ADVANCED CONCEPTS FOR ISRU-BASED ADDITIVE MANUFACTURING OF PLANETARY HABITATS Belinda Rich* , Hanna Läkk* , Marlies Arnhof , Ina Cheibas Advanced Concepts Team, ESTEC, European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands *Corresponding authors:
[email protected];
[email protected] KEYWORDS In the short term, such habitats are likely to be Class ISRU, additive manufacturing, in-space I, defined by NASA’s Habitats Development manufacturing, habitats Roadmap to be pre-integrated, hard-shell capsules delivered from Earth [3]. However, this short-term strategy is inefficient and a long-term sustained ABSTRACT extra-terrestrial presence will necessitate In-Situ Resource Utilization (ISRU) is a key enabler development of Class II (prefabricated and for the expansion of space activities beyond low assembled in-situ) and eventually Class III (fully Earth orbit. While early ISRU developments have derived in-situ) habitats. Class III habitats are focused primarily on mission consumables, the last particularly efficient in terms of reducing launch decade has seen an exponential increase in costs and exploiting the unique resources and research on ISRU for manufacturing. In particular, it manufacturing environment offered in space. has been shown that many resources available in Developing these technologies for use with in-situ space can be successfully utilised with various resources not only enables construction of habitats, Additive Manufacturing (AM) techniques. In the but also offers up greater potential for in-situ Advanced Concepts Team (ACT) at the European maintenance and expansion. Thus In-Situ Resource Space Agency, novel ideas are being studied in the Utilization (ISRU) is a key driver for sustained field of space architecture and infrastructure.