Accessing the Hidden Microbial Diversity of Aphids: an Illustration of How Culture-Dependent Methods Can Be Used to Decipher the Insect Microbiota

Total Page:16

File Type:pdf, Size:1020Kb

Accessing the Hidden Microbial Diversity of Aphids: an Illustration of How Culture-Dependent Methods Can Be Used to Decipher the Insect Microbiota Microb Ecol https://doi.org/10.1007/s00248-017-1092-x INVERTEBRATE MICROBIOLOGY Accessing the Hidden Microbial Diversity of Aphids: an Illustration of How Culture-Dependent Methods Can Be Used to Decipher the Insect Microbiota Alina S. Grigorescu1 & François Renoz2 & Ahmed Sabri3 & Vincent Foray 4 & Thierry Hance2 & Philippe Thonart1 Received: 6 June 2017 /Accepted: 10 October 2017 # Springer Science+Business Media, LLC 2017 Abstract Microorganism communities that live inside insects symbionts and other associated microorganisms received can play critical roles in host development, nutrition, im- limited consideration. Herein, we present a culture- munity, physiology, and behavior. Over the past decade, dependent method that allowed us to successfully isolate high-throughput sequencing reveals the extraordinary mi- microorganisms from several aphid species. The isolated crobial diversity associated with various insect species microorganisms were assigned to 24 bacterial genera from and provides information independent of our ability to the Actinobacteria, Firmicutes, and Proteobacteria phyla culture these microbes. However, their cultivation in the and three fungal genera from the Ascomycota and laboratory remains crucial for a deep understanding of Basidiomycota phyla. In our study, we succeeded in isolat- their physiology and the roles they play in host insects. ing already described bacteria found associated to aphids Aphids are insects that received specific attention because (e.g., the facultative symbiont Serratia symbiotica), as well of their ability to form symbiotic associations with a wide as microorganisms that have never been described in aphids range of endosymbionts that are considered as the core before. By unraveling a microbial community that so far has microbiome of these sap-feeding insects. But, if the func- been ignored, our study expands our current knowledge on tional diversity of obligate and facultative endosymbionts the microbial diversity associated with aphids and illustrates has been extensively studied in aphids, the diversity of gut how fast and simple culture-dependent approaches can be applied to insects in order to capture their diverse microbiota Alina S. Grigorescu and François Renoz contributed equally to this work. members. Electronic supplementary material The online version of this article . (https://doi.org/10.1007/s00248-017-1092-x) contains supplementary Keywords Insect Aphid microbiota Culture-dependent material, which is available to authorized users. method . Molecular phylogeny . Symbiotic bacteria * Alina S. Grigorescu [email protected] Introduction * François Renoz [email protected] Insects owe to a great extent their adaptation to different en- vironments to the relationships they developed with various – 1 Walloon Center of Industrial Biology, Université de Liège, microorganisms [1 4]. Aphids (Hemiptera: Aphididae) are Sart-Tilman, B40, 4000 Liège, Belgium phloem sap-feeding insects that represent a relevant model 2 Earth and Life Institute, Biodiversity Research Center, Université to study such insect-bacteria relationships [5]. Indeed, they Catholique de Louvain, Croix de Sud 4-5, bte L7.07.04, have established associations with (i) obligate (or primary) 1348 Louvain-la-Neuve, Belgium endosymbionts, which are harbored in special host cells called 3 Artechno SA, Rue Herman Meganck 21, 5032 Isnes, Belgium bacteriocytes and fundamentally supply nutritional roles – 4 Present address: Centre de Recherches de Biochimie [6 8], and (ii) facultative (or secondary) symbionts, which Macromoléculaire (UMR-CNRS 5237), 1919, Route de Mende, can be localized in a variety of host tissues and can enhance 34293 Montpellier Cedex 05, France the adaptation of aphids to specific environmental conditions. Grigorescu A. S. et al. For example, facultative symbionts have shown their ability to complementing metagenomic studies [29, 33]andthefact improve host heat tolerance [9, 10], host resistance to natural that no recent culture-dependent studies were done on enemies [11–14], host plant specialization [15, 16], and host aphids, we chose this old-fashioned approach in order to survival [17] or to interfere with predation by inducing aphid assess the diversity of microorganisms that can be found body color modification [18]. Yet, culture-dependent studies associated with different aphid species and to try to define performed about 20 years ago showed that the aphid microbi- the core bacterial taxa that can be found in aphids beyond ota is not only limited to the obligate and facultative symbi- their obligate and facultative symbiotic partners. In our onts but also included microorganisms isolated from the gut study, we considered both aphid species that were labora- lumen [19–21]. These studies, however, remained obscured tory reared as well as specimens found in wild popula- by the importance given to the known endosymbionts and by tions. The culturing method previously developed by the fact that even after those initial findings on the gut micro- Sabri et al. [34] was chosen because it is the only one biota of aphids, these insects were still thought to have an that proved successful for isolating a free-living strain of almost-sterile digestive tube [19]. Thus, no major efforts were S. symbiotica, a facultative symbiont which was otherwise put afterwards to unravel the rare members of the aphid mi- considered non-culturable, as well as other bacterial iso- crobiota, leaving this category of microorganisms associated lates from the aphid honeydew [30, 35]. In the present with aphids largely unknown. study, our culture-dependent approach succeeded to iso- Culture-dependent techniques were the first approach that late more than 20 bacterial genera and three fungal gen- scientists used for studying microbial diversity but lost power era. The results obtained here illustrate the power that with the rise of metagenomic strategies. These new powerful culture-dependent methods can have to reveal the hidden approaches provided additional exploration venues for aphid part of the microbiota of an insect. microbiota, given that most of the known associated endo- symbionts are non-culturable due to their adaptation to a host-dependent lifestyle [22, 23]. Thus, some culture- Materials and Methods independent studies concluded that the known obligate and facultative symbionts represent the major flora associated with Aphid Strains aphids [24–27]. Nevertheless, a few additional bacterial strains, similar to Pseudomonas sp., Acinetobacter sp., Fifteen aphid species and strains (seven laboratory reared and Pelomonas sp., and Burkholderia sp. [28]; Staphylococcus eight from wild populations) were used in this study as listed sp. [26]; and Erwinia sp. and Pantoea sp. [27], were also in Table S1. The laboratory-reared aphid clones were main- detected, suggesting that the aphid microbiota is more diverse tained in continuous parthenogenetic culture on Vicia faba or than previously thought. At the same time, several microbial Cucumis sativus plants at 20 ± 2 °C and long-day conditions culture-dependent approaches have succeeded to isolate some (16 h of light and 8 h of darkness). From time to time, several aphid microbial partners, suggesting that these approaches are adult individuals of different ages were removed from the host able to detect microorganisms that may be present in such low plants for dissections, as described below. Most of the aphids concentrations that are not detected by metagenomic ap- from wild populations used here came from a sampling cam- proaches [29]. If metagenomic sequencing provides some in- paign carried on in May 2013 in Tunisia. The aphid species formation independent of our ability to culture bacteria asso- were identified according to the morphological criteria and the ciated to insects, their cultivation in the laboratory is required host plant [36]. Aphis fabae came from a previous collection for better valuing their physiology and the role they play in campaign carried on in Belgium in May 2011. After collec- host insects. For example, Leroy et al. [30] showed that tion, the aphids were placed in small humid plastic containers Staphylococcus sciuri, a bacterium isolated from with few leaves from the host plants to keep them alive. For Acyrthosiphon pisum honeydew, is responsible for the attrac- each collected aphid sample, adult individuals were dissected tion of the aphid natural enemies, and Fischer et al. [31]dem- within 10 days after their collection. onstrated the existence of Staphylococcus sciuri strains which release semiochemical factors promoting the attraction of ants Isolation of Microorganisms from Wild and Laboratory in myrmecophilous relationships. The isolation and culturing Aphids of different members of the aphid microbiota also represents a great advantage for performing high-throughput analyses, In order to isolate microorganisms from the body cavity of such as the genome sequencing of Serratia symbiotica strain aphids, individuals (i.e., between 10 and 90 as listed in CWBI-2.3T, a facultative symbiont that was isolated from the Table S1) of each aphid strain were first surface sterilized by black bean aphid Aphis fabae [32]. sequentially dipping them into 96% denatured ethanol for 3– Given the many advantages that a culture-dependent 4 min and into 4% bleach for about 1 min and then washed approach has in terms of future possible studies and with sterile water. Following this disinfection step, two Accessing the Hidden Microbial Diversity of
Recommended publications
  • Multi-Scale Characterization of Symbiont Diversity in the Pea Aphid
    Guyomar et al. Microbiome (2018) 6:181 https://doi.org/10.1186/s40168-018-0562-9 RESEARCH Open Access Multi-scale characterization of symbiont diversity in the pea aphid complex through metagenomic approaches Cervin Guyomar1,2, Fabrice Legeai1,2, Emmanuelle Jousselin3, Christophe Mougel1, Claire Lemaitre2 and Jean-Christophe Simon1* Abstract Background: Most metazoans are involved in durable relationships with microbes which can take several forms, from mutualism to parasitism. The advances of NGS technologies and bioinformatics tools have opened opportunities to shed light on the diversity of microbial communities and to give some insights into the functions they perform in a broad array of hosts. The pea aphid is a model system for the study of insect-bacteria symbiosis. It is organized in a complex of biotypes, each adapted to specific host plants. It harbors both an obligatory symbiont supplying key nutrients and several facultative symbionts bringing additional functions to the host, such as protection against biotic and abiotic stresses. However, little is known on how the symbiont genomic diversity is structured at different scales: across host biotypes, among individuals of the same biotype, or within individual aphids, which limits our understanding on how these multi-partner symbioses evolve and interact. Results: We present a framework well adapted to the study of genomic diversity and evolutionary dynamics of the pea aphid holobiont from metagenomic read sets, based on mapping to reference genomes and whole genome variant calling. Our results revealed that the pea aphid microbiota is dominated by a few heritable bacterial symbionts reported in earlier works, with no discovery of new microbial associates.
    [Show full text]
  • Oat Aphid, Rhopalosiphum Padi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee The price of protection Leybourne, Daniel; Bos, Jorunn; Valentine, Tracy A.; Karley, Alison Published in: Insect Science DOI: 10.1111/1744-7917.12606 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Leybourne, D., Bos, J., Valentine, T. A., & Karley, A. (2020). The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherryoat aphid, Rhopalosiphum padi. Insect Science, 69-85. https://doi.org/10.1111/1744-7917.12606 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Dec. 2019 Insect Science (2020) 27, 69–85, DOI 10.1111/1744-7917.12606 ORIGINAL ARTICLE The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi Daniel J.
    [Show full text]
  • Microbial Diversity in the Floral Nectar of Seven Epipactis
    ORIGINAL RESEARCH Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species Hans Jacquemyn1, Marijke Lenaerts2,3, Daniel Tyteca4 & Bart Lievens2,3 1Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium 2Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More University College, De Nayer Campus, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, B-2860 Sint-Katelijne-Waver, Belgium 3Scientia Terrae Research Institute, B-2860 Sint-Katelijne-Waver, Belgium 4Biodiversity Research Centre, Earth and Life Institute, Universite catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium Keywords Abstract Bacteria, floral nectar, microbial communities, orchids, yeasts. Floral nectar of animal-pollinated plants is commonly infested with microor- ganisms, yet little is known about the microorganisms inhabiting the floral nec- Correspondence tar of orchids. In this study, we investigated microbial communities occurring Hans Jacquemyn, Plant Conservation and in the floral nectar of seven Epipactis (Orchidaceae) species. Culturable bacteria Population Biology, Biology Department, KU and yeasts were isolated and identified by partially sequencing the small subunit Leuven, Kasteelpark Arenberg 31, B-3001 (SSU) ribosomal RNA (rRNA) gene and the D1/D2 domains of the large sub- Heverlee, Belgium. Tel: +3216 321 530; unit (LSU) rRNA gene, respectively. Using three different culture media, we Fax: +32 16 321 968; E-mail: hans. [email protected] found that bacteria were common inhabitants of the floral nectar of Epipactis. The most widely distributed bacterial operational taxonomic units (OTUs) in Funding Information nectar of Epipactis were representatives of the family of Enterobacteriaceae, with This research was funded by the European an unspecified Enterobacteriaceae bacterium as the most common.
    [Show full text]
  • Acinetobacter Pollinis Sp
    TAXONOMIC DESCRIPTION Alvarez- Perez et al., Int. J. Syst. Evol. Microbiol. 2021;71:004783 DOI 10.1099/ijsem.0.004783 Acinetobacter pollinis sp. nov., Acinetobacter baretiae sp. nov. and Acinetobacter rathckeae sp. nov., isolated from floral nectar and honey bees Sergio Alvarez- Perez1,2†, Lydia J. Baker3†, Megan M. Morris4, Kaoru Tsuji5, Vivianna A. Sanchez3, Tadashi Fukami6, Rachel L. Vannette7, Bart Lievens1 and Tory A. Hendry3,* Abstract A detailed evaluation of eight bacterial isolates from floral nectar and animal visitors to flowers shows evidence that they rep- resent three novel species in the genus Acinetobacter. Phylogenomic analysis shows the closest relatives of these new isolates are Acinetobacter apis, Acinetobacter boissieri and Acinetobacter nectaris, previously described species associated with floral nectar and bees, but high genome- wide sequence divergence defines these isolates as novel species. Pairwise comparisons of the average nucleotide identity of the new isolates compared to known species is extremely low (<83 %), thus confirming that these samples are representative of three novel Acinetobacter species, for which the names Acinetobacter pollinis sp. nov., Aci- netobacter baretiae sp. nov. and Acinetobacter rathckeae sp. nov. are proposed. The respective type strains are SCC477T (=TSD- 214T=LMG 31655T), B10AT (=TSD-213T=LMG 31702T) and EC24T (=TSD-215T=LMG 31703T=DSM 111781T). The genus Acinetobacter (Gammaproteobacteria) is a physi- gene trees, but was nevertheless identified and described as ologically and metabolically diverse group of bacteria cur- a new species with the name Acinetobacter apis. However, rently including 65 validly published and correct names, plus several other tentative designations and effectively but not the diversity of acinetobacters associated with flowering validly published species names (https:// lpsn.
    [Show full text]
  • Draft Genome Sequences of Two Cultivable Strains of the Bacterial
    Draft Genome Sequences of Two Cultivable Strains of the Bacterial Symbiont Serratia symbiotica François Renoz, Jérôme Ambroise, Bertrand Bearzatto, Patrice Baa-Puyoulet, Federica Calevro, Jean-Luc Gala, Thierry Hance To cite this version: François Renoz, Jérôme Ambroise, Bertrand Bearzatto, Patrice Baa-Puyoulet, Federica Calevro, et al.. Draft Genome Sequences of Two Cultivable Strains of the Bacterial Symbiont Serratia symbiotica. Microbiology Resource Announcements, American Society for Microbiology, 2020, 9 (10), pp.e01579- 19. 10.1128/MRA.01579-19. hal-02505875 HAL Id: hal-02505875 https://hal.archives-ouvertes.fr/hal-02505875 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GENOME SEQUENCES crossm Draft Genome Sequences of Two Cultivable Strains of the Bacterial Symbiont Serratia symbiotica François Renoz,a Jérôme Ambroise,b Bertrand Bearzatto,b Patrice Baa-Puyoulet,c Federica Calevro,c Jean-Luc Gala,b Thierry Hancea Downloaded from aEarth and Life Institute (ELI), Biodiversity Research Centre, Université Catholique de Louvain, Louvain-la-Neuve, Belgium bCenter for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium cUniv Lyon, INSA-Lyon, INRAE, BF2i, UMR0203, Villeurbanne, France ABSTRACT Serratia symbiotica, one of the most frequent symbiont species in aphids, includes strains that exhibit various lifestyles ranging from free-living to obligate in- tracellular mutualism.
    [Show full text]
  • Ubiquity of the Symbiont Serratia Symbiotica in the Aphid Natural Environment
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440331; this version posted April 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ubiquity of the Symbiont Serratia symbiotica in the Aphid Natural Environment: 2 Distribution, Diversity and Evolution at a Multitrophic Level 3 4 Inès Pons1*, Nora Scieur1, Linda Dhondt1, Marie-Eve Renard1, François Renoz1, Thierry Hance1 5 6 1 Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, 7 Louvain-la-Neuve, Belgium. 8 9 10 * Corresponding author: 11 Inès Pons 12 Croix du Sud 4-5, bte L7.07.04, 1348 Louvain la neuve, Belgique 13 [email protected] 14 15 16 17 18 19 20 21 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440331; this version posted April 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 ABSTRACT 26 Bacterial symbioses are significant drivers of insect evolutionary ecology. However, despite recent 27 findings that these associations can emerge from environmentally derived bacterial precursors, there 28 is still little information on how these potential progenitors of insect symbionts circulates in the trophic 29 systems. The aphid symbiont Serratia symbiotica represents a valuable model for deciphering 30 evolutionary scenarios of bacterial acquisition by insects, as its diversity includes intracellular host- 31 dependent strains as well as gut-associated strains that have retained some ability to live independently 32 of their hosts and circulate in plant phloem sap.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Microbial Abundance, Composition, and Function in Nectar Are Shaped by Flower Visitor Identity Megan M
    FEMS Microbiology Ecology, 96, 2020, fiaa003 doi: 10.1093/femsec/fiaa003 Advance Access Publication Date: 10 January 2020 Research Article Downloaded from https://academic.oup.com/femsec/article-abstract/96/3/fiaa003/5700281 by University of California, Davis user on 16 June 2020 RESEARCH ARTICLE Microbial abundance, composition, and function in nectar are shaped by flower visitor identity Megan M. Morris1,2,3,†, Natalie J. Frixione1, Alexander C. Burkert2, Elizabeth A. Dinsdale1 and Rachel L. Vannette2,* 1Department of Biology, San Diego State University, San Diego, CA 92182, USA, 2Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA and 3Department of Biology, Stanford University, Stanford, CA 94305, USA ∗Corresponding author: 366 Briggs Hall, University of California Davis, Davis CA 95616. Tel: +1-530-752-3379; E-mail: [email protected] One sentence summary: This study uses a floral nectar model system to show that vector identity, in this case legitimate floral pollinators versus nectar robbers, determines microbial assembly and function. Editor: Paolina Garbeva †Megan M. Morris, http://orcid.org/0000-0002-7024-8234 ABSTRACT Microbial dispersal is essential for establishment in new habitats, but the role of vector identity is poorly understood in community assembly and function. Here, we compared microbial assembly and function in floral nectar visited by legitimate pollinators (hummingbirds) and nectar robbers (carpenter bees). We assessed effects of visitation on the abundance and composition of culturable bacteria and fungi and their taxonomy and function using shotgun metagenomics and nectar chemistry. We also compared metagenome-assembled genomes (MAGs) of Acinetobacter, a common and highly abundant nectar bacterium, among visitor treatments.
    [Show full text]
  • Insights from Ant Farmers and Their Trophobiont Mutualists
    Received: 28 August 2017 | Revised: 21 November 2017 | Accepted: 28 November 2017 DOI: 10.1111/mec.14506 SPECIAL ISSUE: THE HOST-ASSOCIATED MICROBIOME: PATTERN, PROCESS, AND FUNCTION Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists Aniek B. F. Ivens1,2 | Alice Gadau2 | E. Toby Kiers1 | Daniel J. C. Kronauer2 1Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Abstract Universiteit, Amsterdam, The Netherlands Mutualistic interactions with microbes have played a crucial role in the evolution 2Laboratory of Social Evolution and and ecology of animal hosts. However, it is unclear what factors are most important Behavior, The Rockefeller University, New York, NY, USA in influencing particular host–microbe associations. While closely related animal spe- cies may have more similar microbiota than distantly related species due to phyloge- Correspondence Aniek B. F. Ivens, Animal Ecology Section, netic contingencies, social partnerships with other organisms, such as those in Department of Ecological Science, Faculty of which one animal farms another, may also influence an organism’s symbiotic micro- Science, Vrije Universiteit, Amsterdam, The Netherlands. biome. We studied a mutualistic network of Brachymyrmex and Lasius ants farming Email: [email protected] several honeydew-producing Prociphilus aphids and Rhizoecus mealybugs to test Present address whether the mutualistic microbiomes of these interacting insects are primarily corre- Alice Gadau, Arizona
    [Show full text]
  • This Is a Repository Copy of Aphid Facultative Symbionts Aid Recovery of Their Obligate Symbiont and Their Host After Heat Stress
    This is a repository copy of Aphid facultative symbionts aid recovery of their obligate symbiont and their host after heat stress. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/157745/ Article: Ferrari, Julia orcid.org/0000-0001-6519-4254, Smee, Melanie and Heyworth, Eleanor Rose (Accepted: 2020) Aphid facultative symbionts aid recovery of their obligate symbiont and their host after heat stress. Frontiers in Ecology and Evolution. ISSN 2296-701X (In Press) Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Aphid facultative symbionts aid recovery of their obligate symbiont and their host after heat stress 1 Eleanor R. Heyworth#, Melanie R. Smee1# and Julia Ferrari* 2 Department of Biology, University of York, York, United Kingdom 3 4 1 Current Address: Microbiology Department, Cornell University, Ithaca, NY 14853, USA 5 # These authors contributed equally to this work 6 * Correspondence: 7 Julia Ferrari 8 [email protected] 9 Keywords: Acyrthosiphon pisum; Buchnera aphidicola; facultative symbiont; heat stress; insect 10 symbionts; quantitative PCR; symbiosis 11 Abstract 12 Environmental conditions affect insect fitness, with many species constrained by specific temperature 13 ranges.
    [Show full text]
  • Exploration of Bacteria Associated with Anopheles Mosquitoes Around the World
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1691 Exploration of bacteria associated with Anopheles mosquitoes around the world For the prevention of transmission of malaria LOUISE K. J. NILSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0381-9 UPPSALA urn:nbn:se:uu:diva-352547 2018 Dissertation presented at Uppsala University to be publicly examined in A1:111a, BMC, Husargatan 3, Uppsala, Friday, 14 September 2018 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Michael Strand (Department of Entomology, University of Georgia). Abstract Nilsson, L. K. J. 2018. Exploration of bacteria associated with Anopheles mosquitoes around the world. For the prevention of transmission of malaria. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1691. 54 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0381-9. Every year, hundreds of thousands of people die from malaria. Malaria is a disease caused by parasites, which are spread by female vector mosquitoes of the genus Anopheles. Current control measures against malaria are based on drugs against the parasites and vector control using insecticides. A problem with these measures is the development of resistance, both in the parasites against the drugs and the mosquitoes against the insecticides. Therefore, additional areas of malaria control must be explored. One such area involves the bacteria associated with the vector mosquitoes. Bacteria have been shown to affect mosquitoes at all life stages, e.g. by affecting choice of oviposition site by female mosquitoes, development of larvae and susceptibility to parasite infection in adults.
    [Show full text]
  • Genome Reduction in Serratia Symbiotica
    www.nature.com/scientificreports OPEN Snapshots of a shrinking partner: Genome reduction in Serratia symbiotica Received: 08 June 2016 Alejandro Manzano-Marín1 & Amparo Latorre1,2 Accepted: 11 August 2016 Genome reduction is pervasive among maternally-inherited endosymbiotic organisms, from Published: 07 September 2016 bacteriocyte- to gut-associated ones. This genome erosion is a step-wise process in which once free- living organisms evolve to become obligate associates, thereby losing non-essential or redundant genes/functions. Serratia symbiotica (Gammaproteobacteria), a secondary endosymbiont present in many aphids (Hemiptera: Aphididae), displays various characteristics that make it a good model organism for studying genome reduction. While some strains are of facultative nature, others have established co-obligate associations with their respective aphid host and its primary endosymbiont (Buchnera). Furthermore, the different strains hold genomes of contrasting sizes and features, and have strikingly disparate cell shapes, sizes, and tissue tropism. Finally, genomes from closely related free- living Serratia marcescens are also available. In this study, we describe in detail the genome reduction process (from free-living to reduced obligate endosymbiont) undergone by S. symbiotica, and relate it to the stages of integration to the symbiotic system the different strains find themselves in. We establish that the genome reduction patterns observed in S. symbiotica follow those from other dwindling genomes, thus proving to be a good model for the study of the genome reduction process within a single bacterial taxon evolving in a similar biological niche (aphid-Buchnera). Obligate microbial symbionts (whether primary, secondary, tertiary, or other) are present in a variety of eukar- yotic organisms, such as leeches (Annelida: Hirudinida)1, gutless oligochaetes (Annelida: Oligochaeta)2, and insects (Arthropoda: Insecta)3 (see ref.
    [Show full text]