˘পᇈࣃീณ۞ቑಛĄโֽ҃ڍώ۞ᑭរඕ 1 ᐂ IIܢࡦ౦ϫࡦ౦ϫ౦ϫ#ঔᐷࡊ(Order Gasterosteiformes / Family Syngnathidae) 7=H9Gו ͧ۞ܜ၆ӚܜĂ౵૱֍۞ᇴࣃğĂּтԍᒖ۞ᇴϫćͽ̈́ീณٙ଀۞πӮࣃĂּтᐝޢ ࣃĞHL/SnLğĄ ጯྤफ़Ăૄώ˯ĂߏֶፂLourie et al 2۞඾ֽࢗՀາĂགྷϤঔ੺ࡁտۏௐ5.0༼̚ঔ੺۞Ϡ г͛ᚥຩವĂͽ̈́ঔᐷࡊࡁտጯ۰ᄃͪ୉ᐡ૞ຽھአĂՀາ۞ྤफ़͹ࢋֽҋᇃםࢍ൪۞ ˠ̀۞੒ᚥĄĄ ᐡă໢࣯රͪ୉ᐡ۞ঔ߶ࡊጯ̚ۏᛷҋᄋপૌMcGill̂ጯ۞Redpath౾ٮᐂC۞࠹ͯߏܢ ٙќะ۞ᇾώĄވᄃTRAFFICΐो̂Ᏹ̳͕ ߏͽᓑЪ઼۞ົ઼ࣶϫᐂࠎֶፂ9ĄڱछЩჍ۞޸઼ Ąޥдώ͛̚ĂH. ۞ᒺᆷߏ޽ঔ੺ᛳ(Hippocampus )۞ຍ 2 ᐂ IIܢࡦ౦ϫࡦ౦ϫ౦ϫ#ঔᐷࡊ(Order Gasterosteiformes / Family Syngnathidae) 7=H9Gו ጯۏঔ੺۞ܲֈᄃϠ 3.0 3.1 ܲֈ ಡ۞ٽௐ˘ώಓ੓઼ᅫมࢦෛ̂ఢሀঔ੺෶ٺᄃܲֈ۞ྤੈĂֽҋٽώဦᝥ۞ధк෶ ොĄܢ10Ą׎΁۞ྤੈֽ໚ኛ֍ٽӘĈঔ੺۞઼ᅫ෶ ٽ჌۞෶ۏ೩̿ঔ੺۞ܲֈᄃგநӮ࠹༊۞ࢦࢋĄѣड़ར၁CITES၆ঔ੺ٺ჌۞ᝥؠ၆ۏ Пचঔ੺۞౎Ϡ୉ཏĂ҃׎јΑᅮࢋົ̙ٽЧCITES቙ࡗ઼Ӆ˧ቁ઼ܲᅫ෶ٺგநĂѣᏥ ჌ᝥؠĄۏᏥϒቁ۞ֶ ਎ރ၆ঔ੺۞ ତ۞ॏ॓Ăͽֹ̈́ϡ൑Ᏼፄّ۞Ⴂ׍ٙౄј۞஄ᒔᄃകۡٺ਎ֽҋރ۞זצঔ੺୉ཏٙ შႢຽ۞஄ᒔ݋ߏٳغг۞৔ᗼĄѣֱ͵ࠧ˯౵ళ቎۞Ⴂ͈ߏͽۡତॏ॓ঔ੺ჯϠĄ҃ შ׍Ϻົ৔ᗼঔ੺۞കिг11ĄԧࣇᅮࢋՀк۞ࡁٳغ౵̂ఱ໚ĂТॡĂ۞ٽঔ੺઼ᅫ෶ տֽෞҤঐε۞ঔ੺കिгĞ͍׎ߏঔਨԖğĂᄃ׎၆ঔ੺౎Ϡ୉ཏ۞኏ᑝĄ మ઴Ă߿۞ঔ੺݋༊ј៍ካणϯݡĄ็௚ᘽֽە઀ᒌ۞ঔ੺జ༊ј็௚ᘽՄăྃݡăࠡ Ąᔵ൒̂ݭ۞ăઐϨ؟Մ (TM)Ă͍׎ߏ็௚̚ᘽՄ(TCM)ᄃ׎ᄦݡĂҫঔ੺ঐ෱۞౵̂ Ăܓᝌצޝ˵ᄃπ໣۞ঔ੺జߙֱˠᄮࠎѣྵ੼۞ᘽड़10ĄҭЯࠎΒ྅మ઴۞̚ᘽᄦ጗۞ ݭ༴᛬ঔ੺10,12Ą̈۞ܓ௚ξಞᝌ็צຽࠧฟؕӀϡࣧώֹ̙ܳ ۏ۞ܕ჌ (ঔ੺ᄃ׎ҕ໚࠹ۏॲፂ̏ѣ۞ᙋፂពϯĂд1995ѐĂВѣ32઼࣎छણᄃঔᐷࡊ 80઼࣎ܕĂЍߏֲ߷гડјϹ۞઀ঔ੺ಶ྿45̳ጟ10Ąซ˘Վ۞ࡁտពϯĂ૟ٽ჌)۞෶ ߷ᄃٛ˚࡚߷۞઼छ11Ąੵѩ̝γĂܧĂΒ߁ధкٽ჌۞෶ۏछд2000ѐ̝݈ѣ࿅ঔᐷࡊ ෹࿅ٽณ̼۞ᙋፂౌពϯдֲ߷гડ۞઀ঔ੺Ϲܧአߤᄃٽफ़ă෶ྤ͞ءֱ˘2000ѐĂ ĂΒ߁ధк̈ঔ੺˵˘੓ซˢ 11ٽ50̳ጟĄ1995ᄃ2000ѐĂ઼ᅫมѣᇴ˩༱੸۞߿ঔ੺෶ ξಞĄĄ ֈ۞ᇆᜩܲ ৔זצঔകिг˵Тॡܕڻ၆ঔ੺୉ཏ۞ᇆᜩߏ࠹༊̂۞Ă͍׎ߏ༊׎਑ऴ۞ٽঔ੺෶ ޺ᜈّ۞ॏڇ჌тңҹۏჟቁҤࢍ౎Ϡঔ੺۞୉ཏณĂͽ̈́˞ྋ࣎ҾڱᗼĄᔵ൒ϫ݈൑ ณ̏ٽ੃ᐂă̂ณ۞ࡁտᄃΞያ۞ੈिពϯĂঔ੺ॏᒔᄃ(ٕ)෶ٽᑅ˧ćҭߏ౅࿅෶॓ ᅮՐณഴ͌Ą೼఼Ҥࢍ̣ѐֽĂٽ෶ܧགྷព඾гഴ͌Ą఺΃ܑ۞ߏ౎Ϡ୉ཏ۞ঐεĂ҃ 50Ʀ11Ą2003ѐĂ઼ᅫܲֈᓑ༖ĞIUCNğࡓϩ३૟˘჌ঔ੺Еזঔ੺୉ཏณࢫҲ˞15Ʀ П჌Ă׎΁۞ঔ੺ౌߏྤफ़̙֖۞჌ᙷĞܑϯᅮࢋՀк۞ࡁտğٽࠎᘓП჌Ă˝჌Еࠎ ۞΄ڱϲ༊г۞ܲֈෞҤր௚ᄃޙঔ੺୉ཏхᜈ۞П፟Ă̏གྷΩҖז13Ąధк઼छវᄮ ఢቑĄ 3 ᐂ IIܢࡦ౦ϫࡦ౦ϫ౦ϫ#ঔᐷࡊ(Order Gasterosteiformes / Family Syngnathidae) 7=H9Gו ঔ੺ᄃCITES Ҍ2004ѐ2͡ࠎͤĂCITESВѣ164࣎቙ࡗ઼14ĄCITES۞͹ࢋϫᇾߏࢋቁؠྭ઼ࠧ۞જă ٽᅫ෶઼זצΞਕٕזצ჌ώ֗۞Ϡхۏڍ჌۞ϠхĄтۏ਎׎୉ཏٕރົ̙ٽ෶ۏങ ჌ֶ׎̙Т۞᜕ܲۏ჌૟ΞਕజৼˢCITES۞გநఢቑĄCITES ૟׎ఢቑ۞ۏ਎Ăѩރ۞ ᐂ̂ࡗՏ˟ѐд቙ࡗ઼̂ົ˯ՀາĂͷ၆ٙѣΐˢ۞቙ܢᐂܑЕĄ఺ֱܢᅮՐ̶јˬ࣎ ਎Ă҃ރ჌۞ۏҖࠎ͔ٙ੓၆ٽఢቑ۞ड़˧ĄCITESۡତ੫၆۞ߏЯ෶΄ڱࡗ઼ֽᄲѣ׎ ĄĄٽͷΪࢨؠ઼ᅫ෶ 2004ѐ5͡Ϡड़Ąٺ჌Ă֭ۏᐂII 1ܢ2002ѐ11͡ĂCITES቙ࡗ઼̂ົՙؠ૟ٙѣঔ੺Еˢ થ۞ᅮՐĂઇ΍ٽॡมĂ੫၆׎Ⴂϔᄃ෶عග቙ࡗ઼߆ٺม18࣎͡۞̳ӘഇĂϡຍд̚ ᄃϒڱĂᅮࢋՀр۞ྤफ़ќะ͞ٽዋ༊гેҖඉரĄࠎਕѣड़გந઀ঔ੺ٕ߿ঔ੺۞෶ फ़Ąྤ۞ژഇΞ̶ֻܜቁͷ ᐂܢ਎۞჌ᙷĄЕˢރٽ෶זצ૟ົٕזצ჌ߏֱ֤౎Ϡ୉ཏ̏ۏᐂII۞ܢCITESٺЕ ߏ̯ధ۞Ăҭߏٽ෶ۏ჌۞ֹϡ͞ёߏϖᜈّ۞ĄજăങۏII۞ϫ۞ߏࢋቁܲ૟ֽ၆ѩ ჌۞Ꮾ΍̙ົП̈́౎Ϡ୉ཏٕ՟ѣ̙Ӏ۞ᇆᜩĄٙᏜ՟ѣ̙Ӏᇆᜩۏ΍˾઼υืቁؠѩ Ķnon-detrimental findingsķߏCITES۞͹ࢋΑਕĄCITES۞΍˾ă̈́ĞٕğГ΍˾ధΞᙋ ώᅮՐĂੵѩ̝γĂѣ઼ֱछΞਕᔘѣՀᚑॾ۞ఢቑĄૄ۞ٽ჌઼ᅫ෶ۏᐂIIܢߏCITES ˾ณΞֹ୉ཏϖᜈ۞ϠхĄٙͽ΍ٽ෶۞ޘĂϤ΍˾઼࢑యෞҤң჌඀ޢᐂIIܢ჌Еˢۏ ჌୉ཏϖᜈϠх۞ϒቁۏफ़ֽቁܲ၆ྤٽጯăႢຽᄃ෶ۏ჌υࢋ۞Ϡۏ଀࠹ᙯפυื઼ ჌۞Ᏸᙊдѩߏ࠹༊ᙯᔣۏ჌՟ѣ̙Ӏ۞ᇆᜩĂٙͽۏ၆ٽෞҤĄܑЕ۞ϫ۞ߏԓ୕෶ Ą۞ Е۞ࢦࢋّܑ ᐂ۞གྷᑻّঔ߶౦჌ĄЯࠎՏѐ۞̂ณܢঔ੺ĂТ ᗯᄃ෪ᕀĂߏௐ˘ԲజЕˢCITES ఢቑგநĂ၆۞ޢᐂ̝ܢјࠎCITESࢦࢋ۞ኝᗟĄར၁ঔ੺ЕˢٽĂ఺ֱ౦჌۞෶ٽϹ ਎ᄃᑅ˧Ă˵ߏ˘࣎υރ۞צ߄ጼĂҭࠎ˞ࢫҲঔ੺୉ཏϠхٙ۞̂ޝCITESֽᄲߏ˘࣎ ࢬ၆ͷΪਕјΑ۞߄ጼĄื ᇆᜩ۞ঔ੺୉ཏ൴ण΍Հр۞ٽ෶צᐂ۞˘ีࢦࢋຍཌྷĂߏԧࣇυืࠎֱ֤ܢঔ੺Еˢ ၗĂυࢋॡυืఢቑېঔ੺ܑЕᇆᜩ۞઼छ˘ؠࢋෞҤ׎ঔ੺୉ཏ۞צĄڱႾീᄃგந͞ ğਕϖᜈхٽତॏᒔٕ஄ᒔ۞ঔ੺ᇴณĄ҃ͷĂࠎቁܲ఺ֱঔ੺۞౎Ϡ୉ཏĞͽ̈́׎෶ۡ കгೇֈĂឰ఺ֱകिгޭೇ΁ࣇᑕ۞˾ګᄃڒдĂ࠹ᙯ઼छυืซҖঔਨăࠞ༁ăࡓፘ Ăͽֹ̈́׎௑Ъϖᜈགྷᒉ۞Ӆ˧Ăޘአፋঔ੺୉ཏ۞Ӏϡ඀ٺѣ۞ϠၗΑਕĄ࠹ᙯ઼छ၆ ᅮࢋ˘րЕ̙Т۞გநඉரᄃ͞९Ă͞ਕ௑Ъ౎Ϡ୉ཏܲֈᄃႢຽᅮՐᗕ͞۞ᅮࢋĄ 4 ᐂ IIܢࡦ౦ϫࡦ౦ϫ౦ϫ#ঔᐷࡊ(Order Gasterosteiformes / Family Syngnathidae) 7=H9Gו ጯপّۏϠ 3.2 ğ̚ۍጯᄃϠၗጯࡁտ͛ᚥаᜪĞFoster and Vincent, ΍ۏҋ౵າ۞ঔ੺Ϡפ༼ͽ˭۞ౢ Ąז15Ăٙѣ۞ࣧؕ͛ᚥౌΞд̰͛̚Ա ̶ᙷጯ ঔ੺ᄃგ౦Ğpipefishesğăგঔ੺౦ĞpipehorsesğᄃঔᐷĞseadragonsğТࠎঔᐷࡊ ĞSyngnathidaeğ۞јࣶ16Ą఺ֱ౦ᄃ੺ᗛ౦Ğcornetfishesğăঔཹ౦Ğpegasidsğă㚂 ᆜ౦Ğsnipefishesğăഌࡦ౦ĞSticklebacksğ׶გ˾౦Ğtrumpetfishesğౌߏдഌࡦ౦ ᖻćԍొ֗ېგ۞ܜညҭߏѣ˘ؼҩј৫҃ޝĞGasterosteiformesğϫ̚ϫ̚17, 18Ąგ౦ᄃঔ੺ ІĄঔᐷѣۏΞሹᖒېĂԍొјଡѡܜԹ೪Ąგঔ੺۞ᐝొரᝈШ֗ᖻĂᖻ຅࣒ٺዋ̙ ۳Ăѣӄձࣇઠᖟдঔਨᕍ̚Ąܢሀᇹ۞ې࣎઎޴҃எ۞֗វĂ҃ͷѣ˘ֱؼणјཧ˘ ჌Ăҭߏซ˘Վ۞̶ᙷࡁտΞਕົ൴னۏώဦᝥϫ݈ቁᄮ˞ঔ੺ᛳĞĞHippocampusğ33࣎ ჌֭՟ѣд౎γజࡁտ࿅Ąۏ჌Ą̂кᇴ۞ঔ੺ۏՀк۞ঔ੺ ̶οᄃዏொ มĄ̂ొЊঔ੺Ϡ߿дޘҌݑቛ50ޘાĂ̂ࡗଂΔቛ50ͪثڻঔ੺̶οд໢૲ᄃሤ૲۞ ኳঔાĂߙڪॲొᄃঔਨ̝มĂҭߏѣֱϠ߿д۩ᘈ۞Ւኳٕڒࠞ༁ă̂ݭᚼᙷăࡓፘ ͷ̙ాᜈ۞Ăˠᙷ߿જٙጱޘሡസĄঔ੺۞̶οкߏҲ୉ཏ૜ٕ˾ګ჌ΞਕϠ߿дۏֱ ͷ߿ޘྕم੼۞കгޝ჌ѣۏᇆᜩঔ੺۞୉ཏĄ̂кᇴ۞ঔ੺ٽ࡭۞കिг৔ᗼপҾट ĂҌ͌дᓄത؞༼ॡтѩĄ̈ޝજቑಛ ҃˧ಶ੺˯ซˢͪဥ̚Ąᔵ൒ρ౦ᖣϤγޢ჌۞ρ౦ߏঙഫّ۞Ăд΍Ϡ̝ۏߙֱঔ੺ ொજ۞ቑಛߏϏۢ۞ĂҭߏѩপّΞਕ೩ֻ˘ֱ୉ཏ̝มૄЯϹ߹۞፟ົĄĄ Ϡх ѐౌѣĂ̙̣זˬ჌۞ۏݭ̂ז჌۞˘ѐνΠۏ၅ٙҤࢍ۞ঔ੺ု׻Ăଂ̈ݭ៍ވ၁រ ۏТϠ߿Ϋล߱۞Ѫ˸தϏۢĄజॏࢴதᑕд༴౦ഇ౵੼ĂΞਕజధк۞౦ᄃ൑ਖഛજ ॏࢴ۰ಈຑ۞൴צ̙˯р۞ᔖᇲં྅׶֗ྵٺॏࢴĄјѐঔ੺۞ॏࢴ۰ᑕྍྵ͌ĂჹЯ ᄃഌĄഅགྷд̂߶ّ۞౦ᙷּтĈᕁ౦ᄃ੿ᐝ˥۞ࡤ̰൴னঔ੺Ă˵ົజᗯ౦ăڕ྿੻ 19,20,21ăЋᗵᄃ׎΁۞ͪ౧4ॏࢴĄ⪘ ᓄത ĂϤฯঔ੺ᘃθြӉĄੵ˞֑͐ͩ˚ঔ੺H.
Recommended publications
  • Global Diversity of Fish (Pisces) in Freshwater
    Hydrobiologia (2008) 595:545–567 DOI 10.1007/s10750-007-9034-0 FRESHWATER ANIMAL DIVERSITY ASSESSMENT Global diversity of fish (Pisces) in freshwater C. Le´veˆque Æ T. Oberdorff Æ D. Paugy Æ M. L. J. Stiassny Æ P. A. Tedesco Ó Springer Science+Business Media B.V. 2007 Abstract The precise number of extant fish spe- species live in lakes and rivers that cover only 1% cies remains to be determined. About 28,900 species of the earth’s surface, while the remaining 16,000 were listed in FishBase in 2005, but some experts species live in salt water covering a full 70%. While feel that the final total may be considerably higher. freshwater species belong to some 170 families (or Freshwater fishes comprise until now almost 13,000 207 if peripheral species are also considered), the species (and 2,513 genera) (including only fresh- bulk of species occur in a relatively few groups: water and strictly peripheral species), or about the Characiformes, Cypriniformes, Siluriformes, 15,000 if all species occurring from fresh to and Gymnotiformes, the Perciformes (noteably the brackishwaters are included. Noteworthy is the fact family Cichlidae), and the Cyprinodontiformes. that the estimated 13,000 strictly freshwater fish Biogeographically the distribution of strictly fresh- water species and genera are, respectively 4,035 species (705 genera) in the Neotropical region, 2,938 (390 genera) in the Afrotropical, 2,345 (440 Guest editors: E. V. Balian, C. Le´veˆque, H. Segers & K. Martens genera) in the Oriental, 1,844 (380 genera) in the Freshwater Animal Diversity Assessment Palaearctic, 1,411 (298 genera) in the Nearctic, and 261 (94 genera) in the Australian.
    [Show full text]
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Marine Animals Protected by the IUCN Red Data List and CITES 1973 on Seagrass Ecosystems
    E3S Web of Conferences 68, 04011 (2018) https://doi.org/10.1051/e3sconf /20186804011 1st SRICOENV 2018 Marine Animals Protected by the IUCN Red Data List and CITES 1973 on Seagrass Ecosystems 1* 2 3 Andreas Pramudianto , Putut Suharso , dan Nurul Hidayati 1School of Environmental Science, University of Indonesia, Salemba Raya Street no. 4, Jakarta 10430 Indonesia 2Department of Library and Information Science, Diponegoro University, Prof. H. Soedarto SH street, Semarang 50275 Indonesia 3Postgraduated student Environmental Science Programme, School of Environmental Science, University of Indonesia, Salemba Raya Street No. 4, Jakarta 10430, Indonesia Abstract. Seagrass beds are important for providing ecological functions and ecosystem services, including its role as habitat for marine animals. In spite of their significance, they remain in decline. The change of seagrass beds will affect the associated animals. Some animals that live on seagrass beds protected by IUCN Red Data List and CITES 1973. Yet the data have not been properly recorded. The aim of this study was to find out the existence of marine animals protected by the Red Data List and CITES 1973 IUCN, especially in seagrass ecosystems in Indonesia. The method used in this research is mix method with desk study approach and presentation of data analyzed through review. The results of the study show that changes in seagrass ecosystems will affect the presence of migratory marine animals and those who live and settle in this ecosystem. The provisions in the IUCN Red Data List and CITES 1973 supported by national legislation in Indonesia will have significant impact on the protection of marine animals in seagrass beds.
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • Hippocampus Bargibanti Whitley 1970
    Order Gasterosteiformes / Family Syngnathidae CITES Appendix II Hippocampus bargibanti Whitley 1970 Common names Bargibant’s seahorse (U.S.A.); pygmy seahorse (Australia) Synonyms None known Description Maximum recorded adult height: 2.4 cm45 Trunk rings: 11–12 Tail rings: 31–32 (31–33) HL/SnL: 4.6 (4.3–5.4) Rings supporting dorsal fin: 3 trunk rings (no tail rings) Dorsal fin rays: 14 (13–15) Pectoral fin rays: 10 (10–11) Coronet: Rounded knob Spines: Irregular bulbous tubercles scattered over body and tail; single, prominent rounded eye spine; single, low rounded cheek spine Other distinctive characteristics: Head and body fleshy, mostly without recognisable body rings; ventral portion of trunk segments incomplete; snout extremely short 30 Order Gasterosteiformes / Family Syngnathidae CITES Appendix II Colour/pattern: Two colour morphs are known: (a) pale grey or purple with pink or red tubercles (found on gorgonian coral Muricella plectana); and (b) yellow with orange tubercles (found on gorgonian coral Muricella paraplectana) Confirmed distribution Australia; France (New Caledonia); Indonesia; Japan; Papua New Guinea; Philippines Suspected distribution Federated States of Micronesia; Malaysia; Palau; Solomon Islands; Vanuatu Habitat Typically found at 16–40 m depth46; only known to occur on gorgonian corals of the genus Muricella45, 46 Life history Breeding season year round47; adults usually found in pairs or clusters of pairs in the wild (up to 28 on a single gorgonian)47; gestation duration averages 2 weeks48; length at birth averages 2 mm48; brood size 34 from one male47 Trade Not known in international trade Conservation status The entire genus Hippocampus is listed in Appendix II of CITES, effective May 20041.
    [Show full text]
  • Teleostei, Syngnathidae)
    ZooKeys 934: 141–156 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.934.50924 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Hippocampus nalu, a new species of pygmy seahorse from South Africa, and the first record of a pygmy seahorse from the Indian Ocean (Teleostei, Syngnathidae) Graham Short1,2,3, Louw Claassens4,5,6, Richard Smith4, Maarten De Brauwer7, Healy Hamilton4,8, Michael Stat9, David Harasti4,10 1 Research Associate, Ichthyology, Australian Museum Research Institute, Sydney, Australia 2 Ichthyology, California Academy of Sciences, San Francisco, USA 3 Ichthyology, Burke Museum, Seattle, USA 4 IUCN Seahorse, Pipefish Stickleback Specialist Group, University of British Columbia, Vancouver, Canada5 Rhodes University, Grahamstown, South Africa 6 Knysna Basin Project, Knysna, South Africa 7 University of Leeds, Leeds, UK 8 NatureServe, Arlington, Virginia, USA 9 University of Newcastle, Callaghan, NSW, Australia 10 Port Stephens Fisheries Institute, NSW, Australia Corresponding author: Graham Short ([email protected]) Academic editor: Nina Bogutskaya | Received 13 February 2020 | Accepted 12 April 2020 | Published 19 May 2020 http://zoobank.org/E9104D84-BB71-4533-BB7A-2DB3BD4E4B5E Citation: Short G, Claassens L, Smith R, De Brauwer M, Hamilton H, Stat M, Harasti D (2020) Hippocampus nalu, a new species of pygmy seahorse from South Africa, and the first record of a pygmy seahorse from the Indian Ocean (Teleostei, Syngnathidae). ZooKeys 934: 141–156. https://doi.org/10.3897/zookeys.934.50924 Abstract A new species and the first confirmed record of a true pygmy seahorse from Africa,Hippocampus nalu sp. nov., is herein described on the basis of two specimens, 18.9–22 mm SL, collected from flat sandy coral reef at 14–17 meters depth from Sodwana Bay, South Africa.
    [Show full text]
  • Early Life History of Syngnathus Abaster
    Journal of Fish Biology (2006) 68, 80–86 doi:10.1111/j.1095-8649.2005.00878.x,availableonlineathttp://www.blackwell-synergy.com Early life history of Syngnathus abaster K. SILVA*†‡, N. M. MONTEIRO*†, V. C. ALMADA§ AND M. N. VIEIRA*† *Departamento de Zoologia e Antropologia da Faculdade de Cieˆncias da Universidade do Porto, Prac¸ a Gomes Teixeira, 4099-002 Porto, Portugal,†CIIMAR, Rua dos Bragas 177, 4050-123 Porto, Portugal and §ISPA, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal (Received 2 February 2005, Accepted 15 June 2005) The embryonic and larval development of the pipefish Syngnathus abaster is described, based on ex situ observations. The full development sequence lasted 24–32 days (at 18–19 C), which was shortened to 21 days at higher temperatures (21–22 C). Newborn juveniles, with a uniform dark brown colouration, immediately assumed a benthic spatial distribution. This vertical distribution pattern remained unchanged at least during the first 4 weeks, after the release from the marsupium. The apparent absence of a pelagic life phase might have important repercussions in terms of population connectivity given increasing fragmentation and degrada- tion of the eelgrass habitat in the species’ range. # 2006 The Fisheries Society of the British Isles INTRODUCTION The Syngnathidae (pipefishes, pipehorses, seadragons and seahorses) exhibits one of the most specialized forms of parental care, with females depositing eggs in a specialized incubating area, located either on the abdomen (Gastrophori) or tail (Urophori) of the males (Herald, 1959). Even though male pregnancy is a widespread characteristic in all syngnathids, the anatomical complexity of the brooding structures varies among species, from the simplest incubating ventral surface of the Nerophinae, where eggs are glued without any protective plates or membranes, to the Hippocampinae sealed brood pouch.
    [Show full text]
  • Final Determination of White's Seahorse
    Final Determination July 2019 White’s seahorse Hippocampus whitei Listing Category: Endangered IUCN Category: EN [A2bc] The Fisheries Scientific Committee, established under Part 7A of the Fisheries Management Act 1994 (the Act), has made a Final Determination to list the Hippocampus whitei (White’s Seahorse) as an ENDANGERED SPECIES in Part 1 of Schedule 4 of the Act. The Fisheries Scientific Committee, with reference to the criteria relevant to this species, prescribed by Part 16 of the Fisheries Management (General) Regulation 2010 (the Regulation) has assessed and determined that: The listing of ENDANGERED is provided for by Part 7A, Division 2 of the Act. The assessment has been determined in accordance with the national Common Assessment Method (CAM), which provides a nationally consistent approach to the assessing and listing of threatened species in Australia. Species information and status a) Species: Hippocampus whitei – White’s Seahorse, Bleeker, 1855 (family Syngnathidae) is a valid, recognised taxon and is a species as defined in the Act. The species is endemic to NSW and QLD in eastern Australia. b) Taxonomy Hippocampus whitei was first discovered in 1789 in Port Jackson (Sydney Harbour) and named after John White, surgeon general to the first fleet and author of Journal of a Voyage to New South Wales 1789, in which a portrait of H. whitei is published and was described by Bleeker in 1855. Hippocampus novaehollandiae Steindachner, 1866 is a synonym. In 2016, H. procerus was determined to be a synonym of H. whitei as there were no morphological or genetic differences between individuals of the two species (Lourie et al., 2016; .Short et al., in press).
    [Show full text]
  • Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
    click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night.
    [Show full text]
  • The Genome of the Gulf Pipefish Enables Understanding of Evolutionary Innovations C
    Small et al. Genome Biology (2016) 17:258 DOI 10.1186/s13059-016-1126-6 RESEARCH Open Access The genome of the Gulf pipefish enables understanding of evolutionary innovations C. M. Small1†, S. Bassham1†, J. Catchen1,2†, A. Amores3, A. M. Fuiten1, R. S. Brown1,4, A. G. Jones5 and W. A. Cresko1* Abstract Background: Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish (Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch. Results: We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions. Conclusions: The collected findings from this first syngnathid reference genome open a window into the genomic underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful reference genomes is within reach of even small research groups.
    [Show full text]
  • Louisiana's Animal Species of Greatest Conservation Need (SGCN)
    Louisiana's Animal Species of Greatest Conservation Need (SGCN) ‐ Rare, Threatened, and Endangered Animals ‐ 2020 MOLLUSKS Common Name Scientific Name G‐Rank S‐Rank Federal Status State Status Mucket Actinonaias ligamentina G5 S1 Rayed Creekshell Anodontoides radiatus G3 S2 Western Fanshell Cyprogenia aberti G2G3Q SH Butterfly Ellipsaria lineolata G4G5 S1 Elephant‐ear Elliptio crassidens G5 S3 Spike Elliptio dilatata G5 S2S3 Texas Pigtoe Fusconaia askewi G2G3 S3 Ebonyshell Fusconaia ebena G4G5 S3 Round Pearlshell Glebula rotundata G4G5 S4 Pink Mucket Lampsilis abrupta G2 S1 Endangered Endangered Plain Pocketbook Lampsilis cardium G5 S1 Southern Pocketbook Lampsilis ornata G5 S3 Sandbank Pocketbook Lampsilis satura G2 S2 Fatmucket Lampsilis siliquoidea G5 S2 White Heelsplitter Lasmigona complanata G5 S1 Black Sandshell Ligumia recta G4G5 S1 Louisiana Pearlshell Margaritifera hembeli G1 S1 Threatened Threatened Southern Hickorynut Obovaria jacksoniana G2 S1S2 Hickorynut Obovaria olivaria G4 S1 Alabama Hickorynut Obovaria unicolor G3 S1 Mississippi Pigtoe Pleurobema beadleianum G3 S2 Louisiana Pigtoe Pleurobema riddellii G1G2 S1S2 Pyramid Pigtoe Pleurobema rubrum G2G3 S2 Texas Heelsplitter Potamilus amphichaenus G1G2 SH Fat Pocketbook Potamilus capax G2 S1 Endangered Endangered Inflated Heelsplitter Potamilus inflatus G1G2Q S1 Threatened Threatened Ouachita Kidneyshell Ptychobranchus occidentalis G3G4 S1 Rabbitsfoot Quadrula cylindrica G3G4 S1 Threatened Threatened Monkeyface Quadrula metanevra G4 S1 Southern Creekmussel Strophitus subvexus
    [Show full text]
  • Courtship Behavior in the Dwarf Seahorse, Hippocampuszosterae
    Copeia, 1996(3), pp. 634-640 Courtship Behavior in the Dwarf Seahorse, Hippocampuszosterae HEATHER D. MASONJONESAND SARA M. LEWIS The seahorse genus Hippocampus (Syngnathidae) exhibits extreme morpho- logical specialization for paternal care, with males incubating eggs within a highly vascularized brood pouch. Dwarf seahorses, H. zosterae, form monoga- mous pairs that court early each morning until copulation takes place. Daily behavioral observations of seahorse pairs (n = 15) were made from the day of introduction through the day of copulation. Four distinct phases of seahorse courtship are marked by prominent behavioral changes, as well as by differences in the intensity of courtship. The first courtship phase occurs for one or two mornings preceding the day of copulation and is characterized by reciprocal quivering, consisting of rapid side-to-side body vibrations displayed alternately by males and females. The remaining courtship phases are restricted to the day of copulation, with the second courtship phase distinguished by females pointing, during which the head is raised upward. In the third courtship phase, males begin to point in response to female pointing. During the final phase of courtship, seahorse pairs repeatedly rise together in the water column, eventually leading to females transferring their eggs directly into the male brood pouch during a brief midwater copulation. Courtship activity level (representing the percentage of time spent in courtship) increased from relatively low levels during the first courtship phase to highly active courtship on the day of copulation. Males more actively initiated courtship on the days preceding copulation, indicating that these seahorses are not courtship-role reversed, as has previously been assumed.
    [Show full text]