Strong Dynamics and Electroweak Symmetry Breaking
FERMI–PUB–02/045-T BUHEP-01-09 March, 2003 Strong Dynamics and Electroweak Symmetry Breaking Christopher T. Hill1 and Elizabeth H. Simmons2,3 1Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL, 60510 2 Dept. of Physics, Boston University 590 Commonwealth Avenue, Boston, MA, 02215 3 Radcliffe Institute for Advanced Study and Department of Physics, Harvard University Cambridge, MA, 02138 Abstract arXiv:hep-ph/0203079v3 4 Mar 2003 The breaking of electroweak symmetry, and origin of the associated “weak scale,” vweak = 1/ 2√2GF = 175 GeV, may be due to a new strong interac- tion. Theoretical developmentsq over the past decade have led to viable models and mechanisms that are consistent with current experimental data. Many of these schemes feature a privileged role for the top quark, and third genera- tion, and are natural in the context of theories of extra space dimensions at the weak scale. We review various models and their phenomenological impli- cations which will be subject to definitive tests in future collider runs at the + Tevatron, and the LHC, and future linear e e− colliders, as well as sensitive studies of rare processes. Contents 1 Introduction 4 1.1 LessonsfromQCD ............................... 4 1.2 TheWeakScale................................. 5 1.3 Superconductors, Chiral Symmetries, and Nambu-GoldstoneBosons . 7 1.4 TheStandardModel .............................. 13 1.5 PurposeandSynopsisoftheReview . .. 17 2 Technicolor 19 2.1 DynamicsofTechnicolor . 19 2.1.1 The TC QCDAnalogy ....................... 19 ↔ 2.1.2 Estimating in TC by Rescaling QCD; fπ, FT , vweak ......... 21 2.2 The Minimal TC Model of Susskind and Weinberg . .... 24 2.2.1 Structure ...............................
[Show full text]