Supporting Information

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information Supporting Information Singer et al. 10.1073/pnas.1401949111 Field Experiment Testing the Enemy-Free Space Hypothesis Quercus rubra to Q. alba) was estimated to be equidistant between We conducted a bird exclusion experiment at three field sites in the tips and the Fagus/Quercus split (34 mya), i.e., at 17 mya. Middlesex County, Connecticut: Cockaponset State Forest, Hurd Branch lengths (in millions of years) were then calculated from the State Park, and Millers Pond State Park (see ref. 1 for more node ages. Following “phylogenetic host specificity” in Poulin et al. detail). The experiment encompassed the caterpillar communi- (3), HPD for each caterpillar species was calculated as the total ties of eight abundant tree taxa: Acer rubrum (red maple), Betula branch length (in millions of years) linking its host species along lenta (black birch), Carya spp. (Eucarya hickories), Hamamelis this phylogenetic tree; this was implemented using the Phyloge- virginiana (witch hazel), Prunus serotina (black cherry), Quercus netic Diversity (pd) command in the Picante package (7) in R (8). alba (white oak), Q. rubra (northern red oak), and Fagus gran- In our analyses, each caterpillar species represented a single difolia (American beech). These plant taxa show a gradient in data point with scores for HPD and bird predation log response the representation of dietary specialized caterpillars relative to ratio (LRR). After regressing the latter on the former using the dietary generalists (2). The 41 caterpillar species used in analyses raw data, we then accounted for the possible confounding effect were those with at least 10 observations over the 4-y study and of phylogenetic relationships of caterpillars on these two variables thus represent the most numerically dominant species over this via phylogenetically independent contrasts (PICs) (9). A com- time period (2,954 individual caterpillars out of 3,520 individual posite phylogeny for the 41 caterpillar species was constructed in caterpillars collected) (see Table S1 for the species list and Mesquite, version 2.75 (10), based on molecular phylogenetic sample sizes). According to a conventional categorical measure trees reported by Regier et al. (11), Zahiri et al. (12, 13), and of diet breadth based on plant taxonomy, 11 of these 41 cater- Sihvonen et al. (14). Expert opinion (David L. Wagner, Uni- pillar species are dietary specialists (host range of one plant versity of Connecticut, Storrs, CT) was then used to resolve family), whereas 30 caterpillar species are dietary generalists polytomies in three small clades. Further details on phylogeny (host range of more than one plant family). construction are given in Table S2. Two competing topologies We matched experimental and control branches in terms of were considered: a base tree in which (Nolidae + Erebidae) is tree species, tree size, height (1–3 m above ground), and hori- sister to Noctuidae (Fig. 1) and an alternative in which Nolidae is zontal spatial proximity, with the expectation that the pair of sister to (Noctuidae + Erebidae). Because branch lengths were branches would be within the foraging range of the same individual unknown, we tested branch lengths corresponding to all branches = birds and ovipositing female moths. To obtain independent mea- 1.0, Grafen’s arbitrary lengths, Pagel’s arbitrary lengths, Nee’s sures of bird predation across a range of microenvironments, pairs arbitrary lengths, and ln(Nee) lengths; these were generated in of experimental and control branches were replicated at two spatial Mesquite, version 2.75, using the PDAP package (15). Results scales: block and site. Each block was <1 ha, included all eight tree were broadly consistent across the combinations of phylogenetic taxa, and was separated from other blocks by at least 100 m. Each topologies and branch lengths; for simplicity, the results presented site was a relatively large tract of forest (>100 ha), separated from here reflect the base tree with ln(Nee) branch lengths. As a visual other sites by at least 10 km, and contained six complete blocks. In heuristic, caterpillar HPD was traced onto the base phylogeny each of 4 y (2008–2011), experimental and control branches were using the Parsimony Ancestral States method (16) (Fig. 1). We haphazardly selected (within the above constraints), and set up in then calculated standardized PICs using the PDAP module (17) May, at least 3 wk before sampling caterpillars from experimental of Mesquite (18), and regressed contrasts in bird predation LRR and control branches over 3–6 wk in June and early July, at the on contrasts in HPD. peak season of caterpillar abundance and insectivorous bird breeding (1). Antipredator Traits Associated with Diet Breadth Mean Body Length. We measured caterpillar body length as an Relationship Between Bird Predation and Herbivore Diet estimate of overall body size. Caterpillar body size has been shown Breadth: Accounting for Phylogeny to be associated with diet breadth, even when phylogeny is In addition to using a qualitative classification of diet breadth, we accounted for (19), such that dietary generalist species tend to be quantified the variation in herbivore diet breadth as host phy- larger than dietary specialist species (20). As such, it is important lodiversity (HPD) (3), the aggregate phylogenetic distance be- to account for caterpillar body size in analyses of bird predation tween hosts. Because we used only our own host plant records to because optimal foraging theory predicts that predators would calculate HPD, some generalists’ diet breadth is an underestimate choose large prey over small prey, all else being equal. In a re- of true diet breadth; i.e., it is a subset of the species they use more cent metaanalysis, Remmel et al. (21) present evidence that bird broadly. We believe this approach is superior to that of trying to predation of forest caterpillars tends to be biased toward larger quantify diet breadths more broadly, as the latter would include body size. In the bird exclusion experiment, when sampled cat- idiosyncratic errors due to an incomplete literature of host plant erpillars were brought back to the laboratory for rearing and records. We have high confidence in our records because we identification, we measured the length of each caterpillar using know that each caterpillar species has received the same sampling a ruler or digital calipers. Measurements taken with a ruler were effort; thus, our own estimates of diet breadth are comparable rounded to the nearest half-centimeter. In analyses, we used the among caterpillar species. In the broader literature, however, mean body length per caterpillar species calculated from samples sampling effort is idiosyncratic and some host records are not taken from bird-excluded branches only. reliable, thus introducing potential bias into quantitative measures of diet breadth. Stereotypy. We studied behavioral specialization by locating Phylogenetic topology of the eight host angiosperm species was caterpillars on their host plant by visual inspection. Each time we estimated from the Davies et al. (4) supertree via the Phylomatic located a caterpillar we noted its resting substrate and its behavior program (5) (Fig. S1). Node ages (in million years ago) were (e.g., walking, feeding, or resting). We grouped resting substrates obtained from Wikstrom et al. (6) (assuming the ACCTRAN op- into six categories: the upper surface of the leaf blade, the under timization). The single remaining undated node (that connecting surface of the leaf blade, the petiole, the leaf edge, within a shelter, Singer et al. www.pnas.org/cgi/content/short/1401949111 1of6 or woody tissue (including branches and the trunk). Most of our was present during all testing to monitor each participant. Before data on caterpillar behavior came from fieldwork each year from testing, each participant received a short introduction to cater- 2004 to 2007, although we continued to opportunistically locate pillar morphological diversity. During this talk, we showed pic- caterpillars and collect data while performing the bird exclusion tures of caterpillars in the families Sphingidae (hornworms), experiment (2008–2011). For species underrepresented in this Geometridae (loopers), Lycaenidae (hairstreaks), and Noto- dataset because of the difficulty of locating them in the wild, we dontidae (prominents). Participants were told to click on the transferred individual caterpillars encountered in beating samples caterpillars in the images as quickly and accurately as possible and to wild foliage and gave them ample time (10–20 min) to select that they were being timed. We did not inform participants about a resting place. The six categories of resting substrates formed the the specific hypotheses being tested. The Institutional Review six categories of resting location, and we assigned caterpillars to Board of Wesleyan University approved this research. The la- a category according to the substrate that they used most fre- tency until caterpillars were clicked was averaged across observers quently. We calculated stereotypy to measure the fidelity of each that successfully clicked on the caterpillar. In our analyses, latency caterpillar species to its most frequent resting substrate. Stereo- refers to the mean amount of time until discovery (in hundredths typy was the proportion of instances in which we located a cater- of a second) averaged across images of each caterpillar species. pillar species on its most frequently used resting substrate. We included
Recommended publications
  • Edgartown Produced in 2012
    BioMap2 CONSERVING THE BIODIVERSITY OF MASSACHUSETTS IN A CHANGING WORLD Edgartown Produced in 2012 This report and associated map provide information about important sites for biodiversity conservation in your area. This information is intended for conservation planning, and is not intended for use in state regulations. BioMap2 Conserving the Biodiversity of Massachusetts in a Changing World Table of Contents Introduction What is BioMap2 – Purpose and applications One plan, two components Understanding Core Habitat and its components Understanding Critical Natural Landscape and its components Understanding Core Habitat and Critical Natural Landscape Summaries Sources of Additional Information Edgartown Overview Core Habitat and Critical Natural Landscape Summaries Elements of BioMap2 Cores Core Habitat Summaries Elements of BioMap2 Critical Natural Landscapes Critical Natural Landscape Summaries Natural Heritage Massachusetts Division of Fisheries and Wildlife 1 Rabbit Hill Rd., Westborough, MA 01581 & Endangered phone: 508-389-6360 fax: 508-389-7890 Species Program For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhesp. BioMap2 Conserving the Biodiversity of Massachusetts in a Changing World Introduction The Massachusetts Department of Fish & Game, through the Division of Fisheries and Wildlife’s Natural Heritage & Endangered Species Program (NHESP), and The Nature Conservancy’s Massachusetts Program developed BioMap2 to protect the state’s biodiversity in the context of climate change. BioMap2 combines NHESP’s 30 years of rigorously documented rare species and natural community data with spatial data identifying wildlife species and habitats that were the focus of the Division of Fisheries and Wildlife’s 2005 State Wildlife Action Plan (SWAP).
    [Show full text]
  • 1 Appendix 3. Thousand Islands National Park Taxonomy Report
    Appendix 3. Thousand Islands National Park Taxonomy Report Class Order Family Genus Species Arachnida Araneae Agelenidae Agelenopsis Agelenopsis potteri Agelenopsis utahana Anyphaenidae Anyphaena Anyphaena celer Hibana Hibana gracilis Araneidae Araneus Araneus bicentenarius Larinioides Larinioides cornutus Larinioides patagiatus Clubionidae Clubiona Clubiona abboti Clubiona bishopi Clubiona canadensis Clubiona kastoni Clubiona obesa Clubiona pygmaea Elaver Elaver excepta Corinnidae Castianeira Castianeira cingulata Phrurolithus Phrurolithus festivus Dictynidae Emblyna Emblyna cruciata Emblyna sublata Eutichuridae Strotarchus Strotarchus piscatorius Gnaphosidae Herpyllus Herpyllus ecclesiasticus Zelotes Zelotes hentzi Linyphiidae Ceraticelus Ceraticelus atriceps 1 Collinsia Collinsia plumosa Erigone Erigone atra Hypselistes Hypselistes florens Microlinyphia Microlinyphia mandibulata Neriene Neriene radiata Soulgas Soulgas corticarius Spirembolus Lycosidae Pardosa Pardosa milvina Pardosa moesta Piratula Piratula canadensis Mimetidae Mimetus Mimetus notius Philodromidae Philodromus Philodromus peninsulanus Philodromus rufus vibrans Philodromus validus Philodromus vulgaris Thanatus Thanatus striatus Phrurolithidae Phrurotimpus Phrurotimpus borealis Pisauridae Dolomedes Dolomedes tenebrosus Dolomedes triton Pisaurina Pisaurina mira Salticidae Eris Eris militaris Hentzia Hentzia mitrata Naphrys Naphrys pulex Pelegrina Pelegrina proterva Tetragnathidae Tetragnatha 2 Tetragnatha caudata Tetragnatha shoshone Tetragnatha straminea Tetragnatha viridis
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Moths of North Carolina - Early Draft 1
    Noctuidae Achatia distincta Distinct Quaker Moth 20 n=12 • • High Mt. • • • • N 10 • •• u • • • m • • • • b • 0 • • e • • • r 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 • 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 NC counties: 27 • Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec • o 20 • f n=39 • = Sighting or Collection Low Mt. High counts of: in NC since 2001 F • = Not seen since 2001 l 10 30 - Ashe - 2000-05-02 • i 8 - Macon - 2001-04-21 g Status Rank h 6 - Ashe - 2000-05-02 0 NC US NC Global t 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 D Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec a 20 20 t n=35 n=7 e Pd CP s 10 10 0 0 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 15 5 25 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Three periods to each month: 1-10 / 11-20 / 21-31 FAMILY: Noctuidae SUBFAMILY: Noctuinae TRIBE: Orthosiini TAXONOMIC_COMMENTS: A monotypic genus found across most of eastern North America and throughout North Carolina.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • Green Fruitworms
    NEW YORK'S FOOD AND LIFE SCIENCES BULLETIN NO. 50, OCTOBER 1974 NEW YORK STATE AGRICULTURAL EXPERIMENT STATION, GENEVA, A DIVISION OF THE NEW YORK STATE COLLEGE OF AGRICULTURE AND LIFE SCIENCES, A STATUTORY COLLEGE OF THE STATE UNIVERSITY, CORNELL UNIVERSITY, ITHACA Green Fruitworms P. J. Chapman and S. E. Lienk INTRODUCTION Young apple and pear fruits may be fed upon by several species of relatively large, stout-bodied green caterpillars (Fig. 1). Their dominant green color is relieved by dots, dashes, lines, and stripes of white, cream, or yellow. For more than a century now, these native insects have been known to commercial and amateur fruit growers as "green fruitworms" (6, 10, 17, 21, 22). Ten species of green fruitworms occur in New York. Tax- onomically, these constitute an artificial assemblage for while all are members of the same family (Noctuidae), four genera are represented in the group. However, six are members of the genus Lithophane. J ustif ication for treating these species as a unit rests on the fact that they form a quite distinctive pest complex. Thus, in the larval or cater- pillar stage, they are of very similar appearance and habits, feed at the same season, cause the same kind of feeding injury, and produce single generations annually. So, while the primary reason for treating these insects collectively has an economic basis, we expect the informa- tion given here will prove useful both to those having a Figure 2. —Young apple fruits showing green fruitworm technical interest in these species as well as to those hav- feeding injury.
    [Show full text]
  • Butterflies and Moths of New Brunswick, Canada
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • West Tisbury Produced in 2012
    BioMap2 CONSERVING THE BIODIVERSITY OF MASSACHUSETTS IN A CHANGING WORLD West Tisbury Produced in 2012 This report and associated map provide information about important sites for biodiversity conservation in your area. This information is intended for conservation planning, and is not intended for use in state regulations. BioMap2 Conserving the Biodiversity of Massachusetts in a Changing World Table of Contents Introduction What is BioMap2 – Purpose and applications One plan, two components Understanding Core Habitat and its components Understanding Critical Natural Landscape and its components Understanding Core Habitat and Critical Natural Landscape Summaries Sources of Additional Information West Tisbury Overview Core Habitat and Critical Natural Landscape Summaries Elements of BioMap2 Cores Core Habitat Summaries Elements of BioMap2 Critical Natural Landscapes Critical Natural Landscape Summaries Natural Heritage Massachusetts Division of Fisheries and Wildlife 1 Rabbit Hill Road, Westborough, MA 01581 & Endangered phone: 508-389-6360 fax: 508-389-7890 Species Program For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhesp. BioMap2 Conserving the Biodiversity of Massachusetts in a Changing World Introduction The Massachusetts Department of Fish & Game, ɳɧɱɮɴɦɧ ɳɧɤ Dɨɵɨɲɨɮɭ ɮɥ Fɨɲɧɤɱɨɤɲ ɠɭɣ Wɨɫɣɫɨɥɤ˘ɲ Natural Heritage & Endangered Species Program (NHESP), and The Nature Cɮɭɲɤɱɵɠɭɢɸ˘ɲ Mɠɲɲɠɢɧɴɲɤɳɳɲ Pɱɮɦɱɠɬ developed BioMap2 ɳɮ ɯɱɮɳɤɢɳ ɳɧɤ ɲɳɠɳɤ˘ɲ biodiversity in the context of climate change. BioMap2 ɢɮɬɡɨɭɤɲ NHESP˘ɲ ȯȬ ɸɤɠɱɲ ɮɥ rigorously documented rare species and natural community data with spatial data identifying wildlife species and habitats that were the focus ɮɥ ɳɧɤ Dɨɵɨɲɨɮɭ ɮɥ Fɨɲɧɤɱɨɤɲ ɠɭɣ Wɨɫɣɫɨɥɤ˘ɲ ȮȬȬȱ State Wildlife Action Plan (SWAP).
    [Show full text]
  • Influence of Habitat and Bat Activity on Moth Community Composition and Seasonal Phenology Across Habitat Types
    INFLUENCE OF HABITAT AND BAT ACTIVITY ON MOTH COMMUNITY COMPOSITION AND SEASONAL PHENOLOGY ACROSS HABITAT TYPES BY MATTHEW SAFFORD THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Advisor: Assistant Professor Alexandra Harmon-Threatt, Chair and Director of Research ABSTRACT Understanding the factors that influence moth diversity and abundance is important for monitoring moth biodiversity and developing conservation strategies. Studies of moth habitat use have primarily focused on access to host plants used by specific moth species. How vegetation structure influences moth communities within and between habitats and mediates the activity of insectivorous bats is understudied. Previous research into the impact of bat activity on moths has primarily focused on interactions in a single habitat type or a single moth species of interest, leaving a large knowledge gap on how habitat structure and bat activity influence the composition of moth communities across habitat types. I conducted monthly surveys at sites in two habitat types, restoration prairie and forest. Moths were collected using black light bucket traps and identified to species. Bat echolocation calls were recorded using ultrasonic detectors and classified into phonic groups to understand how moth community responds to the presence of these predators. Plant diversity and habitat structure variables, including tree diameter at breast height, ground cover, and vegetation height were measured during summer surveys to document how differences in habitat structure between and within habitats influences moth diversity. I found that moth communities vary significantly between habitat types.
    [Show full text]
  • Check List of Identified Lepidoptera Collected at Mud Lake State Nature Preserve, Williams County, Ohio
    The Great Lakes Entomologist Volume 34 Number 2 - Fall/Winter 2001 Number 2 - Fall/ Article 3 Winter 2001 October 2001 Check List of Identified Lepidoptera Collected at Mud Lake State Nature Preserve, Williams County, Ohio Roy W. Rings Ohio State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Rings, Roy W. 2001. "Check List of Identified Lepidoptera Collected at Mud Lake State Nature Preserve, Williams County, Ohio," The Great Lakes Entomologist, vol 34 (2) Available at: https://scholar.valpo.edu/tgle/vol34/iss2/3 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Rings: Check List of Identified Lepidoptera Collected at Mud Lake State 2001 THE GREAT LAKES ENTOMOLOGIST 9 CHECK LIST OF IDENTIFIED LEPIDOPTERA COLLECTED AT MUD LAKE STATE NATURE PRESERVE, WILLIAMS COUNTY, OHIO Roy W, Rings 1 ABSTRACT A total of696 species ofLepidoptera is reported from the Mud Lake State Nature Preserve, Williams County, Ohio. This preserve is only a few miles from both the Indiana and Michigan state borders. The great biodiversity of moths is reflected in the bog, fen, shrub swamp, and marsh communities bor­ dering the lake. A check list of species summarizes identified collections for 1988,1992,1995 and 1996 and includes the Hodges et al (1983) species num­ bers, the scientific name, and the numbers collected by different collecting methods.
    [Show full text]
  • Quelques Papillons De Nuit De La Réserve Faunique De Matane
    Quelques papillons de nuit de la réserve faunique de Matane Le mont Blanc à l’arrière-plan Comité de protection des monts Chic-Chocs Rapport produit par Jacques Larivée Rimouski, mai 2017 Papillons de nuit de la réserve faunique de Matane C’est à l’invitation du Comité de protection des monts Chic-Chocs que je joins du 15 au 17 août 2016 un groupe de naturalistes qui a pour objectif d’améliorer les connaissances de la flore et de la faune du territoire de la réserve faunique de Matane. Voici les membres de l’équipe dans l’ordre où ils apparaissent sur la photo. Photo Claude Gauthier Claude Gauthier (ornithologie, photographie, kayak, transport et sécurité) ; Christian Grenier (botanique des plantes vasculaires et photographie) ; Pierre Fradette (organisation, ornithologie, photographie, transport et sécurité), Louis Fradette (organisation, ornithologie, photographie, kayak, transport et sécurité) ; Pierre Lévesque (bryologie et photographie) ; Jean Faubert (bryologie et photographie) ; Jacques Larivée (ornithologie, photographie et entomologie) ; Gaétan Caron (organisation, transport, connaissance du territoire et sécurité). 2 Papillons de nuit de la réserve faunique de Matane Mon « travail » consiste à noter mes observations des oiseaux le jour partout sur le territoire, comme le font les autres ornithologues, et à photographier les papillons de nuit le soir à l’Étang à la Truite le 15 et le 17 août et au sommet du mont Blanc le soir du 16 août. Mes observations d’oiseaux sont enregistrées sur eBird et sont résumées dans ce document. Le texte qui suit présente 3 listes d’espèces incluant au moins une photo par espèce : la liste des papillons de nuit photographiés à l’Étang à la Truite suivie de la liste des papillons de nuit photographiés au mont Blanc et de la liste des papillons de nuit non identifiés.
    [Show full text]