NNLO Vacuum Stability Analysis in the SM and the Higgs Bosons of the MSSM at Three-Loop Accuracy

Total Page:16

File Type:pdf, Size:1020Kb

NNLO Vacuum Stability Analysis in the SM and the Higgs Bosons of the MSSM at Three-Loop Accuracy NNLO Vacuum Stability Analysis in the SM and the Higgs Bosons of the MSSM at Three-Loop Accuracy Edilson Alfonso Reyes Rojas Universidad Nacional de Colombia Facultad de Ciencias, Departamento de F´ısica Bogot´a,Colombia 2020 NNLO Vacuum Stability Analysis in the SM and the Higgs Bosons of the MSSM at Three-Loop Accuracy Edilson Alfonso Reyes Rojas Trabajo de grado presentado como requisito para optar al t´ıtulode: Doctor en Ciencias F´ısica Director: Ph.D. Angelo Raffaele Fazio Grupo de Campos y Part´ıculas Universidad Nacional de Colombia Facultad de Ciencias, Departamento de F´ısica Bogot´a,Colombia 2020 This thesis is based on the author's work conducted at the Universidad Nacional de Colombia in Bogot´a.Main results of this work have already been published in the articles: [1] E. A. Reyes R., A. R. Fazio, EPJ Web Conf. 192, 00033 (2018). DOI: 10.1051/epjconf/201819200033 [2] A. R. Fazio and E. A. Reyes R., Nucl. Phys. B 942, 164-183 (2019). [arXiv:1901.03651 [hep-ph]]. DOI: 10.1016/j.nuclphysb.2019.03.008 [3] E.A. Reyes R., A.R. Fazio, Phys. Rev. D 100, no.11, 115017 (2019). [arXiv:1908.00693 [hep-ph]]. DOI: 10.1103/PhysRevD.100.115017 The author have presented and discussed the results of this thesis in different events: The Higgs Boson Masses of the MSSM at Three-Loop Accuracy Katharsis of Ultimate Theory Standards 7 (KUTS7) Karlsruhe - Karlsruhe Institute of Thechnology (KIT) (2017). The Higgs Boson Masses of the MSSM at Three-Loop Accuracy XXVII Congreso Nacional de F´ısica Cartagena - Colombia (2017). The Lightest Higgs Boson Mass of the MSSM at Three-Loop Accuracy 2nd Colombian Meeting on High Energy Physics Bogot´a,D.C. - Universidad Nacional de Colombia (UNAL) (2017). The Lightest Higgs Boson Mass of the MSSM at Three-Loop Accuracy MASS2018: Origin of Mass at the High Energy and Intensity Frontier Odense - University of Southern Denmark (SDU) (2018). The light CP-even Higgs boson mass of the MSSM at three-loop accuracy International Workshop on Quantum Chromodynamics Theory and Experiment QCD@Work 2018. Matera - Italy (2018). Acknowledgements Empiezo agradeciendo al profesor A. Raffaele Fazio quien fue mi director de esta tesis doctoral, pero mas importante aun un valioso amigo que me ha acompa~nadoen mi proceso de formaci´oncomo investigador en el ´areade la f´ısicade part´ıculas.Agradezco su apoyo continuo en medio del complejo camino que deci- dimos seguir en este proyecto, las valiosas discusiones que hemos tenido, sus consejos para poder realizar exitosamente el doctorado y sobretodo su paciencia y confianza en medio de los problemas que se nos han presentado. Espero sinceramente haber contribuido a su vida personal y profesional de la misma manera que el contribuyo a la m´ıa. Por otra parte quiero agradecer a varias personas que han formado parte a lo largo de este proceso. Al Prof. Dr. Bernd A. Kniehl, quien me presto su hospitalidad y apoyo incondicional en mi estancia realizada con su grupo en DESY en el a~no2017. A la doctora Sophia C. Borowka, quien estuvo en la Universidad Nacional de Colombia con nuestro grupo en el a~no2016 como profesora invitada y con quien iniciamos este camino. Su amable disponibilidad para discutir acerca de los detalles t´ecnicosde nuestro c´alculohicieron realizable este proyecto. Al profesor Alexis Irlande por ayudarnos con la instalaci´onde nuestro propio servidor en la UNAL y por su apoyo t´ecnico todos estos a~nos.Al profesor Sven Heinemeyer por las diferentes discusiones en el evento KUTS y via e-mail. Al equipo de KUTS por permitirme exponer mis resultados y por todas las discusiones llevadas a cabo en su evento. Al profesor Ayres Freitas por sus discusiones acerca del c´odigo TVID que es una pieza importante en nuestro c´alculo. Al profesor Mikhail Kalmykov por sus discusiones acerca del estado de arte de las integrales master a tres-loop. Al profesor German Rodrigo y al profesor William Torres, quien es tambi´enun antiguo amigo, por su amable invitaci´ona presentar un seminario en su grupo de investigaci´onen el IFIC de la universidad de Valencia - Espa~na,por las discusiones llevadas a cabo y por incluirme como miembro de COST. A la profesora Heidi Rzehak por su colaboraci´ony apoyo financiero para participar en el evento MASS2018 realizado en Odense { Dinamarca. Al profesor C. Coriano y en general a los organizadores del seminario QCD@Work 2018 por su apoyo financiero, por permitirme presentar un poster y por las discusiones en su evento. Quiero agradecer a las instituciones que han financiado este proyecto. La Universidad Nacional de Colombia a trav´esde la beca: CONVOCATORIA NACIONAL DE PROYECTOS PARA EL FORTALECIMIENTO DE LA INVESTIGACION,´ CREACION´ E INNOVACION´ DE LA UNIVERSIDAD NACIONAL DE CO- LOMBIA 2016-2018 con el proyecto N. 34729, Minimal Supersymmetric Standard Model Higgs Boson to High Accuracy. Colciencias a trav´esde la beca: CONVOCATORIA 727 DE COLCIENCIAS PARA DOC- TORADOS NACIONALES 2015 con el Proyecto N. 39844, NNLO Vacuum Stability Analysis in the SM and the Higgs Bosons of the MSSM at Three-Loop Accuracy. Finalmente, quiero agradecer el apoyo de mi familia, necesario para hacer mas f´acilel camino que escog´ı. Este documento esta dedicado a ellos: Celia, Alfonso, Diego, Freddy, Cristian, Susana y en especial a Paola por su paciencia y apoyo en estos ultimos a~nos.Amorem nostrae memoriam spero sempiternam fore. ix Resumen En esta tesis proporcionamos un c´alculodiagram´atico a orden fijo de las correcciones cu´anti- cas a la masa del boson de Higgs liviano en el modelo super-sim´etricominimal con par´ametros reales. Hemos calculado las contribuciones provenientes del sector de la QCD super-sim´etri- 2 ca con una precisi´onde tres-loops al orden O(αtαs). El procedimiento de regularizaci´on adoptado esta basado en el esquema de reducci´ondimensional con el fin de preservar la super-simetr´ıaen todos los ordenes perturbativos. El c´alculoextiende la regi´onde validez de estudios previos al espacio completo de par´ametrossuper-sim´etricos.Las correcciones a la masa del Higgs son expresadas en t´erminosde un conjunto de integrales del vac´ıoa tres-loops las cuales han sido calculadas explotando las t´ecnicasdel m´etodo de dispersi´on que permite realizar su evaluaci´onnum´ericapara una jerarqu´ıaarbitraria de las escalas de masa involucradas. Por otro lado, hemos realizado una comparaci´onnum´ericade nuestros resultados con las dem´aspredicciones te´oricasencontradas en la literatura. En particular, el c´odigoFeynHiggs combina c´alculosa orden fijo con los c´alculosprovenientes de la teor´ıa efectiva de campos cu´anticos dando una predicci´onconfiable para la masa del boson de Higgs hasta el orden de tres-loops. Las dos predicciones num´ericasson compatibles en el escenario donde solo hay una escala de la super-simetr´ıaque toma valores menores a 10 TeV y donde el par´ametrode mezcla del quark stop se anula. Para escalas mayores a 10 TeV observamos diferencias num´ericassignificativas. La diferencia crece sin acotarse al aumentar la escala de la super-simetr´ıadebido a los efectos de los t´erminoscon logaritmos grandes en el c´alculoa orden fijo que da~nanla perturbatividad de las correcciones cu´anticas. Por lo tanto, hemos realizado un an´alisisnum´erico adicional donde buscamos restricciones al valor que puede tomar la escala super-sim´etrica.El valor experimental combinado para la masa del boson de Higgs obtenido por los laboratorios CMS y ATLAS y el problema de la estabilidad del vac´ıoen el modelo est´andarson usados para derivar cotas superiores sobre esta escala. En el escenario considerado en este trabajo, para un valor grande de la raz´onentre los valores esperados en el vac´ıode los dos campos de Higgs pares bajo CP (tanβ 10), hemos encon- ≥ trado que valores de la escala super-sim´etricasuperiores a 12:5 1:2 TeV est´anexcluidos. ± Para valores peque~nosde tanβ 1, una cota superior muy grande de alrededor de 1011 GeV ≈ fue encontrada. Abstract In this thesis we provide a fixed-order Feynman diagrammatic computation of the quan- tum corrections to the lightest CP-even Higgs Boson mass in the real version of the Mi- nimal Supersymmetric Standard Model. We have computed the contributions coming from 2 the SUSY-QCD sector with a precision of three-loops at order O(αtαs). The adopted re- x gularization procedure is based on the dimensional reduction scheme in order to preserve supersymmetry to all perturbative orders. The calculation extends the region of validity of previous studies to the whole supersymmetric parameter space. The Higgs mass corrections are expressed in terms of a set of three-loop vacuum integrals which have been computed by exploiting dispersion relation techniques which allows their numerical evaluation for an arbitrary hierarchy of the involved mass scales. A numerical comparison of our results with the other predictions found in literature has been done. In particular, the code FeynHiggs combines one- and two-loop fixed-order with the effective-field-theory calculations and gives a reliable prediction for the same Higgs mass at three-loop level. The two numerical pre- dictions agree considering the scenario of only one SUSY-scale and vanishing stop mixing parameter below 10 TeV. For large scales above 10 TeV we have observed sizeable numerical differences between the two predictions. The difference grows monotonically with the SUSY scale due to the effects of large logarithmic terms in the fixed-order computation which spoil the perturbativity of the corrections. Therefore, we have developed an additional nu- merical analysis where we look for constraints on the supersymmetric scale.
Recommended publications
  • An Introduction to Effective Field Theory
    An Introduction to Effective Field Theory Thinking Effectively About Hierarchies of Scale c C.P. BURGESS i Preface It is an everyday fact of life that Nature comes to us with a variety of scales: from quarks, nuclei and atoms through planets, stars and galaxies up to the overall Universal large-scale structure. Science progresses because we can understand each of these on its own terms, and need not understand all scales at once. This is possible because of a basic fact of Nature: most of the details of small distance physics are irrelevant for the description of longer-distance phenomena. Our description of Nature’s laws use quantum field theories, which share this property that short distances mostly decouple from larger ones. E↵ective Field Theories (EFTs) are the tools developed over the years to show why it does. These tools have immense practical value: knowing which scales are important and why the rest decouple allows hierarchies of scale to be used to simplify the description of many systems. This book provides an introduction to these tools, and to emphasize their great generality illustrates them using applications from many parts of physics: relativistic and nonrelativistic; few- body and many-body. The book is broadly appropriate for an introductory graduate course, though some topics could be done in an upper-level course for advanced undergraduates. It should interest physicists interested in learning these techniques for practical purposes as well as those who enjoy the beauty of the unified picture of physics that emerges. It is to emphasize this unity that a broad selection of applications is examined, although this also means no one topic is explored in as much depth as it deserves.
    [Show full text]
  • Complete Normal Ordering 1: Foundations
    KCL-PH-TH/2015-55, LCTS/2015-43, CERN-PH-TH/2015-295 Complete Normal Ordering 1: Foundations a,b a,b a,c John Ellisp q, Nick E. Mavromatosp q and Dimitri P. Sklirosp q (a) Theoretical Particle Physics and Cosmology Group Department of Physics, King’s College London London WC2R 2LS, United Kingdom (b) Theory Division, CERN, CH-1211 Geneva 23, Switzerland (c) School of Physics and Astronomy, University of Nottingham Nottingham, NG7 2RD, UK [email protected]; [email protected]; [email protected] Abstract We introduce a new prescription for quantising scalar field theories (in generic spacetime dimension and background) perturbatively around a true minimum of the full quantum ef- fective action, which is to ‘complete normal order’ the bare action of interest. When the true vacuum of the theory is located at zero field value, the key property of this prescription is the automatic cancellation, to any finite order in perturbation theory, of all tadpole and, more generally, all ‘cephalopod’ Feynman diagrams. The latter are connected diagrams that can be disconnected into two pieces by cutting one internal vertex, with either one or both pieces free from external lines. In addition, this procedure of ‘complete normal ordering’ (which is an extension of the standard field theory definition of normal ordering) reduces by a substantial factor the number of Feynman diagrams to be calculated at any given loop order. We illustrate explicitly the complete normal ordering procedure and the cancellation of cephalopod diagrams in scalar field theories with non-derivative interactions, and by using a point splitting ‘trick’ we extend this result to theories with derivative interactions, such as those appearing as non-linear σ-models in the world-sheet formulation of string theory.
    [Show full text]
  • Arxiv:1607.07352V2 [Hep-Ph] 26 Sep 2016 Steps of the Calculation in Order to Provide Gauge-Independent S-Matrix Elements
    Gauge-independent MS renormalization in the 2HDM Ansgar Denner, Laura Jenniches, Jean-Nicolas Lang, Christian Sturm Institut f¨urTheoretische Physik und Astrophysik, Universit¨atW¨urzburg, Emil-Hilb-Weg 22, D-97074 W¨urzburg, Germany Abstract: We present a consistent renormalization scheme for the CP-conserving Two-Higgs-Doublet Model based on MS renormalization of the mixing angles and the soft-Z2-symmetry-breaking scale Msb in the Higgs sector. This scheme requires to treat tadpoles fully consistently in all arXiv:1607.07352v2 [hep-ph] 26 Sep 2016 steps of the calculation in order to provide gauge-independent S-matrix elements. We show how bare physical parameters have to be defined and verify the gauge independence of physical quantities by explicit calculations in a general Rξ-gauge. The procedure is straightforward and applicable to other models with extended Higgs sectors. In contrast to the proposed scheme, the MS renormalization of the mixing angles combined with popular on-shell renormalization schemes gives rise to gauge-dependent results already at the one-loop level. We present explicit results for electroweak NLO corrections to selected processes in the appropriately renormalized Two-Higgs-Doublet Model and in particular discuss their scale dependence. September 2016 1 Introduction The discovery of a Higgs boson at the Large Hadron Collider (LHC) [1,2] was a tremendous suc- cess for elementary particle physics. The Higgs boson is now a central object of intense research in both experiment and theory in order to determine its properties precisely. In particular, it is interesting to investigate whether the Higgs boson belongs to the Standard Model (SM) or whether it is part of a more general theory.
    [Show full text]
  • Renormalization, Non-Abelian Gauge Theories and Anomalies Lecture
    Advanced Quantum Field Theory : Renormalization, Non-Abelian Gauge Theories and Anomalies Lecture notes Amsterdam-Brussels-Geneva-Paris Doctoral School \Quantum Field Theory, Strings and Gravity" Brussels, October 2017 Adel Bilal Laboratoire de Physique Th´eoriquede l'Ecole´ Normale Sup´erieure PSL Research University, CNRS, Sorbonne Universit´es,UPMC Paris 6 24 rue Lhomond, F-75231 Paris Cedex 05, France Abstract These are lecture notes of an advanced quantum field theory course intended for graduate students in theoretical high energy physics who are already familiar with the basics of QFT. The first part quickly reviews what should be more or less known: functional inte- gral methods and one-loop computations in QED and φ4. The second part deals in some detail with the renormalization program and the renormalization group. The third part treats the quantization of non-abelian gauge theories and their renormalization with spe- cial emphasis on the BRST symmetry. Every chapter includes some exercices. The fourth part of the lectures, not contained in the present notes but based on arXiv:0802.0634, discusses gauge and gravitational anomalies, how to characterise them in various dimen- sions, as well as anomaly cancellations. Contents 1 Functional integral methods 1 1.1 Path integral in quantum mechanics . .1 1.2 Functional integral in quantum field theory . .2 1.2.1 Derivation of the Hamiltonian functional integral . .2 1.2.2 Derivation of the Lagrangian version of the functional integral . .3 1.2.3 Propagators . .5 1.3 Green functions, S-matrix and Feynman rules . .7 1.3.1 Vacuum bubbles and normalization of the Green functions .
    [Show full text]
  • Introduction to Supersymmetry PHYS-F-417
    Introduction to Supersymmetry PHYS-F-417 Riccardo Argurio Universit´eLibre de Bruxelles December 18, 2020 2 Contents 1 Introduction 7 1.1 Motivating supersymmetry . 7 1.2 Plan of the lecture notes . 14 1.3 Further reading . 14 2 The superalgebra 17 2.1 A graded extension of the Poincar´ealgebra . 17 2.2 Representations of the Lorentz group . 18 2.3 A first look at the superalgebra . 25 2.3.1 Basic consequences of the superalgebra . 27 2.4 Representations of the superalgebra . 29 2.4.1 Massless supermultiplets . 29 2.4.2 Supermultiplets of extended supersymmetry . 31 2.4.3 Massive supermultiplets . 33 3 Supersymmetric field theories 37 3.1 The theory for the scalar multiplet . 37 3.1.1 Supersymmetry variations on scalar and fermionic fields 38 3.1.2 Introducing auxiliary fields . 43 3.1.3 Supersymmetric mass terms . 45 3.1.4 Supersymmetric interactions . 47 3.2 The theory for the vector multiplet . 48 4 Superspace and superfields 53 4.1 Introducing superspace and superfields . 53 4.1.1 Supersymmetry transformations as translations in su- perspace . 56 4.1.2 Manifestly supersymmetry invariant action . 59 3 4 CONTENTS 4.2 Chiral superfields . 61 4.2.1 Action for a chiral superfield . 64 4.2.2 Superpotential . 67 4.2.3 Equations of motion for chiral superfields . 69 4.3 Real superfields . 71 4.3.1 Gauge symmetry and the vector multiplet . 72 4.3.2 The action and the gaugino chiral superfield . 78 4.3.3 Equations of motion for real superfields . 83 4.3.4 Fayet-Iliopoulos term .
    [Show full text]
  • Higher Loop Renormalization in Large N-Limit Salmana Mubashar
    Master of Science. Thesis Higher loop renormalization in large N-limit Salmana Mubashar Mathematical Physics, Dept. of Theoretical Physics Royal Institute of Technology, Sweden Stockholm, Sweden 2010 TRITA-FYS 2010:79 ISSN 0280-316X ISRN KTH/FYS/{10:79{SE 2 2010-12-16 2 Abstract In early 1970's a breakthrough was achieved in Modern physics when t' Hooft and Veltman proved the renormalizability of gauge theories. This idea was later used in perturbative Quan- tum field theories that we have described in the thesis. Amplitude of a Feynman diagram can be calculated by the Feynman rule of the theory. Every Feynman diagram give some divergences. The divergences of the Feynman amplitude are due to the slow decay of the propagators in momentum space (ultraviolet divergences). In order to get finite results for the correlation functions, we have to renormalize the theory. The procedure involves two steps. The first one is to regularize the theory by some regularization method. The renormalization consists of subtracting divergences by introducing some counter terms. We have used dimensional regular- ization and minimal subtraction scheme to renormalize the φ4 model. This theory of N-fields give rise to some special symmetry factors that accompanied the Feynman amplitudes. In the thesis, we do a detailed study of Feynman diagrams for N-component fields, and find some explicit formulae for general N-case. Our requirement is to perform the renormalization in the large N-limit. In the large N-limit, only higher order terms of symmetry factors are considered. Two-point diagrams give mass renormalization while four-point diagrams give vertex renormal- ization constants.
    [Show full text]
  • Strong Dynamics and Electroweak Symmetry Breaking
    FERMI–PUB–02/045-T BUHEP-01-09 March, 2003 Strong Dynamics and Electroweak Symmetry Breaking Christopher T. Hill1 and Elizabeth H. Simmons2,3 1Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL, 60510 2 Dept. of Physics, Boston University 590 Commonwealth Avenue, Boston, MA, 02215 3 Radcliffe Institute for Advanced Study and Department of Physics, Harvard University Cambridge, MA, 02138 Abstract arXiv:hep-ph/0203079v3 4 Mar 2003 The breaking of electroweak symmetry, and origin of the associated “weak scale,” vweak = 1/ 2√2GF = 175 GeV, may be due to a new strong interac- tion. Theoretical developmentsq over the past decade have led to viable models and mechanisms that are consistent with current experimental data. Many of these schemes feature a privileged role for the top quark, and third genera- tion, and are natural in the context of theories of extra space dimensions at the weak scale. We review various models and their phenomenological impli- cations which will be subject to definitive tests in future collider runs at the + Tevatron, and the LHC, and future linear e e− colliders, as well as sensitive studies of rare processes. Contents 1 Introduction 4 1.1 LessonsfromQCD ............................... 4 1.2 TheWeakScale................................. 5 1.3 Superconductors, Chiral Symmetries, and Nambu-GoldstoneBosons . 7 1.4 TheStandardModel .............................. 13 1.5 PurposeandSynopsisoftheReview . .. 17 2 Technicolor 19 2.1 DynamicsofTechnicolor . 19 2.1.1 The TC QCDAnalogy ....................... 19 ↔ 2.1.2 Estimating in TC by Rescaling QCD; fπ, FT , vweak ......... 21 2.2 The Minimal TC Model of Susskind and Weinberg . .... 24 2.2.1 Structure ...............................
    [Show full text]
  • STATUS of HIGGS BOSON PHYSICS November 2013 by M. Carena (Fermi National Accelerator Lab- Oratory and the University of Chicago), C
    – 1– STATUS OF HIGGS BOSON PHYSICS November 2013 by M. Carena (Fermi National Accelerator Lab- oratory and the University of Chicago), C. Grojean (ICREA at IFAE, Universitat Aut`onoma de Barcelona), M. Kado (Lab- oratoire de l’Acc´el´erateur Lin´eaire, LAL and CERN), and V. Sharma (University of California San Diego). I.Introduction . 3 II. The Standard Model and the Mechanism of Electroweak SymmetryBreaking . 7 II.1. The SM Higgs boson mass, couplings and quantum numbers .................. 9 II.2. The SM custodial symmetry . 11 II.3.StabilityoftheHiggspotential . 12 II.4. Higgs production and decay mechanisms . 14 II.4.1. Production mechanisms at hadron colliders . 14 II.4.2. Production mechanisms at e+e− colliders . 20 II.4.3. SM Higgs branching ratios and total width . 21 III.ThediscoveryofaHiggsboson . 23 III.1. The discovery channels . 26 III.1.1. H γγ ...............28 → III.1.2. H ZZ(∗) ℓ+ℓ−ℓ′+ℓ′−, (ℓ,ℓ′ = e, µ). .30 → → III.2. Mass and width measurements . 31 III.3. H W +W − ℓ+νℓ−ν ..........33 → → III.4.Decaystofermions . .35 III.4.1. H τ +τ − ..............38 → III.4.2. H bb ...............39 → III.5. Observed signal strengths . 42 III.6. Higgs Production in association with top quarks . 44 III.7. Searches for rare decays of the Higgs boson . 46 III.7.1. H Zγ ...............47 → III.7.2. H µ+µ− ..............48 → III.7.3.Raremodesoutlook . 48 III.8. Non-standard decay channels . 49 CITATION: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 update for the 2014 edition (URL: http://pdg.lbl.gov) July 29, 2014 15:21 – 2– III.8.1.
    [Show full text]
  • Topics in Collider Physics
    TOPICS IN COLLIDER PHYSICS a dissertation submitted to the department of physics and the committee on graduate studies of stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy Francis John Petriello August 2003 SLAC-R-644 Work supported in part by U.S. Department of Energy contract DE-AC03-76SF00515 I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. JoAnne Hewett (Principal Adviser) I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Lance Dixon I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Michael Peskin Approved for the University Committee on Graduate Studies. iii Abstract It is an exciting time for high energy physics. Several experiments are currently exploring uncharted terrain; the next generation of colliders will begin operation in the coming decade. These experiments will together help us understand some of the most puzzling issues in particle physics: the mechanism of electroweak symmetry breaking and the generation of flavor physics. It is clear that the primary goal of the- oretical particle physics in the near future is to support and guide this experimental program. These tasks can be accomplished in two ways: by developing experimental signatures for new models which address outstanding problems, and by improving Standard Model predictions for precision observables.
    [Show full text]
  • Introduction to Loop Calculations Contents
    Introduction to Loop Calculations May 2010 Contents 1 One-loop integrals 2 1.1 Dimensionalregularisation . ....... 2 1.2 Feynmanparameters ............................... .. 3 1.3 Momentumintegration . .. .. .. ... 3 1.4 Moreaboutsingularities . ..... 7 1.5 Regularisationschemes . ..... 9 1.6 Reductionofone-loopintegrals . ....... 10 1.7 Unitaritycuts................................... .. 14 2 Beyond one loop 18 2.1 Generalformofmulti-loopintegrals . ......... 18 2.2 Construction of the functions and fromtopologicalrules. 18 2.3 ReductiontomasterintegralsF . .U . ...... 19 2.4 Calculationofmasterintegrals. ........ 20 2.4.1 Mellin-Barnes representation . ...... 21 2.4.2 Sectordecomposition . .. 22 A Appendix 27 A.1 Usefulformulae .................................. .. 27 A.2 Multi-looptensorintegrals . ....... 27 A.3 Exercises....................................... 29 1 1 One-loop integrals Consider a generic one-loop diagram with N external legs and N propagators. If k is the loop a momentum, the propagators are qa = k + ra, where ra = i=1 pi. If we define all momenta as incoming, momentum conservation implies N p = 0 and hence r = 0. i=1 i P N P p2 p1 pN pN−1 If the vertices in the diagram above are non-scalar, this diagram will contain a Lorentz tensor structure in the numerator, leading to tensor integrals of the form ∞ D µ1 µr D, µ1...µr d k k ...k IN (S) = D 2 2 , (1) −∞ iπ 2 (qi mi + iδ) Z i∈S − but we will first consider the scalar integral only, i.e.Q the case where the numerator is equal to one. S is the set of propagator labels, which can be used to characterise the integral, in our D example S = 1,...,N . We use the integration measure dDk/iπ 2 dk¯ to avoid ubiquitous D { } ≡ factors of iπ 2 which will arise upon momentum integration.
    [Show full text]
  • Vacuum Expectation Value Renormalization in the Standard Model and Beyond
    PHYSICAL REVIEW D 103, 076010 (2021) Vacuum expectation value renormalization in the standard model and beyond Vytautas Dūdenas˙ * Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, 9 Sauletekio,˙ LT-10222 Vilnius, Lithuania † Maximilian Löschner Institute for Theoretical Physics, Karlsruhe Institute for Technology, Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany (Received 29 October 2020; accepted 8 March 2021; published 13 April 2021) We show how the renormalization constant of the Higgs vacuum expectation value fixed by a tadpole condition is responsible for gauge dependences in various definitions of parameters in the Rξ-gauge. Then we show the relationship of this renormalization constant to the Fleischer-Jegerlehner (FJ) scheme, which is used to avoid these gauge dependences. In this way, we also present a viewpoint on the FJ scheme complementary to the ones already existing in the literature. Additionally, we compare and discuss different approaches to the renormalization of tadpoles by identifying the similarities and relations between them. The relationship to the Higgs background-field renormalization is also discussed. DOI: 10.1103/PhysRevD.103.076010 I. INTRODUCTION methods that are commonly used in precision calculations for the Standard Model (SM), as, e.g., in [1] and more In modern particle physics, high precision calculations formal discussions of VEV renormalization in general are of increasing importance for finding signs of new gauge theories as, e.g., in [9,10]. physics in the comparisons of theory predictions to We want to emphasize the known fact that an indepen- experimental data. An integral part of these calculations dent VEV (or tadpole) renormalization constant is neces- is the subject of renormalization.
    [Show full text]
  • Superstring Perturbation Theory Revisited
    Superstring Perturbation Theory Revisited Edward Witten, IAS Cambridge via video link, April 5, 2012 The role of modular invariance in string perturbation theory was discovered initially by J. Shapiro about forty years ago, after C. Lovelace had shown the special role of 26 dimensions. Although it took time for this to be fully appreciated, modular invariance eliminates the ultraviolet region from string and superstring perturbation theory, and consequently there is no issue of ultraviolet divergences. I will have nothing new to say about this today. However, the literature from the 1980's has left some small unclarity about the infrared behavior of superstring perturbation theory, and this is what I want to revisit. First of all, the general statement one wants to establish is simply that the infrared behavior of superstring perturbation theory is the same as that of a field theory with the same massless particles and low energy interactions. There are some aspects of this that I want to reconsider. It is just a question of some details since at least 98% of the work was done 25 years ago. I want to give a couple of examples of what I mean in saying that the infrared behavior of string theory is the same as that of a corresponding field theory. Let us consider a Feynman diagram. A very simple question of infrared behavior is to consider what happens when a single propagator goes on shell. First I'll consider a propagator whose \cutting" does not separate a diagram in two. Let us assume our particles are massless so the propagator is 1=k2.
    [Show full text]