Courtship Behavior in the Dwarf Seahorse, Hippocampuszosterae

Total Page:16

File Type:pdf, Size:1020Kb

Courtship Behavior in the Dwarf Seahorse, Hippocampuszosterae Copeia, 1996(3), pp. 634-640 Courtship Behavior in the Dwarf Seahorse, Hippocampuszosterae HEATHER D. MASONJONESAND SARA M. LEWIS The seahorse genus Hippocampus (Syngnathidae) exhibits extreme morpho- logical specialization for paternal care, with males incubating eggs within a highly vascularized brood pouch. Dwarf seahorses, H. zosterae, form monoga- mous pairs that court early each morning until copulation takes place. Daily behavioral observations of seahorse pairs (n = 15) were made from the day of introduction through the day of copulation. Four distinct phases of seahorse courtship are marked by prominent behavioral changes, as well as by differences in the intensity of courtship. The first courtship phase occurs for one or two mornings preceding the day of copulation and is characterized by reciprocal quivering, consisting of rapid side-to-side body vibrations displayed alternately by males and females. The remaining courtship phases are restricted to the day of copulation, with the second courtship phase distinguished by females pointing, during which the head is raised upward. In the third courtship phase, males begin to point in response to female pointing. During the final phase of courtship, seahorse pairs repeatedly rise together in the water column, eventually leading to females transferring their eggs directly into the male brood pouch during a brief midwater copulation. Courtship activity level (representing the percentage of time spent in courtship) increased from relatively low levels during the first courtship phase to highly active courtship on the day of copulation. Males more actively initiated courtship on the days preceding copulation, indicating that these seahorses are not courtship-role reversed, as has previously been assumed. SEXUAL selection theory predicts that the the ventral surface of the male (Berglund et al., relative investment made by males and fe- 1989; Rosenqvist, 1990). Seahorses (genus Hip- males in their offspring is a primary determi- pocampus) possess the greatest specialization for nant of sexual selection intensity and patterns paternal care, with females depositing their eggs of courtship behavior within species (Trivers, directly into an abdominal brood pouch on the 1972; Williams, 1975; Thornhill and Gwynne, male where fertilization takes place (Fiedler, 1986). Across the animal kingdom, female in- 1954). In Hippocampus, the male brood pouch vestment in offspring typically exceeds that of epithelium is highly vascularized and provides males (reviewed by Clutton-Brock, 1991), and gas exchange and osmoregulation for devel- traditional sex roles during courtship involve oping embryos throughout gestation (Boisseau, males playing a more active role in initiating 1967; Linton and Soloff, 1964). courtship, males competing for access to fe- Due to their high degree of morphological males, and females being selective about mates specialization for paternal care, seahorses are (Trivers, 1972; Williams, 1975; Gwynne, 1991). an important group for testing the prediction In numerous groups, however, males provide that relative parental investment determines sex considerable paternal care (Ridley, 1978), which roles during courtship. However, previous de- may take the form of egg incubation or aera- scriptions of seahorse mating behavior have been tion, protection, or provisioning ofjuveniles. In largely anecdotal (Gill, 1905; Fiedler, 1954; species where male investment exceeds that of Breder and Rosen, 1966). Recent laboratory females, sexual selection theory predicts that studies on Hippocampusfuscus (Vincent, 1994a, these traditional courtship patterns should be 1994b, 1995) and field studies on H. whitei (Vin- reversed. cent and Sadler, 1995) have revealed both of Fishes in the family Syngnathidae (pipefishes these species to be monogamous, with a single and seahorses) show wide variation in the de- male and female mating repeatedly and exclu- gree of male anatomical and physiological spe- sively over the course of the reproductive sea- cialization for paternal care (Herald, 1959; Vin- son. Studies on H. fuscus have shown that males cent et al., 1992). In some pipefishes such as compete more intensely for access to mates than Nerophis ophidion, females attach their eggs onto do females (Vincent, 1994a), indicating that ex- ? 1996 by the American Society of Ichthyologists and Herpetologists MASONJONES AND LEWIS-SEAHORSE COURTSHIP BEHAVIOR 635 treme male care is not associated with court- We began daily behavioral observations for ship-role reversal, as has previously been as- each pair starting on the day of introduction sumed (Trivers, 1985). into tanks and continuing until copulation oc- Here we present a quantitative analysis of curred. Observations were made continuously courtship and copulatory behavior in the dwarf during the first 3 h after tank lights came on seahorse, Hippocampus zosteraeJordan and Gil- (defined as dawn) on each day before copula- bert, a species exhibiting an extreme degree of tion, and from dawn until copulation occurred paternal care. This study is based on daily ob- on the last day. Previous observations have in- servations of paired seahorses maintained un- dicated that all seahorse courtship occurs in the der standardized conditions in the laboratory morning, except on the day of copulation (Vin- from the day of introduction until copulation cent, 1994a; pers. obs.). Our analyses were based occurred. Hippocampus zosteraecourtship is par- on a total of approximately 320 h of observa- titioned into four discrete phases, distinguished tion. by marked behavioral changes as well as by dif- Beginning at dawn each day, the location of ferences in courtship intensity. both fish and their proximity was recorded. Proximity was classified as either far apart (dis- MATERIALS AND METHODS tance > 4 cm), close (' 4 cm), or touching (in direct physical contact). When transitions be- Study organism.-Hippocampus zosteraeoccurs in tween these states occurred, the individual ap- shallow seagrass beds from the Gulf of Mexico proaching or departing was identified. Behavior east through the Bahamas and to Bermuda was recorded continuously using the following (Ginsburg, 1937; B6hlke and Chaplin, 1966), definitions of behavior patterns (modified from and adult size ranges from 16-38 mm (mea- Fiedler, 1954; Vincent 1990, 1994a): "bright- sured as the linear distance from the top of ening" refers to a rapid change in coloration coronet to end of tail; Strawn, 1958). The mo- from normal body color (varying from black to nogamous mating system exhibited by H. fuscus white) to lighter body color over most of the and H. whitei (Vincent, 1995) is also observed body, excluding portions of the head as well as in laboratory studies of H. zosterae, with a male the dorsal midline that remain dark. Bright- and female remaining together and mating re- ening characterizes social interaction in sea- peatedly over the course of the breeding season horses and is not restricted to courtship (HDM, (HDM, unpubl. data). Females transfer one en- pers. obs.). In "quivering," fish assume an erect tire clutch of eggs to a single male [x (+ 1 SE) posture, with pectoral fins expanded, and rap- = 12.4 (+ 2.2) eggs, n = 9]. Three to 16 fully idly vibrate their body from side to side at a independent young are born after approxi- rate of approximately 12 cycles per sec. In mately 10 days of gestation within the male "pointing," a fish raises its head upward toward brood pouch, and pairs remate within 4-20 h the water surface to form an oblique angle with of the male's releasing young. main body axis and then lowers it again to a Hippocampus zosteraewere collected near Key horizontal position. "Pumping" is shown exclu- Largo, FL, and maintained in same-sex groups sively by males in H. zosteraeand consists of males for 1-8 weeks before trials in an attempt to opening their brood pouch and repeatedly flex- standardize reproductive states. Tanks were ing the tail in a motion similar to that displayed maintained at 25.5 C on a 13L:11D photope- during the release of young. A single pumping riod, and two plastic seagrass plants were sup- motion lasts from 1-32 sec, with a mode of 8 plied for attachment sites. Fish were fed re- sec. During "rising," males and females release cently hatched Artemia supplemented with cal- their respective holdfasts and rise up into the cium (Kalkwasser, Thiel Aquatech) daily. water column facing one another. In a "copu- latory rise," the female genital papilla is placed Courtship behavior trials.-On the morning be- inside the male brood pouch opening, followed fore each trial began, wet mass of adult male by egg transfer. Additional behaviors not in- and female seahorses were measured by blot- volved in courtship, including feeding and ting fish dry and weighing them to the nearest swimming, were also recorded during each ob- 10 mg in seawater in a plastic cuvette. Experi- servation period. mental fish ranged from 90-280 mg wet mass, We defined courtship interactions as occur- and pairs were selected for similarity of body ring when a male and female were within 4 cm size, with a mean difference between paired in- of one another and both fish exhibited bright- dividuals of 27 (? 4) mg. Pairs were placed sin- ened coloration. During courtship interactions, gly in 57 liter aquaria, and each seahorse was both sexes exhibited a characteristic posture used in only one courtship trial. consisting of an erect body with head inclined 636 COPEIA, 1996, NO. 3 downward. During courtship,
Recommended publications
  • Origins of Language in Relation to Sexual Selection: the Effect of M
    h [ { { h [ { { 9 b a { 9 [ / Ç" Ü $ 9 " ò t '(( h [ { { L " Ç" Ü $ 9 " t * " " + $ + + , - + " L " + $ -- . / !.{Çw!/Ç Language can be viewed as sexual displays from an evolutionary perspective. As both sexes in humans contribute significantly to parental care, we can expect that both males and females use language to display their favourable qualities in order to attract potential mates. In this study, 50 participants (22 male, 28 female) rated 30 vignettes, in which a male or female protagonist attempted to impress an opposite sex friend in a conversation. In both male-female and female-male flirtations, conversations reveal- ing the speaker’s positive character traits were the most highly rated while those ex- plicitly showing the speaker’s sexual interest in the potential partner were the most poorly rated. Despite the similarities, there were significant sex differences in the rat- ings of some individual vignettes and item-groups. Such differences would be chiefly discussed from an evolutionary perspective. L The origins of language surely deserve and require a great deal of discussion among researchers from a wide range of disciplines. Based on my previous essay about the sexually attractive features of language (Szeto 2009), I will look into the relationship between sexual selection and language origins in greater depth, with a special focus on the effect of mutual mate choice on sex differences in speech content. ' h [ { { Despite the prevalence of elaborate animal communication systems, it is essen- tially unequivocal that humans are the only species which possess language (Barrett, Dunbar and Lycett 2002; Hurford 2006; Workman and Reader 2004).
    [Show full text]
  • Broad-Tailed Hummingbird Coloration and Sun Orientation 1
    1 Broad-tailed hummingbird coloration and sun orientation 1 Two ways to display: male hummingbirds show different 2 color-display tactics based on sun orientation 3 Running header: Broad-tailed hummingbird coloration and sun orientation 4 5 Richard K. Simpson1* and Kevin J. McGraw1 6 1School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501 7 *Corresponding Author. Email: [email protected]; Phone: (480) 965-2593 8 9 ABSTRACT 10 Animals exhibit a diversity of ornaments and courtship behaviors, which often co- 11 occur and are used for communication. The sensory drive hypothesis states that these 12 traits evolved and vary due to interactions with each other, the environment, and signal 13 receiver. However, interactions between colorful ornaments and courtship behaviors, 14 specifically in relation to environmental variation, remain poorly understood. We studied 15 male iridescent plumage (gorgets), display behavior, and sun orientation during courtship 16 flights (shuttle displays) in broad-tailed hummingbirds (Selasphorus platycercus), to 17 understand how these traits interact in both space and time to produce the perceived 18 coloration of males. We also tested how gorget coloration varies among males based on 19 their plumage, behavioral, and morphological characteristics. In contrast with previous 20 work on other animals, we found that displaying males did not directionally face the sun, 21 but instead displayed on a continuum of solar orientation angles. The gorgets of males 22 who tended to face the sun during their displays appeared flashier (i.e. exhibited greater 23 color/brightness changes), brighter, and more colorful, whereas the gorgets of males who 2 Broad-tailed hummingbird coloration and sun orientation 24 tended to not face the sun were more consistently reflective (i.e.
    [Show full text]
  • REVIEW Physiological Dependence on Copulation in Parthenogenetic Females Can Reduce the Cost of Sex
    ANIMAL BEHAVIOUR, 2004, 67, 811e822 doi:10.1016/j.anbehav.2003.05.014 REVIEW Physiological dependence on copulation in parthenogenetic females can reduce the cost of sex M. NEIMAN Department of Biology, Indiana University, Bloomington (Received 6 December 2002; initial acceptance 10 April 2003; final acceptance 27 May 2003; MS. number: ARV-25) Despite the two-fold reproductive advantage of asexual over sexual reproduction, the majority of eukaryotic species are sexual. Why sex is so widespread is still unknown and remains one of the most important unanswered questions in evolutionary biology. Although there are several hypothesized mechanisms for the maintenance of sex, all require assumptions that may limit their applicability. I suggest that the maintenance of sex may be aided by the detrimental retention of ancestral traits related to sexual reproduction in the asexual descendants of sexual taxa. This reasoning is based on the fact that successful reproduction in many obligately sexual species is dependent upon the behavioural, physical and physiological cues that accompany sperm delivery. More specifically, I suggest that although parthenogenetic (asexual) females have no need for sperm per se, parthenogens descended from sexual ancestors may not be able to reach their full reproductive potential in the absence of the various stimuli provided by copulatory behaviour. This mechanism is novel in assuming no intrinsic advantage to producing genetically variable offspring; rather, sex is maintained simply through phylogenetic constraint. I review and synthesize relevant literature and data showing that access to males and copulation increases reproductive output in both sexual and parthenogenetic females. These findings suggest that the current predominance of sexual reproduction, despite its well-documented drawbacks, could in part be due to the retention of physiological dependence on copulatory stimuli in parthenogenetic females.
    [Show full text]
  • Courtship & Mating Reproduction in Insects
    Reproduction Courtship & Mating in Insects • How do the sexes find each other? – Light – Swarming (male only/ female only) – Leks (male aggregations) • Defend territory against males • Court arriving females – Pheromones What do they do once they find each other? Courtship • Close range intersexual behavior that induces sexual receptivity before and during mating. • Allows mate choice among and within species. 1 Types of Courtship • Visual displays Nuptial Gifts • Ritualized movements • 3 forms • Sound production – Cannibalization of males • Tactile stimulation – Glandular product • Nuptial gifts – Nuptial gift • Prey • Salt, nutrients Evolution of nuptial feeding Sexual Cannibalization • Female advantages • Rather extreme – Nutritional benefit • Male actually does not – Mate choice (mate with good provider) willingly give himself • Male advantages up… – Helping provision/produce his offspring – Where would its potential – Female returns sperm while feeding rather than reproductive benefit be? mating with someone else • Do females have • Male costs increased reproductive – Capturing food costs energy and incurs predation success? risk – Prey can be stolen and used by another male. 2 Glandular gifts Nuptial gifts • Often part of the spermatophore (sperm transfer unit) – Occupy female while sperm is being transferred – Parental investment by male • Generally a food item (usually prey) • Also regurgitations (some flies) • But beware the Cubic Zirconia, ladies Sexual selection Types of sexual selection • Intrasexual selection – Contest competition
    [Show full text]
  • Avian Monogamy
    (ISBN: 0-943610-45-1) AVIAN MONOGAMY EDITED BY PATRICIA ADAIR GOWATY AND DOUGLAS W. MOCK Department of Zoology University of Oklahoma Norman, Oklahoma 73019 ORNITHOLOGICAL MONOGRAPHS NO. 37 PUBLISHED BY THE AMERICAN ORNITHOLOGISTS' UNION WASHINGTON, D.C. 1985 AVIAN MONOGAMY ORNITHOLOGICAL MONOGRAPHS This series, published by the American Ornithologists' Union, has been estab- lished for major papers too long for inclusion in the Union's journal, The Auk. Publication has been made possiblethrough the generosityof the late Mrs. Carll Tucker and the Marcia Brady Tucker Foundation, Inc. Correspondenceconcerning manuscripts for publication in the seriesshould be addressedto the Editor, Dr. David W. Johnston,Department of Biology, George Mason University, Fairfax, VA 22030. Copies of Ornithological Monographs may be ordered from the Assistant to the Treasurer of the AOU, Frank R. Moore, Department of Biology, University of Southern Mississippi, Southern Station Box 5018, Hattiesburg, Mississippi 39406. (See price list on back and inside back covers.) OrnithologicalMonographs,No. 37, vi + 121 pp. Editors of Ornithological Monographs, Mercedes S. Foster and David W. Johnston Special Reviewers for this issue, Walter D. Koenig, Hastings Reservation, Star Route Box 80, Carmel Valley, CA 93924; Lewis W. Oring, De- partment of Biology,Box 8238, University Station, Grand Forks, ND 58202 Authors, Patricia Adair Gowaty, Department of BiologicalSciences, Clem- son University, Clemson, SC 29631; Douglas W. Mock, Department of Zoology, University of Oklahoma, Norman, OK 73019 First received, 23 August 1983; accepted29 February 1984; final revision completed 8 October 1984 Issued October 17, 1985 Price $11.00 prepaid ($9.00 to AOU members). Library of CongressCatalogue Card Number 85-647080 Printed by the Allen Press,Inc., Lawrence, Kansas 66044 Copyright ¸ by the American Ornithologists'Union, 1985 ISBN: 0-943610-45-1 ii AVIAN MONOGAMY EDITED BY PATRICIA ADAIR GOWATY AND DOUGLAS W.
    [Show full text]
  • The Seahorse Genome and the Evolution of Its Specialized
    OPEN ARTICLE doi:10.1038/nature20595 The seahorse genome and the evolution of its specialized morphology Qiang Lin1*§, Shaohua Fan2†*, Yanhong Zhang1*, Meng Xu3*, Huixian Zhang1,4*, Yulan Yang3*, Alison P. Lee4†, Joost M. Woltering2, Vydianathan Ravi4, Helen M. Gunter2†, Wei Luo1, Zexia Gao5, Zhi Wei Lim4†, Geng Qin1,6, Ralf F. Schneider2, Xin Wang1,6, Peiwen Xiong2, Gang Li1, Kai Wang7, Jiumeng Min3, Chi Zhang3, Ying Qiu8, Jie Bai8, Weiming He3, Chao Bian8, Xinhui Zhang8, Dai Shan3, Hongyue Qu1,6, Ying Sun8, Qiang Gao3, Liangmin Huang1,6, Qiong Shi1,8§, Axel Meyer2§ & Byrappa Venkatesh4,9§ Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a ‘pelvic fin-loss’ phenotype similar to that of seahorses. Members of the teleost family Syngnathidae (seahorses, pipefishes de novo. The H. comes genome assembly is of high quality, as > 99% and seadragons) (Extended Data Fig.
    [Show full text]
  • Reproductive Ecology & Sexual Selection
    Reproductive Ecology & Sexual Selection REPRODUCTIVE ECOLOGY REPRODUCTION & SEXUAL SELECTION • Asexual • Sexual – Attraction, Courtship, and Mating – Fertilization – Production of Young The Evolutionary Enigma of Benefits of Asex Sexual Reproduction • Sexual reproduction produces fewer reproductive offspring than asexual reproduction, a so-called reproductive handicap 1. Eliminate problem to locate, court, & retain suitable mate. Asexual reproduction Sexual reproduction Generation 1 2. Doubles population growth rate. Female Female 3. Avoid “cost of meiosis”: Generation 2 – genetic representation in later generations isn't reduced by half each time Male 4. Preserve gene pool adapted to local Generation 3 conditions. Generation 4 Figure 23.16 The Energetic Costs of Sexual Reproduction Benefits of Sex • Allocation of Resources 1. Reinforcement of social structure 2. Variability in face of changing environment. – why buy four lottery tickets w/ the same number on them? Relative benefits: Support from organisms both asexual in constant & sexual in changing environments – aphids have wingless female clones & winged male & female dispersers – ciliates conjugate if environment is deteriorating Heyer 1 Reproductive Ecology & Sexual Selection Simultaneous Hermaphrodites TWO SEXES • Advantageous if limited mobility and sperm dispersal and/or low population density • Guarantee that any member of your species encountered is the • Conjugation “right” sex • Self fertilization still provides some genetic variation – Ciliate protozoans with + & - mating
    [Show full text]
  • Short Communications Courtship Display and Mating of the Superb
    Short Communications Courtship Display and Mating of the Superb Bird of Paradise Lophorina superba D.W. & C.B. FRITH "Prionodura':Paluma via Townsville, Queensland 4816 Emu 88, 183-188 Received 17 May 1987, accepted 9 October 1987 The Superb Bird of Paradise Lophorina superba inhabits December 1977 and November 1985 and we compared rainforest and forest edge between approximately 1000 these with those of the wild birds and descriptions by other and 2250 m above mean sea level (amsl) throughout authors. mainland New Guinea. The adult male is velvet black with metallic-like oil-green iridescent plumage on the crown, an Initial dkplay activily (IDA) erectile iridescent breast shield, and with a very long erectile and spreadable cape of modified velvet black nape This was observed seven times and consists of a sleeked feathers. Peculiar horn-like naral tufts of erectile rather stiff pose, held for about five seconds, before movement of black feathers adorn the base of the upper mandible, above cape, breast and naral tuft plumage. The male slightly the nostrils, as does a similar tuft of feathers beneath the crouches with breast shield sleeked tightly back against lower mandible. The female is cryptically coloured in himself, cape held back and down against the back, wings browns and greys with distinct blackish ventral bamng, and tail held normally, head and bill pointed upwards with like many other female paradisaeids (see Gilliard 1969; eyes fixed on the female, and naral tufts projecting conspic- Cooper & Forshaw 1977). First year male plumage is like uously forward and bifurcate (Fig. 1). This pose is followed that of the female, the black and iridescent plumage of by a repeated, sudden, upward and outward extension of adult males being acquired gradually over several years the breast shield, with head and bill still pointing at the (Gilliard 1969).
    [Show full text]
  • Revlined Seahorse Dad Copy
    Diligent Dads In the wild animal world, there are a number of nurturing males, including the seahorse The lined seahorse gets its name from its vertical stripes. They can change colors to provide camouflage or denote mood. Photo credit: Linda De Volder By J. Morton Galetto, CU Maurice River When it comes to fathering, the animal world exhibits a spectrum from love ‘em and leave ‘em to champion surveillance. In honor of Father’s Day let’s discuss some superior dads. In the animal kingdom the emperor penguin male takes sole responsibility for incubating an egg. It is balanced on his feet which he shuffles along the ice of Antarctica for two months, enduring 125 mph winds and – 40 temperatures. Hundreds of huddling fathers bear this responsibility while their mates are at sea fattening-up. This story of dedication and endurance is powerful and heart-warming. Emperor penguins’ dedication leads them to be described as the #1 exemplary father in a multitude of articles. I highly recommend the 2005 film “March of the Penguins,” that documents this challenging fatherly devotion. In fact every dead-beat dad should be required to watch “March of the Penguins,” repeatedly, even if it doesn’t help. But our story is not about parental neglect; it is about celebrating great dads. Let’s bring it home a bit, since most of us will never visit Antarctica and certainly not in 125 mph winds. We’ll explore some local creatures and focus on one unexpected twist in fathering. In past articles we have discussed some dutiful parents of the avian variety.
    [Show full text]
  • The Evolution of Leks Through Female Choice: Differential Clustering And
    BehavEcol Sociobiol (1992) 30:227-237 Behavioral Ecology and Sociobiology ? Springer-Verlag1992 The evolutionof leks throughfemale choice: differentialclustering and space utilizationin six sympatricmanakins Marc Thery C.N.R.S. - U.R.A. 1183, Mus6umNational d'Histoire Naturelle, Ecologie Generale,4 avenue du Petit-Chateau, F-91800 Brunoy, France Received October 1, 1990 / Accepted October 2, 1991 Summary.The degreeto which lekkingand non-lekking the increasingfemale home-rangesize could have led male manakinsselect display sites in order to maximise to the evolution of classicalleks. proximityto femaleswas examinedby contrastingmove- ments of females with male dispersion.Data on female visitingpatterns, male courtshipdisruption, and mating skew were also collected over three successivebreeding Introduction seasons. For the five lek-breedingspecies, female home- rangeswere 3-7 times largerthan those of adult males. Lek matingsystems, where males congregatefor the sole Femalemovements were concentrated around leks, fruit- purpose of attractingand courtingfemales, are typified ing places and streambathing sites. None of the females by a heavilybiased operational sex ratio and the inability monitoredby radio-trackingexpanded her normalrange of individualmales to economicallycontrol or monopo- in order to visit males on leks. On the contrary,feeding lize the resourcesessential for femaleacquisition (Emlen bouts of femalesfrequently preceded a visit to potential and Oring 1977). Across lek mating systems,male clus- mates at neighboringleks. Despite small sample sizes, teringis highly variableand can be dividedinto "classi- significant correlations were found between female cal leks" (Bradbury1977, 1981) also called "true leks" home-rangesize and male clustering(distances between (Oring 1982), where males are densely grouped within neighboring leks and distances between neighboring sight of each other, and "explodedleks" (Gilliard1963; males), as predicted by the female choice model and Snow 1970; Bradbury 1981; Foster 1983) or "quasi- the hotspot model.
    [Show full text]
  • Marine Protected Species Identification Guide
    Department of Primary Industries and Regional Development Marine protected species identification guide June 2021 Fisheries Occasional Publication No. 129, June 2021. Prepared by K. Travaille and M. Hourston Cover: Hawksbill turtle (Eretmochelys imbricata). Photo: Matthew Pember. Illustrations © R.Swainston/www.anima.net.au Bird images donated by Important disclaimer The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Department of Primary Industries and Regional Development Gordon Stephenson House 140 William Street PERTH WA 6000 Telephone: (08) 6551 4444 Website: dpird.wa.gov.au ABN: 18 951 343 745 ISSN: 1447 - 2058 (Print) ISBN: 978-1-877098-22-2 (Print) ISSN: 2206 - 0928 (Online) ISBN: 978-1-877098-23-9 (Online) Copyright © State of Western Australia (Department of Primary Industries and Regional Development), 2021. ii Marine protected species ID guide Contents About this guide �������������������������������������������������������������������������������������������1 Protected species legislation and international agreements 3 Reporting interactions ���������������������������������������������������������������������������������4 Marine mammals �����������������������������������������������������������������������������������������5 Relative size of cetaceans �������������������������������������������������������������������������5
    [Show full text]
  • Mate Choice | Principles of Biology from Nature Education
    contents Principles of Biology 171 Mate Choice Reproduction underlies many animal behaviors. The greater sage grouse (Centrocercus urophasianus). Female sage grouse evaluate males as sexual partners on the basis of the feather ornaments and the males' elaborate displays. Stephen J. Krasemann/Science Source. Topics Covered in this Module Mating as a Risky Behavior Major Objectives of this Module Describe factors associated with specific patterns of mating and life history strategies of specific mating patterns. Describe how genetics contributes to behavioral phenotypes such as mating. Describe the selection factors influencing behaviors like mate choice. page 882 of 989 3 pages left in this module contents Principles of Biology 171 Mate Choice Mating as a Risky Behavior Different species have different mating patterns. Different species have evolved a range of mating behaviors that vary in the number of individuals involved and the length of time over which their relationships last. The most open type of relationship is promiscuity, in which all members of a community can mate with each other. Within a promiscuous species, an animal of either gender may mate with any other male or female. No permanent relationships develop between mates, and offspring cannot be certain of the identity of their fathers. Promiscuous behavior is common in bonobos (Pan paniscus), as well as their close relatives, the chimpanzee (P. troglodytes). Bonobos also engage in sexual activity for activities other than reproduction: to greet other members of the community, to release social tensions, and to resolve conflicts. Test Yourself How might promiscuous behavior provide an evolutionary advantage for males? Submit Some animals demonstrate polygamous relationships, in which a single individual of one gender mates with multiple individuals of the opposite gender.
    [Show full text]