<<

Acta Univ. Sapientiae, Mathematica, 2, 1 (2010) 99–110

An elementary proof that all real are normal

Ferdin´and Filip Jan Sustekˇ Department of , Department of Mathematics and Faculty of Education, Institute for Research and J. Selye University, Applications of Fuzzy Modeling, Roln´ıckej ˇskoly 1519, Faculty of Science, 945 01, Kom´arno, Slovakia University of Ostrava, email: [email protected] 30. dubna 22, 701 03 Ostrava 1, Czech Republic email: [email protected]

Abstract. A real is called normal if every block of digits in its expansion occurs with the same frequency. A famous result of Borel is that almost every number is normal. Our paper presents an elementary proof of that fact using properties of a special class of functions.

1 Introduction

The concept of was introduced by Borel. A number is called normal if in its base b expansion every block of digits occurs with the same frequency. More exact definition is

Definition 1 A x ∈ (0,1) is called simply normal to base b ≥ 2 if its base b expansion is 0.c1c2c3 ... and

#{n ≤ N | c = a} 1 lim n = for every a ∈ {0,...,b − 1} . N N b

2010 Mathematics→∞ Subject Classification: 11K16, 26A30 Key words and phrases: normal number, 99 100 F. Filip, J. Sustekˇ

A number is called normal to base b if for every block of digits a1 ...aL, L ≥ 1 #{n ≤ N − L | c = a ,...,c = a } 1 lim n+1 1 n+L L = . N N bL

A number is called→∞ absolutely normal if it is normal to every base b ≥ 2. A famous result of Borel [1] is

Theorem 1 Almost every real number is absolutely normal.

This theorem can be proved in many ways. Some proofs use uniform dis- tribution [5], combinatorics [7], [8] or [2]. There are also some elementary proofs almost avoiding higher mathematics. Kac [3] proves the theorem for simply normal numbers to base 2 using Rademacher functions and Beppo Levi’s Theorem. Nillsen [6] also considers binary case. He uses series of integrals of step functions and avoids usage of measure theory in the proof by defining a null in a different way. Khoshnevisan [4] makes a survey about known results on normal numbers and their consequences in diverse areas in mathematics and computer science. This paper presents another elementary proof of Theorem 1. Our proof is based on the fact that a bounded monotone function has finite derivative in points. We also use the fact that a countable union of null sets is a . Here is a sketch of the proof. We introduce a special class of functions. In Section 2 we prove elementary properties of the functions F. We prove boundedness and monotonicity and assuming that the derivative F ′(x) exists in point x we prove that the product (5) has finite value. We deduce that the product (5) has finite value for almost every x. In Section 3 we prove that every non-normal number belongs to some set P. We take a particular function F. We finish the proof by showing that for elements of P the product (5) does not have finite value. For the proof of Theorem 1 it is obviously sufficient to consider only numbers in the interval (0,1). b ω Definition 2 Let = {bk}k=1 be a of bk ≥ 2. Let = { } [ ] ωk k=1 be a sequence of divisions∞ of the interval 0,1 ,

∞ bk ωk = {fk(c)}c=0 , fk(0)= 0 , fk(c) < fk(c + 1) , fk(bk)= 1. Put ∆k(c) := fk(c + 1)− fk(c) . Almost all numbers are normal 101

Function Fb,ω : [0,1] [0, ) corresponding to b and ω is defined as follows. For x ∈ [0,1), let → ∞ cn x = n (1) ∞ bk n=1 k=1 X be its {bk}k=1-Cantor series. Then Q ∞ n−1 Fb,ω(x) := fn(cn) ∆k(ck) . ∞ n=1 k=1 X Y

We define Fb,ω(1)= 1.

The reason for defining Fb,ω(1) = 1 is that the actual range of Fb,ω is ⊆ [0,1]. This is proved in Lemma 2.

2 Properties of the function F

In this section we derive some basic properties of a general function Fb,ω. Lemma 1 allows us to express a particular value F(x) in terms of values of some other function F. N b(N) (N) ω(N) (N) (N) For N ∈ define := {bn }n=1, := {ωn }n=1 and {∆n }n=1 by

(N) (N∞) (N) ∞ ∞ bn := bN+n , ωn := ωN+n , ∆n := ∆N+n .

ck Moreover, for x = n=1 n ∈ (0,1) define k=1 bk P∞ Q c x(N) := N+n . ∞ n (N) n=1 b X k=1 k Lemma 1 (Shift property) We haveQ

N n−1 N (N) Fb,ω(x)= fn(cn) ∆k(ck)+ ∆k(ck) · Fb(N),ω(N) (x ) . n=1 k=1 k=1 X Y Y Proof. An easy computation yields

n−1 Fb,ω(x)= fn(cn) ∆k(ck) ∞ n=1 k=1 X Y 102 F. Filip, J. Sustekˇ

N n−1 = fn(cn) ∆k(ck) n=1 k=1 X Y N n−1 + ∆k(ck) fN+n(cN+n) ∆N+k(cN+k) ∞ k=1 n=1 k=1 Y X Y N n−1 N (N) = fn(cn) ∆k(ck)+ ∆k(ck) · Fb(N),ω(N) (x ) . n=1 k=1 k=1 X Y Y 

Lemma 2 (Range) For x ∈ [0,1] the value Fb,ω(x) ∈ [0,1].

N cn Proof. First we prove that for every b, ω and every x = n bk n=1 k=1 X Q N N n−1 cn Fb,ω n = fn(cn) ∆k(ck) ≤ 1. (2) bk n=1 k=1  n=1 k=1 X X Y Q We will proceed by induction on N. c For N = 1 we have Fb ω 1 = f (c ) ≤ 1. , b1 1 1 For N + 1 we use Lemma 1. By the induction assumption we have

(1) Fb(1),ω(1) (x ) ≤ 1.

Hence

(1) Fb,ω(x)= f1(c1)+ ∆1(c1)Fb(1),ω(1) (x ) ≤ f1(c1)+ ∆1(c1)= f1(c1 + 1) ≤ 1.

cn Now we use (2) and pass to the limit N . For x = n we ∞ bk n=1 k=1 have X N →n−1 ∞ Q Fb,ω(x)= lim fn(cn) ∆k(ck) ≤ 1. N n=1 k=1 X Y →∞ 

Lemma 3 (Monotonicity) The function Fb,ω is nondecreasing. Almost all numbers are normal 103

Proof. Let 0 ≤ x

cn dn x = n and y = n . ∞ bk ∞ bk n=1 k=1 n=1 k=1 X X Q Q We prove that Fb,ω(x) ≤ Fb,ω(y). Let N be the such that cn = dn for n ≤ N − 1 and cN < dN. Then Lemmas 1 and 2 imply

N n−1 N (N) Fb,ω(x)= fn(cn) ∆k(ck)+ ∆k(ck) · Fb(N),ω(N) (x ) n=1 k=1 k=1 X Y Y N n−1 N ≤ fn(cn) ∆k(ck)+ ∆k(ck) n=1 k=1 k=1 X Y Y N−1 n−1 N−1 = fn(cn) ∆k(ck)+ fN(cN + 1) ∆k(ck) n=1 k=1 k=1 X Y Y N−1 n−1 N−1 ≤ fn(dn) ∆k(dk)+ fN(dN) ∆k(dk) n=1 k=1 k=1 X Y Y n−1 ≤ fn(dn) ∆k(dk)= Fb,ω(y) .  ∞ n=1 k=1 X Y

For k ∈ N and c ∈ {0,...,bk} define fk(c) := 1 − fk(bk − c). Put ω := bk {{fk(c)}c=0}k=1. ∞ N cn Lemma 4 (Symmetry) For every x = n we have bk n=1 k=1 X Q Fb,ω(1 − x)= 1 − Fb,ω(x) . (3)

Proof. We have

∆k(c)= fk(c + 1)− fk(c)= ∆k(bk − c − 1) .

Now we will proceed by induction. For N = 1 we have

c1 Fb,ω(1 − x)= f1(b1 − c1)= 1 − f1(c1)= 1 − Fb,ω = 1 − Fb,ω(x) . b1  104 F. Filip, J. Sustekˇ

Now suppose that (3) holds for N,

N N en en Fb,ω 1 − n = 1 − Fb,ω n  bk   bk  n=1 k=1 n=1 k=1 X X Q Q for every possible sequence {en}n=1. Then using Lemma 1 we obtain for x = N+1 cn ∞ n that bk n=1 k=1 X Q Fb,ω(1 − x) N−1 b1 − c1 − 1 1 bn+1 − cn+1 − 1 b(N−1)+1 − c(N−1)+1 = Fb,ω + n + N−1  b1 b1  bk+1  n=1 k=1 k=1 bk+1 X (1) = f1(b1 − c1 − 1)+ ∆1(b1 − c1 − 1)QFb(1),ω(1) (1 − x ) Q (1) = f1(b1 − c1 − 1)+ ∆1(b1 − c1 − 1) 1 − Fb(1),ω(1) (x ) (1)  = 1 − f1(c1 + 1)+ ∆1(c1) 1 − Fb(1),ω(1) (x ) (1)  = 1 − f1(c1)+ ∆1(c1)Fb(1),ω(1) (x ) = 1 − Fb,ω(x) .  

Remark 1 One can prove that if max ∆k(c) = 0 then Fb,ω is con- c=0,...,b −1 k∞=1 k tinuous on the interval [0,1]. OneQ can then extend Lemma 4 for every x ∈ [0,1].

Lemma 5 (Difference) For every N ∈ N

N−1 N N cn cN + 1 cn Fb,ω n + N − Fb,ω n = ∆k(ck) . (4)  bk   bk  n=1 k=1 k=1 bk n=1 k=1 k=1 X X Y Q Q Q Proof. Denote the left-hand side of (4) by LHS. Then if cN ≤ bN − 2 then

N−1 cN + 1 cN LHS = ∆k(ck) · Fb(N−1),ω(N−1) − Fb(N−1),ω(N−1)  bN bN  k=1     Y N−1 N = ∆k(ck) · fN(cN + 1)− fN(cN) = ∆k(ck) . k=1 k=1 Y  Y Almost all numbers are normal 105

In the case cN = bN − 1 we apply the first case on the function Fb,ω,

N−1 bn − cn − 1 LHS = 1 − Fb,ω n   bk  n=1 k=1 X N−1 bnQ− cn − 1 1 − 1 − Fb,ω n + N   bk  n=1 k=1 k=1 bk X N Q N Q = ∆k(bn − cn − 1)= ∆k(ck) . k=1 k=1 Y Y  In the following text we will use the symbol

Θk(c) := bk∆k(c) .

cn Lemma 6 (Derivative) Let x = n ∈ (0,1). Suppose that the ∞ bk n=1 k=1 F ′ (x) X derivative b,ω exists and is finite. ThenQ

′ Fb,ω(x)= Θk(ck) . (5) ∞ k=1 Y In particular, this product has a finite value.

Proof. We have

N−1 N cn cN + 1 cn Fb,ω n + N − Fb,ω n n=1 k=1 bk bk  n=1 k=1 bk  lim k=1 (6) N NP−1 c c + 1 N Pc Q n QN nQ n + N − n bk bk →∞ n=1 k=1 k=1 bk  n=1 k=1  P N−1 P Q Qcn cN + 1 Q n + N − x  n=1 k=1 bk b = lim k=1 k P 1 N  Q  N Q  bk →∞  k=1 Q (7) 106 F. Filip, J. Sustekˇ

N−1 cn cN + 1 Fb,ω n + N − Fb,ω(x) n=1 k=1 bk bk  · k=1 (8) PN−1 c c + 1 Q n +Q N − x n b N n=1 k=1 k k=1 bk N P N cnQ Q cn x − n Fb,ω(x)− Fb,ω n bk bk  + n=1 k=1 · n=1 k=1  (9) N P 1 Pcn  NQ x − Q  b n b  k=1 k n=1 k=1 k  1 P Q Q N ′ k=1 bk ′ = Fb,ω(x) lim = Fb,ω(x) . N 1 QN bk →∞ k=1 ′ Existence of Fb,ω(x) impliesQ that limits of (8) and of the second fraction in (9) ′ ′ are equal to Fb,ω(x). Hence the limit (6) exists and is equal to Fb,ω(x). In N cn ′ the case that x = n we obtain that (6) = Fb,ω(x) immediately. bk n=1 k=1 On the other hand,X Lemma 5 implies that Q N ∆k(ck) k=1 (6) = lim = Θk(ck) . N Q 1 ∞ k=1 N Y bk →∞ k=1  Q ′ Corollary 1 For almost every x ∈ [0,1] the derivative Fb,ω(x) exists and is cn finite. In particular, for almost every x = n the product n=1 Θk(ck) ∞ bk n=1 k=1 X Q∞ exists and is finite (possibly zero). Q

Proof. The function Fb,ω is bounded and nondecreasing, hence in almost all points it has a finite derivative. According to Lemma 6 we obtain that the product (5) is finite. 

3 Main result

Our main result is a proof of Theorem 1. Almost all numbers are normal 107

Proof. A number x ∈ (0,1) is not absolutely normal if there exist b ≥ 2, c N { } n L ∈ and a1,...,aL ∈ 0,...,b − 1 such that if x = n then ∞ b n=1 X #{n ≤ N − L | c = a , i = 1,...,L} 1 lim inf n+i i < . n N bL

Then there exists→∞s ∈ {0,...,L − 1} such that #{n ≤ N − L, n ≡ s (modL) | c = a , i = 1,...,L} 1 lim inf n+i i < . n N LbL 1 Hence→∞ for some rational β< LbL #{n ≤ N − L, n ≡ s (modL) | c = a , i = 1,...,L} lim inf n+i i ≤ β. (10) n N

→∞ cn a Denote by Rb,L, ,s,β the set of all x = n satisfying (10). The result of ∞ b n=1 the previous paragraph is that the set ofX not absolutely normal numbers is a of b−1 L−1 Rb,L,a,s,β . ∞ ∞ b[=2 L[=1 a1,...,a[L=0 s[=0 β∈(0,[1 )∩Q LbL

It is sufficient to prove that every set Rb,L,a,s,β has zero measure. Then the set of not absolutely normal numbers is a subset of a countable union of null sets, hence it is a null set. Let b ≥ 2, L ∈ N, a1,...,aL ∈ {0,...,b − 1}, s ∈ {0,...,L − 1} and β ∈ 1 L−1 L−2 0, LbL . Put A = a1b + a2b + ··· + aL. Let  s cn dn 1 ds+n a x = n = n + s Ln ∈ Rb,L, ,s,β . ∞ b b b ∞ b n=1 n=1 n=1 X X X Then obviously,

# n ≤ N − L, n ≡ s (modL) cn+i = ai, i = 1,...,L N − s  = # s < n ≤ dn = A . h L i

Hence N−s #{s < n ≤ M | d = A} # s < n ≤ dn = A lim inf n = lim inf L M M N N−s   L   →∞ →∞ 108 F. Filip, J. Sustekˇ

N # n ≤ N − L, n ≡ s (modL) cn+i = ai, i = 1,...,L = lim inf N N−s N L  ≤ Lβ.   →∞

From this we obtain that Rb,L,a,s,β ⊆ P, where

s dn 1 ds+n #{s < n ≤ N | dn = A} P = x = n + s Ln lim inf ≤ Lβ . b b ∞ b N N n=1 n=1 X X →∞ Thus it is sufficient to prove that the set P has zero measure. 1 Let α ∈ Lβ, bL . For t ∈ [0,1] define  L 1−α α b − t ϕα(t) := t L . b − 1 ′ The function ϕα is continuous with ϕα(0) = 0, ϕα(1) = 1 and ϕα(1) = αbL − 1 <0. Hence there is T ∈ (0,1) with ϕ (T)= 1. For u ∈ (0,1) put bL − 1 α

L 1−u u b − T ψ(u) := ϕu(T)= T L .  b − 1  The function ψ is continuous and decreasing with ψ(α)= 1. b Consider the function Fb,ω corresponding to = {bk}k=1 with ∞ b, if k ≤ s, b = k L b , if k>s,

ω and = {ωk}k=1 with ∞ 1 b , if k ≤ s, ∆ (d)= T , k>s d = A, k  bL if and  bL−T  bL(bL−1) , if k>s and d 6= A.  We have  1, if k ≤ s, Θk(d)= T, if k>s and d = A,  bL−T  bL−1 , if k>s and d 6= A.  Almost all numbers are normal 109

s dn 1 dn+s Now Corollary 1 implies that for almost every x = n + s Ls the b b ∞ b n=1 n=1 following product exists and is finite X X

L − N−#{s

Now suppose that x ∈→∞P. Then

#{s < n ≤ N | d = A} #{s < n ≤ N | d = A} lim sup ψ n = ψ lim inf n N  N   N N  ≥ ψ(Lβ) > ψ(α)= 1, →∞ →∞ hence #{s < n ≤ N | d = A} N lim sup ψ n = , N   N   contradicting finiteness→∞ of (11). Thus the set P has zero measure.∞

Acknowledgment

This research was supported by the grants GACRˇ 201/07/0191 and VEGA 1/0753/10.

References

[1] E.´ Borel, Les probabilit´es d´enombrables et leurs applications arith- m´etiques, Supplemento di rend. circ. Mat. Palermo, 27 (1909), 247–271.

[2] W. A. Coppel, : An introduction to mathematics, Springer Science & Business, 2006.

[3] M. Kac, Statistical independence in probability, analysis and number the- ory, Carus Math. Monographs, no. 12, Wiley, New York, 1959.

[4] D. Khoshnevisan, Normal numbers are normal, Clay Mathematics Institute Annual Report 2006, p. 15 (continued on pp. 27–31). 110 F. Filip, J. Sustekˇ

[5] L. Kuipers, H. Niederreiter, Uniform distribution of , Pure and Applied Maths. no. 29, Wiley, New York, 1974.

[6] R. Nillsen, Normal numbers without measure theory, Am. Math. Monthly, 107 (2000), 639–644.

[7] T. Sal´at,ˇ Re´alne ˇc´ısla, Alfa, Bratislava, 1982.

[8] M. Svec,ˇ T. Sal´at,ˇ T. Neubrunn, Matematick´aanal´yza funkci´ıre´alnej pre- mennej, Alfa, Bratislava, 1987.

Received: December 9, 2009; Revised: April 17, 2010