THE PRIME NUMBER MAZE William Paulsen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zero-One Laws
1 THE LOGIC IN COMPUTER SCIENCE COLUMN by 2 Yuri GUREVICH Electrical Engineering and Computer Science UniversityofMichigan, Ann Arb or, MI 48109-2122, USA [email protected] Zero-One Laws Quisani: I heard you talking on nite mo del theory the other day.Itisinteresting indeed that all those famous theorems ab out rst-order logic fail in the case when only nite structures are allowed. I can understand that for those, likeyou, educated in the tradition of mathematical logic it seems very imp ortantto ndoutwhichof the classical theorems can b e rescued. But nite structures are to o imp ortant all by themselves. There's got to b e deep nite mo del theory that has nothing to do with in nite structures. Author: \Nothing to do" sounds a little extremist to me. Sometimes in nite ob jects are go o d approximations of nite ob jects. Q: I do not understand this. Usually, nite ob jects approximate in nite ones. A: It may happ en that the in nite case is cleaner and easier to deal with. For example, a long nite sum may b e replaced with a simpler integral. Returning to your question, there is indeed meaningful, inherently nite, mo del theory. One exciting issue is zero- one laws. Consider, say, undirected graphs and let be a propertyofsuch graphs. For example, may b e connectivity. What fraction of n-vertex graphs have the prop erty ? It turns out that, for many natural prop erties , this fraction converges to 0 or 1asn grows to in nity. If the fraction converges to 1, the prop erty is called almost sure. -
On the Normality of Numbers
ON THE NORMALITY OF NUMBERS Adrian Belshaw B. Sc., University of British Columbia, 1973 M. A., Princeton University, 1976 A THESIS SUBMITTED 'IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Mathematics @ Adrian Belshaw 2005 SIMON FRASER UNIVERSITY Fall 2005 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. APPROVAL Name: Adrian Belshaw Degree: Master of Science Title of Thesis: On the Normality of Numbers Examining Committee: Dr. Ladislav Stacho Chair Dr. Peter Borwein Senior Supervisor Professor of Mathematics Simon Fraser University Dr. Stephen Choi Supervisor Assistant Professor of Mathematics Simon Fraser University Dr. Jason Bell Internal Examiner Assistant Professor of Mathematics Simon Fraser University Date Approved: December 5. 2005 SIMON FRASER ' u~~~snrllbrary DECLARATION OF PARTIAL COPYRIGHT LICENCE The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection, and, without changing the content, to translate the thesislproject or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work. -
Diophantine Approximation and Transcendental Numbers
Diophantine Approximation and Transcendental Numbers Connor Goldstick June 6, 2017 Contents 1 Introduction 1 2 Continued Fractions 2 3 Rational Approximations 3 4 Transcendental Numbers 6 5 Irrationality Measure 7 6 The continued fraction for e 8 6.1 e's Irrationality measure . 10 7 Conclusion 11 A The Lambert Continued Fraction 11 1 Introduction Suppose we have an irrational number, α, that we want to approximate with a rational number, p=q. This question of approximating an irrational number is the primary concern of Diophantine approximation. In other words, we want jα−p=qj < . However, this method of trying to approximate α is boring, as it is possible to get an arbitrary amount of precision by making q large. To remedy this problem, it makes sense to vary with q. The problem we are really trying to solve is finding p and q such that p 1 1 jα − j < which is equivalent to jqα − pj < (1) q q2 q Solutions to this problem have applications in both number theory and in more applied fields. For example, in signal processing many of the quickest approximation algorithms are given by solutions to Diophantine approximation problems. Diophantine approximations also give many important results like the continued fraction expansion of e. One of the most interesting aspects of Diophantine approximations are its relationship with transcendental 1 numbers (a number that cannot be expressed of the root of a polynomial with rational coefficients). One of the key characteristics of a transcendental number is that it is easy to approximate with rational numbers. This paper is separated into two categories. -
Network Intrusion Detection with Xgboost and Deep Learning Algorithms: an Evaluation Study
2020 International Conference on Computational Science and Computational Intelligence (CSCI) Network Intrusion Detection with XGBoost and Deep Learning Algorithms: An Evaluation Study Amr Attia Miad Faezipour Abdelshakour Abuzneid Computer Science & Engineering Computer Science & Engineering Computer Science & Engineering University of Bridgeport, CT 06604, USA University of Bridgeport, CT 06604, USA University of Bridgeport, CT 06604, USA [email protected] [email protected] [email protected] Abstract— This paper introduces an effective Network Intrusion In the KitNET model introduced in [2], an unsupervised Detection Systems (NIDS) framework that deploys incremental technique is introduced for anomaly-based intrusion statistical damping features of the packets along with state-of- detection. Incremental statistical feature extraction of the the-art machine/deep learning algorithms to detect malicious packets is passed through ensembles of autoencoders with a patterns. A comprehensive evaluation study is conducted predefined threshold. The model calculates the Root Mean between eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN) where feature selection and/or feature Square (RMS) error to detect anomaly behavior. The higher dimensionality reduction techniques such as Principal the calculated RMS at the output, the higher probability of Component Analysis (PCA) and Linear Discriminant Analysis suspicious activity. (LDA) are also integrated into the models to decrease the system Supervised learning has achieved very decent results with complexity for achieving fast responses. Several experimental algorithms such as Random Forest, ZeroR, J48, AdaBoost, runs confirm how powerful machine/deep learning algorithms Logit Boost, and Multilayer Perceptron [3]. Machine/deep are for intrusion detection on known attacks when combined learning-based algorithms for NIDS have been extensively with the appropriate features extracted. -
Parity Alternating Permutations Starting with an Odd Integer
Parity alternating permutations starting with an odd integer Frether Getachew Kebede1a, Fanja Rakotondrajaob aDepartment of Mathematics, College of Natural and Computational Sciences, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia; e-mail: [email protected] bD´epartement de Math´ematiques et Informatique, BP 907 Universit´ed’Antananarivo, 101 Antananarivo, Madagascar; e-mail: [email protected] Abstract A Parity Alternating Permutation of the set [n] = 1, 2,...,n is a permutation with { } even and odd entries alternatively. We deal with parity alternating permutations having an odd entry in the first position, PAPs. We study the numbers that count the PAPs with even as well as odd parity. We also study a subclass of PAPs being derangements as well, Parity Alternating Derangements (PADs). Moreover, by considering the parity of these PADs we look into their statistical property of excedance. Keywords: parity, parity alternating permutation, parity alternating derangement, excedance 2020 MSC: 05A05, 05A15, 05A19 arXiv:2101.09125v1 [math.CO] 22 Jan 2021 1. Introduction and preliminaries A permutation π is a bijection from the set [n]= 1, 2,...,n to itself and we will write it { } in standard representation as π = π(1) π(2) π(n), or as the product of disjoint cycles. ··· The parity of a permutation π is defined as the parity of the number of transpositions (cycles of length two) in any representation of π as a product of transpositions. One 1Corresponding author. n c way of determining the parity of π is by obtaining the sign of ( 1) − , where c is the − number of cycles in the cycle representation of π. -
The Prime Number Theorem a PRIMES Exposition
The Prime Number Theorem A PRIMES Exposition Ishita Goluguri, Toyesh Jayaswal, Andrew Lee Mentor: Chengyang Shao TABLE OF CONTENTS 1 Introduction 2 Tools from Complex Analysis 3 Entire Functions 4 Hadamard Factorization Theorem 5 Riemann Zeta Function 6 Chebyshev Functions 7 Perron Formula 8 Prime Number Theorem © Ishita Goluguri, Toyesh Jayaswal, Andrew Lee, Mentor: Chengyang Shao 2 Introduction • Euclid (300 BC): There are infinitely many primes • Legendre (1808): for primes less than 1,000,000: x π(x) ' log x © Ishita Goluguri, Toyesh Jayaswal, Andrew Lee, Mentor: Chengyang Shao 3 Progress on the Distribution of Prime Numbers • Euler: The product formula 1 X 1 Y 1 ζ(s) := = ns 1 − p−s n=1 p so (heuristically) Y 1 = log 1 1 − p−1 p • Chebyshev (1848-1850): if the ratio of π(x) and x= log x has a limit, it must be 1 • Riemann (1859): On the Number of Primes Less Than a Given Magnitude, related π(x) to the zeros of ζ(s) using complex analysis • Hadamard, de la Vallée Poussin (1896): Proved independently the prime number theorem by showing ζ(s) has no zeros of the form 1 + it, hence the celebrated prime number theorem © Ishita Goluguri, Toyesh Jayaswal, Andrew Lee, Mentor: Chengyang Shao 4 Tools from Complex Analysis Theorem (Maximum Principle) Let Ω be a domain, and let f be holomorphic on Ω. (A) jf(z)j cannot attain its maximum inside Ω unless f is constant. (B) The real part of f cannot attain its maximum inside Ω unless f is a constant. Theorem (Jensen’s Inequality) Suppose f is holomorphic on the whole complex plane and f(0) = 1. -
On the Parity of the Number of Multiplicative Partitions and Related Problems
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 11, November 2012, Pages 3793–3803 S 0002-9939(2012)11254-7 Article electronically published on March 15, 2012 ON THE PARITY OF THE NUMBER OF MULTIPLICATIVE PARTITIONS AND RELATED PROBLEMS PAUL POLLACK (Communicated by Ken Ono) Abstract. Let f(N) be the number of unordered factorizations of N,where a factorization is a way of writing N as a product of integers all larger than 1. For example, the factorizations of 30 are 2 · 3 · 5, 5 · 6, 3 · 10, 2 · 15, 30, so that f(30) = 5. The function f(N), as a multiplicative analogue of the (additive) partition function p(N), was first proposed by MacMahon, and its study was pursued by Oppenheim, Szekeres and Tur´an, and others. Recently, Zaharescu and Zaki showed that f(N) is even a positive propor- tion of the time and odd a positive proportion of the time. Here we show that for any arithmetic progression a mod m,thesetofN for which f(N) ≡ a(mod m) possesses an asymptotic density. Moreover, the density is positive as long as there is at least one such N. For the case investigated by Zaharescu and Zaki, we show that f is odd more than 50 percent of the time (in fact, about 57 percent). 1. Introduction Let f(N) be the number of unordered factorizations of N,whereafactorization of N is a way of writing N as a product of integers larger than 1. For example, f(12) = 4, corresponding to 2 · 6, 2 · 2 · 3, 3 · 4, 12. -
The ℓ-Parity Conjecture Over the Constant Quadratic Extension
THE `-PARITY CONJECTURE OVER THE CONSTANT QUADRATIC EXTENSION KĘSTUTIS ČESNAVIČIUS Abstract. For a prime ` and an abelian variety A over a global field K, the `-parity conjecture predicts that, in accordance with the ideas of Birch and Swinnerton-Dyer, the Z`-corank of the `8-Selmer group and the analytic rank agree modulo 2. Assuming that char K ¡ 0, we prove that the `-parity conjecture holds for the base change of A to the constant quadratic extension if ` is odd, coprime to char K, and does not divide the degree of every polarization of A. The techniques involved in the proof include the étale cohomological interpretation of Selmer groups, the Grothendieck–Ogg–Shafarevich formula, and the study of the behavior of local root numbers in unramified extensions. 1. Introduction 1.1. The `-parity conjecture. The Birch and Swinnerton-Dyer conjecture (BSD) predicts that the completed L-function LpA; sq of an abelian variety A over a global field K extends meromorphically to the whole complex plane, vanishes to the order rk A at s “ 1, and satisfies the functional equation LpA; 2 ´ sq “ wpAqLpA; sq; (1.1.1) where rk A and wpAq are the Mordell–Weil rank and the global root number of A. The vanishing assertion combines with (1.1.1) to give “BSD modulo 2,” namely, the parity conjecture: ? p´1qrk A “ wpAq: Selmer groups tend to be easier to study than Mordell–Weil groups, so, fixing a prime `, one sets 8 rk` A :“ dimQ` HompSel` A; Q`{Z`q bZ` Q`; where Sel 8 A : lim Sel n A ` “ ÝÑ ` is the `8-Selmer group, notes that the conjectured finiteness of the Shafarevich–Tate group XpAq implies rk` A “ rk A, and instead of the parity conjecture considers the `-parity conjecture: ? p´1qrk` A “ wpAq: (1.1.2) 1.2. -
GENERALIZED SIERPINSKI NUMBERS BASE B
GENERALIZED SIERPINSKI´ NUMBERS BASE b AMY BRUNNERy, CHRIS K. CALDWELL, DANIEL KRYWARUCZENKOy, AND CHRIS LOWNSDALEy Abstract. Sierpi´nskiproved that there are infinitely many odd integers k such that k ·2n+1 is composite for all n ≥ 0. These k are now called Sierpi´nski numbers. We define a Sierpi´nskinumber base b to be an integer k > 1 for which gcd(k+1; b−1) = 1, k is not a rational power of b, and k · bn+1 is composite for all n > 0. We discuss ways that these can arise, offer conjectured least Sierpi´nskinumber in each of the bases 2 < b ≤ 100 (34 are proven), and show that all bases b admit Sierpi´nskinumbers. We also show that under certain cir- r cumstances there are base b Sierpi´nskinumbers k for which k; k2; k3; :::; k2 −1 are each base b Sierpi´nskinumbers. 1. Introduction and History In 1958, R. M. Robinson [26] formed a table of primes of the form k · 2n+1 for odd integers 1 ≤ k < 100 and 0 ≤ n ≤ 512. He found primes for all k values except 47. Some then wondered \Is there an odd k value such that k · 2n+1 is always composite?" In 1960, W. Sierpi´nski[29] proved that there were indeed infinitely many such odd integers k: He did this by finding a small set of primes S such that for a suitable choice of k, every term of the sequence k · 2n+1 (n > 0) is divisible by a prime in his \cover" S. The values k which make every term in the sequence composite are now called Sierpi´nskinumbers. -
Network Topology Generators: Degree-Based Vs
Network Topology Generators: Degree-Based vs. Structural Hongsuda Tangmunarunkit Ramesh Govindan Sugih Jamin USC-ISI ICSI Univ. of Michigan [email protected] [email protected] [email protected] Scott Shenker Walter Willinger ICSI AT&T Research [email protected] [email protected] ABSTRACT in the Internet more closely; we find that degree-based generators Following the long-held belief that the Internet is hierarchical, the produce a form of hierarchy that closely resembles the loosely hi- network topology generators most widely used by the Internet re- erarchical nature of the Internet. search community, Transit-Stub and Tiers, create networks with a deliberately hierarchical structure. However, in 1999 a seminal Categories and Subject Descriptors paper by Faloutsos et al. revealed that the Internet’s degree distri- bution is a power-law. Because the degree distributions produced C.2.1 [Computer-Communication Networks]: Network Archi- by the Transit-Stub and Tiers generators are not power-laws, the tecture and Design—Network topology; I.6.4 [Simulation and Mod- research community has largely dismissed them as inadequate and eling]: Model Validation and Analysis proposed new network generators that attempt to generate graphs with power-law degree distributions. General Terms Contrary to much of the current literature on network topology generators, this paper starts with the assumption that it is more im- Performance, Measurement portant for network generators to accurately model the large-scale structure of the Internet (such as its hierarchical structure) than to Keywords faithfully imitate its local properties (such as the degree distribu- tion). The purpose of this paper is to determine, using various Network topology, hierarchy, topology characterization, topology topology metrics, which network generators better represent this generators, structural generators, degree-based generators, topol- large-scale structure. -
Some of Erdös' Unconventional Problems in Number Theory, Thirty
Some of Erdös’ unconventional problems in number theory, thirty-four years later Gérald Tenenbaum To cite this version: Gérald Tenenbaum. Some of Erdös’ unconventional problems in number theory, thirty-four years later. Erdös centennial, János Bolyai Math. Soc., pp.651-681, 2013. hal-01281530 HAL Id: hal-01281530 https://hal.archives-ouvertes.fr/hal-01281530 Submitted on 2 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. (26/5/2014, 16h36) Some of Erd˝os’ unconventional problems in number theory, thirty-four years later G´erald Tenenbaum There are many ways to recall Paul Erd˝os’ memory and his special way of doing mathematics. Ernst Straus described him as “the prince of problem solvers and the absolute monarch of problem posers”. Indeed, those mathematicians who are old enough to have attended some of his lectures will remember that, after his talks, chairmen used to slightly depart from standard conduct, not asking if there were any questions but if there were any answers. In the address that he forwarded to Mikl´os Simonovits for Erd˝os’ funeral, Claude Berge mentions a conversation he had with Paul in the gardens of the Luminy Campus, near Marseilles, in September 1995. -
Sierpiński and Carmichael Numbers
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 1, January 2015, Pages 355–376 S 0002-9947(2014)06083-2 Article electronically published on September 23, 2014 SIERPINSKI´ AND CARMICHAEL NUMBERS WILLIAM BANKS, CARRIE FINCH, FLORIAN LUCA, CARL POMERANCE, AND PANTELIMON STANIC˘ A˘ Abstract. We establish several related results on Carmichael, Sierpi´nski and Riesel numbers. First, we prove that almost all odd natural numbers k have the property that 2nk + 1 is not a Carmichael number for any n ∈ N; this implies the existence of a set K of positive lower density such that for any k ∈ K the number 2nk + 1 is neither prime nor Carmichael for every n ∈ N.Next, using a recent result of Matom¨aki and Wright, we show that there are x1/5 Carmichael numbers up to x that are also Sierpi´nski and Riesel. Finally, we show that if 2nk + 1 is Lehmer, then n 150 ω(k)2 log k,whereω(k)isthe number of distinct primes dividing k. 1. Introduction In 1960, Sierpi´nski [25] showed that there are infinitely many odd natural num- bers k with the property that 2nk + 1 is composite for every natural number n; such an integer k is called a Sierpi´nski number in honor of his work. Two years later, J. Selfridge (unpublished) showed that 78557 is a Sierpi´nski number, and this is still the smallest known example.1 Every currently known Sierpi´nski number k possesses at least one covering set P, which is a finite set of prime numbers with the property that 2nk + 1 is divisible by some prime in P for every n ∈ N.