Vacuum Expectation Value Renormalization in the Standard Model and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Vacuum Expectation Value Renormalization in the Standard Model and Beyond PHYSICAL REVIEW D 103, 076010 (2021) Vacuum expectation value renormalization in the standard model and beyond Vytautas Dūdenas˙ * Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, 9 Sauletekio,˙ LT-10222 Vilnius, Lithuania † Maximilian Löschner Institute for Theoretical Physics, Karlsruhe Institute for Technology, Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany (Received 29 October 2020; accepted 8 March 2021; published 13 April 2021) We show how the renormalization constant of the Higgs vacuum expectation value fixed by a tadpole condition is responsible for gauge dependences in various definitions of parameters in the Rξ-gauge. Then we show the relationship of this renormalization constant to the Fleischer-Jegerlehner (FJ) scheme, which is used to avoid these gauge dependences. In this way, we also present a viewpoint on the FJ scheme complementary to the ones already existing in the literature. Additionally, we compare and discuss different approaches to the renormalization of tadpoles by identifying the similarities and relations between them. The relationship to the Higgs background-field renormalization is also discussed. DOI: 10.1103/PhysRevD.103.076010 I. INTRODUCTION methods that are commonly used in precision calculations for the Standard Model (SM), as, e.g., in [1] and more In modern particle physics, high precision calculations formal discussions of VEV renormalization in general are of increasing importance for finding signs of new gauge theories as, e.g., in [9,10]. physics in the comparisons of theory predictions to We want to emphasize the known fact that an indepen- experimental data. An integral part of these calculations dent VEV (or tadpole) renormalization constant is neces- is the subject of renormalization. Even though the main sary in addition to the renormalization of the parameters principles of renormalization are well understood (see, and fields of the unbroken theory in order to render all e.g., [1] for a recent review of electroweak radiative n-point Green’s functions finite in the Rξ-gauge (this was corrections) and represent a standard textbook subject, some subtleties are still actively discussed to the present already noted in, e.g., [11,12]). In the broken phase, the day. One of these is the subject of vacuum expectation usage of the VEV in gauge-fixing functions affects the value (VEV) renormalization in conjunction with so-called global symmetry properties of the theory [9], which leads to the need of this additional degree of freedom.1 Hence, in tadpole schemes. For existing examples of discussions in the literature, see, e.g., [2–8] or [1] for a list of tadpole spontaneously broken gauge theories such as the SM, this schemes. However, we find that a unified exposition of can be understood as an artifact of the gauge-fixing procedure rather than a direct consequence of the mecha- the relationships between such schemes is still missing in the literature. Hence, in this paper, we want to elucidate the nism of spontaneous symmetry breaking itself. This intro- relation between the renormalization of vacuum expect- duction affects the definitions of the parameters, leading to gauge dependences in some of them. In principle, these ation values, tadpole schemes, gauge dependences, and the special role of Goldstone boson tadpoles in this respect. gauge dependences will always cancel in physical observ- More specifically, we show the connections between ables. Moreover, the S-matrix can even be made finite without renormalizing tadpoles at all, hence, leaving the one-point Green’s functions infinite [11]. Nevertheless, it *[email protected] can be favorable to demand gauge-independent physical † [email protected] parameter definitions in perturbative calculations, i.e., for Published by the American Physical Society under the terms of 1 the Creative Commons Attribution 4.0 International license. Note that in some older literature, when the Rξ-gauge was not Further distribution of this work must maintain attribution to as commonly used as it is nowadays, this fact might not be the author(s) and the published article’s title, journal citation, mentioned. As an example, in [13–15], this fact is not discussed and DOI. Funded by SCOAP3. due to the use of R-gauge fixing. 2470-0010=2021=103(7)=076010(15) 076010-1 Published by the American Physical Society VYTAUTAS DŪDENAS˙ and MAXIMILIAN LÖSCHNER PHYS. REV. D 103, 076010 (2021) intermediate expressions such as mass counterterms. The constant reparametrization. This section also relates the Fleischer-Jegerlehner tadpole scheme (FJ scheme) [16] was FJ scheme to the findings presented in [9], and moreover, proposed to avoid these spurious gauge dependences. This we illustrate the differences between the tadpole schemes becomes even more important if one goes beyond the by comparing VEV-renormalization constants numerically Standard Model (BSM), where the usual on-shell (OS) and comment on the outcomes. We conclude our presen- renormalization is not possible for all parameters (see [17] tation in Sec. V. Some details of our calculations can be for a discussion of the problems arising here) and explains found in the appendixes. These include a short note on the part of the renewed attention to the subject in the context of construction of the Rξ-gauge in the background-field the two-Higgs-doublet models [5–8,18]. formalism in Appendix A, the calculation of the purely The FJ scheme is closely related to the aforementioned gauge-dependent divergences using the background fields additional independent VEV-renormalization constant. As in the SM (an adaptation from [9]) in Appendix B, we will see, the FJ scheme makes sure that this degree of consequences of different renormalization conditions of freedom will not enter the parameter and counterterm this approach in Appendix C, explicit divergences of definitions, and hence, allows for gauge-independent renormalization constants in Appendix D, and numerical definitions. However, neither in the original paper, nor in input values that we used to calculate VEV-renormalization the more recent ones on the scheme, is this relationship constants in Appendix E. explicitly exposed. Instead, the notions of the “proper VEV” [16] or the “correct one-loop minimum” [1,5,8,18] are used II. AN ADDITIONAL COUNTERTERM IN Rξ to motivate the gauge cancellations in the FJ scheme. We try The necessity of an independent VEV-renormalization to fill the gap by exposing this feature and also suggest constant for renormalizing one-point Green’s functions has looking at the scheme as simply being a convenient set of been noted before (e.g., see [11,12,33]). However, one might counterterm redefinitions. Using this viewpoint, we also come to the conclusion that this is done purely for conven- show translations between different tadpoles schemes. ience. The reasons for this impression are given by the fact With a pedagogical purpose in mind, we carry out our that S-matrix elements are finite even without renormalizing study for the SM at the one-loop level, but also comment on tadpoles at all [11] or the fact that a gauge fixing other than the implications for BSM. Moreover, the paper is set up – such that our results can be easily reproduced using, e.g., the Rξ-gauge is used, such as in [13 15], where indeed all ’ the native FeynArts [19] SM file together with FeynCalc [20– n-point Green s functions can be made finite via multipli- 22] or FormCalc [23,24] (both with and without background cative renormalization of the parameters of the unbroken fields). theory. Here, we want to clarify that the latter statement is not Note that in order to extend our discussion of gauge true in the Rξ-gauge. As discussed rather recently in [9],the dependences to higher-loop orders, one has to adopt the explanation comes from the fact that this gauge fixing complex mass scheme (CMS) [25–31] in addition to using explicitly breaks a global SUð2Þ × Uð1Þ symmetry. Then, the FJ scheme. The reason being that in the presence of a VEV counterterm cannot be forbidden on the grounds of unstable particles, propagator poles can acquire imaginary symmetry arguments, or in other words, its divergence parts from two loops onward, and the usual OS scheme structure is not fixed by the field strength renormalization leads to gauge-dependent mass definitions in that case. One of a physical scalar. In order to fix its divergence structure, the can therefore only prove the gauge independence of the authors of [9] restore the original global symmetries of the complex propagator poles [27] and needs to include this in theory by the introduction of background fields2 and express the discussion via the CMS. the VEV renormalization in terms of the background-field We start our presentation in Sec. II by explaining why it renormalization. Additionally, via the use of Becchi-Rouet- is necessary to have an additional renormalization constant Stora-Tyutin (BRST) sources, the difference between the in the spontaneously broken phase of the SM as compared VEV’s divergence structure and the physical scalar field’s to the unbroken phase and introduce a tadpole condition to renormalization is isolated. We will now clarify these points fix the former. In Sec. III, we present the translations explicitly for the SM. between the renormalization constants of different param- We consider the usual Higgs potential of the SM: eter sets that are used as independent in the renormalization procedure. In particular, we show the relations between VðϕÞ¼μ2ϕ†ϕ þ λðϕ†ϕÞ2: ð1Þ renormalization constants of symmetry-based (or “origi- nal”) parameters of the theory to the ones used in the usual The neutral component of the Higgs doublet ϕ acquires a OS scheme in [32]. These translations illuminate the gauge VEV v as in dependences in the definitions of the usual mass renorm- alization constants.
Recommended publications
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Physical Masses and the Vacuum Expectation Value
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE PHYSICAL MASSES AND THE VACUUM EXPECTATION VALUE provided by CERN Document Server OF THE HIGGS FIELD Hung Cheng Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139, U.S.A. and S.P.Li Institute of Physics, Academia Sinica Nankang, Taip ei, Taiwan, Republic of China Abstract By using the Ward-Takahashi identities in the Landau gauge, we derive exact relations between particle masses and the vacuum exp ectation value of the Higgs eld in the Ab elian gauge eld theory with a Higgs meson. PACS numb ers : 03.70.+k; 11.15-q 1 Despite the pioneering work of 't Ho oft and Veltman on the renormalizability of gauge eld theories with a sp ontaneously broken vacuum symmetry,a numb er of questions remain 2 op en . In particular, the numb er of renormalized parameters in these theories exceeds that of bare parameters. For such theories to b e renormalizable, there must exist relationships among the renormalized parameters involving no in nities. As an example, the bare mass M of the gauge eld in the Ab elian-Higgs theory is related 0 to the bare vacuum exp ectation value v of the Higgs eld by 0 M = g v ; (1) 0 0 0 where g is the bare gauge coupling constant in the theory.We shall show that 0 v u u D (0) T t g (0)v: (2) M = 2 D (M ) T 2 In (2), g (0) is equal to g (k )atk = 0, with the running renormalized gauge coupling constant de ned in (27), and v is the renormalized vacuum exp ectation value of the Higgs eld de ned in (29) b elow.
    [Show full text]
  • B1. the Generating Functional Z[J]
    B1. The generating functional Z[J] The generating functional Z[J] is a key object in quantum field theory - as we shall see it reduces in ordinary quantum mechanics to a limiting form of the 1-particle propagator G(x; x0jJ) when the particle is under thje influence of an external field J(t). However, before beginning, it is useful to look at another closely related object, viz., the generating functional Z¯(J) in ordinary probability theory. Recall that for a simple random variable φ, we can assign a probability distribution P (φ), so that the expectation value of any variable A(φ) that depends on φ is given by Z hAi = dφP (φ)A(φ); (1) where we have assumed the normalization condition Z dφP (φ) = 1: (2) Now let us consider the generating functional Z¯(J) defined by Z Z¯(J) = dφP (φ)eφ: (3) From this definition, it immediately follows that the "n-th moment" of the probability dis- tribution P (φ) is Z @nZ¯(J) g = hφni = dφP (φ)φn = j ; (4) n @J n J=0 and that we can expand Z¯(J) as 1 X J n Z Z¯(J) = dφP (φ)φn n! n=0 1 = g J n; (5) n! n ¯ so that Z(J) acts as a "generator" for the infinite sequence of moments gn of the probability distribution P (φ). For future reference it is also useful to recall how one may also expand the logarithm of Z¯(J); we write, Z¯(J) = exp[W¯ (J)] Z W¯ (J) = ln Z¯(J) = ln dφP (φ)eφ: (6) 1 Now suppose we make a power series expansion of W¯ (J), i.e., 1 X 1 W¯ (J) = C J n; (7) n! n n=0 where the Cn, known as "cumulants", are just @nW¯ (J) C = j : (8) n @J n J=0 The relationship between the cumulants Cn and moments gn is easily found.
    [Show full text]
  • An Introduction to Effective Field Theory
    An Introduction to Effective Field Theory Thinking Effectively About Hierarchies of Scale c C.P. BURGESS i Preface It is an everyday fact of life that Nature comes to us with a variety of scales: from quarks, nuclei and atoms through planets, stars and galaxies up to the overall Universal large-scale structure. Science progresses because we can understand each of these on its own terms, and need not understand all scales at once. This is possible because of a basic fact of Nature: most of the details of small distance physics are irrelevant for the description of longer-distance phenomena. Our description of Nature’s laws use quantum field theories, which share this property that short distances mostly decouple from larger ones. E↵ective Field Theories (EFTs) are the tools developed over the years to show why it does. These tools have immense practical value: knowing which scales are important and why the rest decouple allows hierarchies of scale to be used to simplify the description of many systems. This book provides an introduction to these tools, and to emphasize their great generality illustrates them using applications from many parts of physics: relativistic and nonrelativistic; few- body and many-body. The book is broadly appropriate for an introductory graduate course, though some topics could be done in an upper-level course for advanced undergraduates. It should interest physicists interested in learning these techniques for practical purposes as well as those who enjoy the beauty of the unified picture of physics that emerges. It is to emphasize this unity that a broad selection of applications is examined, although this also means no one topic is explored in as much depth as it deserves.
    [Show full text]
  • Complete Normal Ordering 1: Foundations
    KCL-PH-TH/2015-55, LCTS/2015-43, CERN-PH-TH/2015-295 Complete Normal Ordering 1: Foundations a,b a,b a,c John Ellisp q, Nick E. Mavromatosp q and Dimitri P. Sklirosp q (a) Theoretical Particle Physics and Cosmology Group Department of Physics, King’s College London London WC2R 2LS, United Kingdom (b) Theory Division, CERN, CH-1211 Geneva 23, Switzerland (c) School of Physics and Astronomy, University of Nottingham Nottingham, NG7 2RD, UK [email protected]; [email protected]; [email protected] Abstract We introduce a new prescription for quantising scalar field theories (in generic spacetime dimension and background) perturbatively around a true minimum of the full quantum ef- fective action, which is to ‘complete normal order’ the bare action of interest. When the true vacuum of the theory is located at zero field value, the key property of this prescription is the automatic cancellation, to any finite order in perturbation theory, of all tadpole and, more generally, all ‘cephalopod’ Feynman diagrams. The latter are connected diagrams that can be disconnected into two pieces by cutting one internal vertex, with either one or both pieces free from external lines. In addition, this procedure of ‘complete normal ordering’ (which is an extension of the standard field theory definition of normal ordering) reduces by a substantial factor the number of Feynman diagrams to be calculated at any given loop order. We illustrate explicitly the complete normal ordering procedure and the cancellation of cephalopod diagrams in scalar field theories with non-derivative interactions, and by using a point splitting ‘trick’ we extend this result to theories with derivative interactions, such as those appearing as non-linear σ-models in the world-sheet formulation of string theory.
    [Show full text]
  • Quantum Mechanics Propagator
    Quantum Mechanics_propagator This article is about Quantum field theory. For plant propagation, see Plant propagation. In Quantum mechanics and quantum field theory, the propagator gives the probability amplitude for a particle to travel from one place to another in a given time, or to travel with a certain energy and momentum. In Feynman diagrams, which calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the diagram. They also can be viewed as the inverse of the wave operator appropriate to the particle, and are therefore often called Green's functions. Non-relativistic propagators In non-relativistic quantum mechanics the propagator gives the probability amplitude for a particle to travel from one spatial point at one time to another spatial point at a later time. It is the Green's function (fundamental solution) for the Schrödinger equation. This means that, if a system has Hamiltonian H, then the appropriate propagator is a function satisfying where Hx denotes the Hamiltonian written in terms of the x coordinates, δ(x)denotes the Dirac delta-function, Θ(x) is the Heaviside step function and K(x,t;x',t')is the kernel of the differential operator in question, often referred to as the propagator instead of G in this context, and henceforth in this article. This propagator can also be written as where Û(t,t' ) is the unitary time-evolution operator for the system taking states at time t to states at time t'. The quantum mechanical propagator may also be found by using a path integral, where the boundary conditions of the path integral include q(t)=x, q(t')=x' .
    [Show full text]
  • The Quantum Vacuum and the Cosmological Constant Problem
    The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagel† Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physical real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point arXiv:hep-th/0012253v1 28 Dec 2000 fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light.
    [Show full text]
  • The Minkowski Quantum Vacuum Does Not Gravitate
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KITopen Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 946 (2019) 114694 www.elsevier.com/locate/nuclphysb The Minkowski quantum vacuum does not gravitate Viacheslav A. Emelyanov Institute for Theoretical Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany Received 9 April 2019; received in revised form 24 June 2019; accepted 8 July 2019 Available online 12 July 2019 Editor: Stephan Stieberger Abstract We show that a non-zero renormalised value of the zero-point energy in λφ4-theory over Minkowski spacetime is in tension with the scalar-field equation at two-loop order in perturbation theory. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 1. Introduction Quantum fields give rise to an infinite vacuum energy density [1–4], which arises from quantum-field fluctuations taking place even in the absence of matter. Yet, assuming that semi- classical quantum field theory is reliable only up to the Planck-energy scale, the cut-off estimate yields zero-point-energy density which is finite, though, but in a notorious tension with astro- physical observations. In the presence of matter, however, there are quantum effects occurring in nature, which can- not be understood without quantum-field fluctuations. These are the spontaneous emission of a photon by excited atoms, the Lamb shift, the anomalous magnetic moment of the electron, and so forth [5]. This means quantum-field fluctuations do manifest themselves in nature and, hence, the zero-point energy poses a serious problem.
    [Show full text]
  • The Higgs Vacuum Is Unstable
    The Higgs vacuum is unstable Archil Kobakhidze and Alexander Spencer-Smith ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW 2006 E-mails: [email protected], [email protected] Abstract So far, the experiments at the Large Hadron Collider (LHC) have shown no sign of new physics beyond the Standard Model. Assuming the Standard Model is correct at presently available energies, we can accurately extrapolate the theory to higher energies in order to verify its validity. Here we report the results of new high precision calcula- tions which show that absolute stability of the Higgs vacuum state is now excluded. Combining these new results with the recent observa- tion of primordial gravitational waves by the BICEP Collaboration, we find that the Higgs vacuum state would have quickly decayed dur- ing cosmic inflation, leading to a catastrophic collapse of the universe into a black hole. Thus, we are driven to the conclusion that there must be some new physics beyond the Standard Model at energies below the instability scale Λ 109 GeV, which is responsible for the I ∼ stabilisation of the Higgs vacuum. arXiv:1404.4709v2 [hep-ph] 22 Apr 2014 1 Introduction The Higgs mechanism [1, 2, 3, 4] employed within the Standard Model pro- vides masses for all the elementary particles, except neutrinos. These masses (mi) are universally proportional to the respective constants of interaction between the elementary particles and the Higgs boson: mi = λiv, where −1/2 v √2G 246 GeV is the Higgs vacuum expectation value, which, ≡ F ≈ in turn, is defined through the measurements of the Fermi constant GF in 1 weak processes (e.g., week decays of muon).
    [Show full text]
  • HIGGS BOSONS: THEORY and SEARCHES Updated May 2010 by G
    –1– HIGGS BOSONS: THEORY AND SEARCHES Updated May 2010 by G. Bernardi (LPNHE, CNRS/IN2P3, U. of Paris VI & VII), M. Carena (Fermi National Accelerator Laboratory and the University of Chicago), and T. Junk (Fermi National Accelerator Laboratory). I. Introduction Understanding the mechanism that breaks electroweak sym- metry and generates the masses of all known elementary par- ticles is one of the most fundamental problems in particle physics. The Higgs mechanism [1] provides a general framework to explain the observed masses of the W ± and Z gauge bosons by means of charged and neutral Goldstone bosons that end up as the longitudinal components of the gauge bosons. These Goldstone bosons are generated by the underlying dynamics of electroweak symmetry breaking (EWSB). However, the fun- damental dynamics of the electroweak symmetry breaking are unknown. There are two main classes of theories proposed in the literature, those with weakly coupled dynamics - such as in the Standard Model (SM) [2] - and those with strongly coupled dynamics. In the SM, the electroweak interactions are described by a gauge field theory based on the SU(2)L×U(1)Y symmetry group. The Higgs mechanism posits a self-interacting complex doublet of scalar fields, and renormalizable interactions are arranged such that the neutral component of the scalar doublet acquires a vacuum expectation value v ≈ 246 GeV, which sets the scale of EWSB. Three massless Goldstone bosons are generated, which are absorbed to give masses to the W ± and Z gauge bosons. The remaining component of the complex doublet becomes the Higgs boson - a new fundamental scalar particle.
    [Show full text]
  • Quantum Mechanics Vacuum State
    Quantum Mechanics_vacuum state In quantum field theory, the vacuum state (also called the vacuum) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. Zero- point field is sometimes used[by whom?] as a synonym for the vacuum state of an individual quantized field. According to present-day understanding of what is called the vacuum state or the quantum vacuum, it is "by no means a simple empty space",[1] and again: "it is a mistake to think of any physical vacuum as some absolutely empty void."[2] According to quantum mechanics, the vacuum state is not truly empty but instead contains fleeting electromagnetic waves and particles that pop into and out of existence.[3][4][5] The QED vacuum of Quantum electrodynamics(or QED) was the first vacuum of quantum field theory to be developed. QED originated in the 1930s, and in the late 1940s and early 1950s it was reformulated by Feynman, Tomonaga andSchwinger, who jointly received the Nobel prize for this work in 1965.[6] Today theelectromagnetic interactions and the weak interactions are unified in the theory of theElectroweak interaction. The Standard Model is a generalization of the QED work to include all the known elementary particles and their interactions (except gravity).Quantum chromodynamics is the portion of the Standard Model that deals with strong interactions, and QCD vacuum is the vacuum ofQuantum chromodynamics. It is the object of study in the Large Hadron Collider and theRelativistic Heavy Ion Collider, and is related to the so-called vacuum structure of strong interactions.[7] Contents 1 Non-zero expectation value 2 Energy 3 Symmetry 4 Electrical permittivity 5 Notations 6 Virtual particles 7 Physical nature of the quantum vacuum 8 See also 9 References and notes 10 Further reading Non-zero expectation value Main article: Vacuum expectation value The video of an experiment showing vacuum fluctuations (in the red ring) amplified by spontaneous parametric down-conversion.
    [Show full text]
  • Scalar Field Vacuum Expectation Value Induced by Gravitational Wave Background
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Embry-Riddle Aeronautical University Publications 2018 Scalar Field Vacuum Expectation Value Induced by Gravitational Wave Background Preston Jones Embry-Riddle Aeronautical University, [email protected] Patrick McDougall California State University, Fresno, [email protected] Michael Ragsdale Fresno City College, [email protected] Douglas Singleton California State University, Fresno, [email protected] Follow this and additional works at: https://commons.erau.edu/publication Part of the Cosmology, Relativity, and Gravity Commons, and the Physical Processes Commons Scholarly Commons Citation Jones, P., McDougall, P., Ragsdale, M., & Singleton, D. (2018). Scalar Field Vacuum Expectation Value Induced by Gravitational Wave Background. Physics Letters B, 781(). https://doi.org/10.1016/ j.physletb.2018.04.055 Open access article under the CC BY license. This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Physics Letters B 781 (2018) 621–625 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Scalar field vacuum expectation value induced by gravitational wave background ∗ Preston Jones a, Patrick McDougall b, Michael Ragsdale d, Douglas Singleton b,c, a Embry Riddle Aeronautical University, Prescott, AZ 86301, United States of America b Department of Physics, California State University Fresno, Fresno, CA 93740, United States of America c Institute of Experimental and Theoretical Physics Al-Farabi KazNU, Almaty, 050040, Kazakhstan d MSE Division, Fresno City College, Fresno, CA 93741, United States of America a r t i c l e i n f o a b s t r a c t Article history: We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum Received 27 June 2017 expectation value.
    [Show full text]