Autonomous Unmanned Aerial Vehicles a Technology Warning Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Autonomous Unmanned Aerial Vehicles a Technology Warning Assessment THE GEORGE WASHINGTON UNIVERISTY Autonomous Unmanned Aerial Vehicles A Technology Warning Assessment Syed Azeem 2/29/2012 This report presents a technology warning assessment based on National Academies’ methodology. The particular technology area analyzed relates to fully autonomous unmanned aerial vehicles (AUAVs) from the perspective of the United States government with the objective to assess AUAV technology with the goal of strongly enabling, promoting and increasing economic growth. Table of Contents Focus ............................................................................................................................................... 4 Introduction ............................................................................................................................. 4 History..................................................................................................................................... 5 UAVs Come to the Lime Light in Contemporary Times ....................................................... 5 Civilian Use of UAVs is Gaining Momentum ........................................................................ 6 The Road to Autonomy ............................................................................................................. 10 State of the Art ...................................................................................................................... 10 Alternative Energy and Extreme Endurance ......................................................................... 13 Micro UAVs.......................................................................................................................... 14 Identify: Evolving Technologies................................................................................................... 15 Platform Technologies .............................................................................................................. 15 Alternative Energy, Lightweight and Efficient Power Supplies: .......................................... 15 Low-Observable or Stealth Technology: .............................................................................. 19 Sensor Technologies ................................................................................................................. 20 Synthetic Aperture Radar (SAR): ......................................................................................... 21 Light Detection and Ranging (LIDAR): ............................................................................... 22 On-board Intelligence ............................................................................................................... 23 Artificial intelligence: ........................................................................................................... 23 Communications bandwidth: ................................................................................................ 28 Identify: Observables .................................................................................................................... 29 Technology Warning Assessment ................................................................................................. 31 Assess: Accessibility ..................................................................................................................... 31 Assess: Maturity............................................................................................................................ 32 2 Assess: Consequence .................................................................................................................... 32 Prioritize & Task ........................................................................................................................... 33 Table of Figures ............................................................................................................................ 36 Bibliography ................................................................................................................................. 37 3 Focus The scope of this research paper is focused on answering the following question: What is the current state of autonomous unmanned aerial vehicles (AUAVs) and ongoing developments in the R&D that is of interest in understanding the state of this particular technology? Introduction An unmanned aerial vehicle (UAV), also sometimes known as a unmanned aerial system (UAS), refers specifically to an aircraft, or more generally a flying machine, being flown without a human pilot on-board actively directing and piloting. Control functions are found either on- board, in the form of sophisticated computer systems, or remotely controlled by human pilots on the ground [6], or a combination of both. The closely related term, unmanned combat aerial system (UCAS) refers to the variety of such unmanned aircraft with strike fighter size platform and capabilities. UAVs come in many different configurations akin to traditional aircraft. These configurations may include: fixed-wing, rotary-wing or rotorcraft, helicopters, VTOL vehicles, or short take-off and landing (STOL) [6]. However, UAV form factors are not necessarily limited by the configurations offered by traditional aircraft. Smaller form factors UAVs are called Miniature UAVs ─ some of which can be launched by catapault, or even by hand. Similarly, advanced UAVs may also borrow their form and function from creatures such as birds or flying insects. Another distinct category of unmanned systems is airships. They offer unparalleled endurance over fixed wing or rotary configurations. Many of the models can stay aloft for days or even months. Applications include surveillance, monitoring and communications relay [6]. The focus of our assessment is to provide a thorough background on the history of unmanned aircraft, current state-of-the-art of various UAVs, and discussing the trend towards increased autonomy. The perspective of this report is that of the United States government with the objective to assess autonomous UAV technology with the goal of strongly enabling, promoting and increasing economic growth. For example, this technology has the promise to create new and innovative business models and increased exports (in terms of both technology goods and intellectual property). 4 History The first modern UAV, in its most rudimentary modern form, was the “Kettering Bug”. It was developed during World War I and designed to be a “flying bomb” for the U.S. Army. However, these “small, cheap, crudely built biplanes” were mired with crashes and were highly unreliable [7].. The Kettering Bug never saw operational light of day. During World War II, the Nazis developed a simple unmanned aircraft known as the V-1 “Buzzbomb” and used to it to conduct 8892 one-way bombing missions in the UK [7]. The effects were devastating and resulted in massive damages with 6,200 fatalities and 18,000 casualties [7]. Early-form UAVs, such as the V-1 and the Kettering Bug, were essentially one-way bombing machines in the form of an unmanned aircraft. They were similar in this most basic principle compared to modern cruise missiles, with the exception of an aircraft configuration in terms of fixed wingspan. Further substantial development of UAVs did not catch momentum until the Vietnam War. During 1964 and 1972, the “Lightning Bug” and “Buffalo Hunter” UAVs flew more than 3,400 sorties conducting reconnaissance, surveillance and PSYOPs missions and suffered an attrition rate of only 10% [7]. During the same period, more than 5,000 U.S. service members lost their lives in downed aircraft and 90% of American POWs were pilots or crewmen who had been captured [7]. “These UAVs returned from missions deep within enemy territory at a fraction of the cost of manned reconnaissance aircraft, and without the threat to American personnel” [7]. U.S. R&D efforts continued meagerly during the 1980’s and with increased momentum during the 1990’s. However, it was not until after September 11, 2001 attacks on U.S. soil that UAVs would become a key weapon in combating adversaries. UAVs Come to the Lime Light in Contemporary Times The benefits of using UAVs in military campaigns were never abundantly clearer than in the past post-9/11 decade. Across theaters in Afghanistan and Iraq, the RQ-4 Global Hawk, developed by Northrop Grumman, performed admirably and provided the U.S. and its allies a tremendous advantage over its adversaries by conducting intelligence, surveillance and reconnaissance (ISR) missions [7]. The UAS is considered a high-altitude, long-endurance (HALE) aircraft. Flying at altitudes up to 65,000 feet (roughly twice as high as commercial airliners and above inclement weather and prevailing winds) and being able to cruise for up to 35 hours, the Global Hawk provides joint war-fighting commanders near-real-time, high-resolution 5 intelligence, surveillance and reconnaissance (ISR) images in terms of both wide-area and spot imagery [7]. For example, in Iraq, it aided U.S. forces in accelerating defeat to Iraqi forces – taking credit for identifying over half of all critical air defense targets and 38% of Iraqi armored forces. The Global Hawk is able to autonomously take off, fly and surveil a region of interest (pre-programmed by operators), and land [7]. It can image an area the size of the state of Illinois in just one mission [8]. During these conflicts, General Atomics’ RQ-1 Predator UAV proved invaluable due to its multi-faceted capabilities in conducting combat
Recommended publications
  • The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering
    The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering Laurel Mossman, Kate Schein, and Amelia Peoples Senior Division Group Documentary Word Count: 499 Our group chose the topic, Donna Shirley and her Mars rover, because of our connections and our interest level in not only science but strong, determined women. One of our group member’s mothers worked for a man under Ms. Shirley when she was developing the Mars rover. This provided us with a connection to Ms. Shirley, which then gave us the amazing opportunity to interview her. In addition, our group is interested in the philosophy of equality and we have continuously created documentaries that revolve around this idea. Every member of our group is a female, so we understand the struggles and discrimination that women face in an everyday setting and wanted to share the story of a female that faced these struggles but overcame them. Thus after conducting a great amount of research, we fell in love with Donna Shirley’s story. Lastly, it was an added benefit that Ms. Shirley is from Oklahoma, making her story important to our state. All of these components made this topic extremely appealing to us. We conducted our research using online articles, Donna Shirley’s autobiography, “Managing Martians”, news coverage from the launch day, and our interview with Donna ​ ​ Shirley. We started our research process by reading Shirley’s autobiography. This gave us insight into her college life, her time working at the Jet Propulsion Laboratory, and what it was like being in charge of such a barrier-breaking mission.
    [Show full text]
  • Solar Aircraft Design
    Cumhuriyet Üniversitesi Fen Fakültesi Cumhuriyet University Faculty of Science Fen Bilimleri Dergisi (CFD), Cilt:36, No: 3 Özel Sayı (2015) Science Journal (CSJ), Vol. 36, No: 3 Special Issue (2015) ISSN: 1300-1949 ISSN: 1300-1949 SOLAR AIRCRAFT DESIGN Sadegh RAHMATI1,*, Amir GHASED2 1,2Department of Mechanical Engineering, Majlesi Branch, Islamic Azad University, Isfahan, Iran Received: 01.02.2015; Accepted: 05.05.2015 ______________________________________________________________________________________________ Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part for the night flight. This paper intended to stimulate research on renewable energy sources for aviation. In future solar powered air planes could be used for different types of aerial momitoring and unmanned flights. This review paper brietly shows history, application and use of solar aircraft. We are focusing on design and fabrication of solar aircraft which is unmanned prototype. Keywords: Solar energy, Reynolds number, Bernoulli’s principle 1. INTRODUCTION Energy comes in different forms. Light is a form of energy. Sun is source of energy called “sunlight”. Sunshine is free and never gets used up Also. There is a lot of it. The sunlight that heats the Earth in an hour has more energy than the people of the world use in a year.
    [Show full text]
  • State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications
    Dissertations and Theses Fall 2011 State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications Lori Anne Costello Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Costello, Lori Anne, "State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications" (2011). Dissertations and Theses. 37. https://commons.erau.edu/edt/37 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATE OF THE ART OF PILOTED ELECTRIC AIRPLANES, NASA’S CENTENNIAL CHALLENGE DATA AND FUNDAMENTAL DESIGN IMPLICATIONS by Lori Anne Costello A Thesis Submitted to the Graduate Studies Office in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida Fall 2011 1 Copyright by Lori Anne Costello 2011 All Rights Reserved 2 ACKNOWLEDGEMENTS This thesis is the culmination of two years of work on the Green Flight Challenge Eco-Eagle. The Eco- Eagle and this thesis would not have been possible without countless help and inspiration from friends and family. I would like to thank Dr. Anderson for giving me the opportunity to participate in Embry-Riddle’s Green Flight Challenge Team and for supporting me and the Eco-Eagle project. Without his guidance I would not have this paper and understood as much as I now do about electric airplanes.
    [Show full text]
  • Astronautics and Aeronautics: a Chronology, 1996-2000
    ASTRONAUTICS AND AERONAUTICS: A CHRONOLOGY, 1996–2000 NASA SP-2009-4030 February 2009 Authors: Marieke Lewis and Ryan Swanson Project Manager: Alice R. Buchalter Federal Research Division, Library of Congress NASA History Division Office of External Relations NASA Headquarters Washington, DC 20546 Astronautics and Aeronautics: A Chronology, 1996-2000 PREFACE This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site. i Astronautics and Aeronautics: A Chronology, 1996-2000 TABLE OF CONTENTS PREFACE........................................................................................................................................ i JANUARY 1996............................................................................................................................. 1 FEBRUARY 1996 .......................................................................................................................... 5 MARCH 1996................................................................................................................................
    [Show full text]
  • Space Station Freedom. a Foothold on the Future. INSTITUTION National Aeronautics and Space Administration, Washington, DC
    DOCUMENT RESUME ED 310 939 SE 050 885 AUTHOR David, Leonard TITLE Space Station Freedom. A Foothold on the Future. INSTITUTION National Aeronautics and Space Administration, Washington, DC. Office of Space Sta.:Ion. REPORT NO NP-107/10-88 PUB DATE 89 NOTE 49p.; Colored photographs and drawings may not reproduce well. PUB TYPE Reports - Descriptive (141) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Aerospace Technology; Engineering Technology; Planning; *Satellites (Aerospace); Science Materials; *Science Programs; *Scientific Research; *Space Exploration; *Space Sciences IDENTIFIERS *Space Station ABSTRACT This booklet describes the planning of the space station program. Sections included are: (1) "Introduction"; (2) "A New Era Begins" (discussing scientific experiments on the space station); (3) "Living in Space";(4) "Dreams Fulfilled" (summarizing the history of the space station development, including the skylab and shuttle); (5) "Building a Way Station to Worlds Beyond" (illustrating an approach to building the space station); (6) ''Orbital Mechanics" (discussing the maneuverability of the space station, including robotic application);(7) "Evolving with Versatility" (describing blueprints for expanding a space station); and (8) "Foothold on the Future" (discussing the future plans of the space station program). (YP) **************************************-******************************* * Reproductions supplied by EDRS are the best that can be made * from the original document. *********************************************************************A*
    [Show full text]
  • GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
    GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists.
    [Show full text]
  • Effort to Accelerate MBSE Adoption and Usage at JSC
    Effort to Accelerate MBSE Adoption and Usage at JSC Lui Wang1 NASA Johnson Space Center, Houston, TX 77058 and Michel Izygon, Ph.D.2, Shira Okon3, Larry Garner4, and Howard Wagner, Ph.D.5 Tietronix Software Inc., Houston, TX 77058 This paper describes the authors’ experience in adopting Model Based System Engineering (MBSE) at the NASA/Johnson Space Center (JSC). Since 2009, NASA/JSC has been applying MBSE using the Systems Modeling Language (SysML) to a number of advanced projects. Models integrate views of the system from multiple perspectives, capturing the system design information for multiple stakeholders. This method has allowed engineers to better control changes, improve traceability from requirements to design and manage the numerous interactions between components. As the project progresses, the models become the official source of information and used by multiple stakeholders. Three major types of challenges that hamper the adoption of the MBSE technology are described. These challenges are addressed by a multipronged approach that includes educating the main stakeholders, implementing an organizational infrastructure that supports the adoption effort, defining a set of modeling guidelines to help engineers in their modeling effort, providing a toolset that support the generation of valuable products, and providing a library of reusable models. JSC project case studies are presented to illustrate how the proposed approach has been successfully applied. Nomenclature CAD = Computer-Aided Design CDS = Cascade Distillation System
    [Show full text]
  • July-16.Indd
    SWATI SAXENA RTICLE A EATURE F There have been many efforts to build and fl y a solar-powered aircraft that does not guzzle conventional fuels. Although some headway has been made, there is still a long way to go. batteries or fuel cells are used for this The Solar-Powered Aircraft purpose. They can be re-charged during Developments’ “Solar One” is a British the day. mid-wing, experimental, manned solar- Solar Plane History powered aircraft designed by David Solar plane history dates back to the Williams was the third solar-powered 1970s when the 27 lb (12 kg) unmanned aircraft to fl y. A motor-glider type AstroFlight Sunrise, the result of an USA aircraft originally built as a pedal- HE world’s fi rst offi cial fl ight in a ARPA (Advanced Research Projects powered airplane to attempt the Channel solar-powered, man-carrying aircraft T Agency) contract, made the world’s fi rst crossing, the airplane proved too heavy took place on 29 April 1979. Technologists solar-powered fl ight from Bicycle Lake, to be successfully powered by human have been trying since long to look for a dry lake bed on the Fort Irwin Military power and was then converted to greener ways of fl ying aircraft. And what Reservation, on 4 November 1974. solar power, using an electric motor can be greener than harnessing the energy The improved Sunrise II fl ew on driven by batteries that were charged of the sun to power aircraft. 27 September 1975 at Nellis Air Force before fl ight by a solar cell array on the A solar powered plane converts Base.
    [Show full text]
  • Calendar Year 2000 in Review
    NASA HISTORY: CALENDAR YEAR 2000 IN REVIEW Introduction: During 2000 the efforts of the NASA History Division continued to focus on our core goals in accomplishing the collection, preservation, and dissemination of historical knowledge about NASA. These goals include: · Continue high quality history publication program. · Focus on applied historical research efforts of interest and use to NASA executive leadership. · Aggressively acquire, preserve, and make available documentary information in the NASA Historical Reference Collection. · Aggressively disseminate historical information and understanding to the broadest possible audience. · Use technology to collect, preserve, and disseminate NASA history. · Achieve agency-wide involvement in the preservation and dissemination of history. We accomplish this by developing a significant collection of reference documents for use by both NASA personnel and the public; providing historical perspective and documentary support for agency executives; and researching and writing NASA history for publication in books, monographs, articles, and reports. Reference Collection and Research Support: Information Requests During calendar year 2000 NASA History Division personnel answered a total number of 11,732 research requests from government, educational, and private organizations on all manner of divergent research interests. This required a total number of 4,745 work hours by the office staff. Also during the year, the History Division provided research services to on-site researchers using its collections. Table 1 breaks down the number and type of information requests handled by NASA history personnel during calendar year 2000. Table 1 also depicts the large percentage of e-mail requests for information that the History Division is receiving. With the advance of this technology, querying the History Division has become easier than ever, and it represents a growing workload that must be met in the future.
    [Show full text]
  • Paper Number
    Impact of mission requirements on the design of low observable UCAV configurations E. Sepulveda, H. Smith SATM, Cranfield University, Cranfield, UK. Purpose – The purpose of this paper is to characterise the effects of mission and performance parameters on the design space of low observable subsonic unmanned combat aerial vehicles operating in typical Hi-Lo-Hi ground strike missions. Design/methodology/approach – Conceptual design methodologies appropriate to low observable, tailless UCAVs have been integrated into a multidisciplinary aircraft design environment, GENUS, developed at Cranfield University’s Aircraft Design Group. A basic Hi-Lo-Hi mission is designed and a baseline configuration is established through the GENUS framework. Subsequently, an evolutionary optimiser and a robust gradient-based optimiser are employed to obtain convergent design solutions for various leading edge sweep angles, mission ranges, cruise Mach numbers, and other operational constraints. Findings – The results indicate that performance constraints, specifically in the form of specific excess power, have a large influence on the overall sizing of subsonic tailless UCAVs. This requirement drives the engine sizing which represents a considerable proportion of the empty and gross mass of the vehicle. Cruise Mach number studies show that no significant advantages exist for operating at low speeds while maintaining performance requirements consistent with combat missions. There is a drastic increase in the vehicle’s mass and thrust requirements for flight speeds above Mach 0.8, with low sweep configurations showing a more pronounced effect. Increases in range are not overly dependent on the leading edge sweep angle. Top-level radar cross section results also favour configurations with higher leading edge sweep angles, especially from the nose-on aspect.
    [Show full text]
  • 1999 EOS Reference Handbook
    1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System http://eos.nasa.gov/ 1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System Editors Michael D. King Reynold Greenstone Acknowledgements Special thanks are extended to the EOS Prin- Design and Production cipal Investigators and Team Leaders for providing detailed information about their Sterling Spangler respective instruments, and to the Principal Investigators of the various Interdisciplinary Science Investigations for descriptions of their studies. In addition, members of the EOS Project at the Goddard Space Flight Center are recognized for their assistance in verifying and enhancing the technical con- tent of the document. Finally, appreciation is extended to the international partners for For Additional Copies: providing up-to-date specifications of the instruments and platforms that are key ele- EOS Project Science Office ments of the International Earth Observing Mission. Code 900 NASA/Goddard Space Flight Center Support for production of this document, Greenbelt, MD 20771 provided by Winnie Humberson, William Bandeen, Carl Gray, Hannelore Parrish and Phone: (301) 441-4259 Charlotte Griner, is gratefully acknowl- Internet: [email protected] edged. Table of Contents Preface 5 Earth Science Enterprise 7 The Earth Observing System 15 EOS Data and Information System (EOSDIS) 27 Data and Information Policy 37 Pathfinder Data Sets 45 Earth Science Information Partners and the Working Prototype-Federation 47 EOS Data Quality: Calibration and Validation 51 Education Programs 53 International Cooperation 57 Interagency Coordination 65 Mission Elements 71 EOS Instruments 89 EOS Interdisciplinary Science Investigations 157 Points-of-Contact 340 Acronyms and Abbreviations 354 Appendix 361 List of Figures 1.
    [Show full text]
  • Up from Kitty Hawk Chronology
    airforcemag.com Up From Kitty Hawk Chronology AIR FORCE Magazine's Aerospace Chronology Up From Kitty Hawk PART ONE PART TWO 1903-1979 1980-present 1 airforcemag.com Up From Kitty Hawk Chronology Up From Kitty Hawk 1980-1989 F-117 Nighthawk stealth fighters, first flight June 1981. Articles noted throughout the chronology are hyperlinked to the online archive for Air Force Magazine and the Daily Report. 1980 March 12-14, 1980. Two B-52 crews fly nonstop around the world in 43.5 hours, covering 21,256 statute miles, averaging 488 mph, and carrying out sea surveillance/reconnaissance missions. April 24, 1980. In the middle of an attempt to rescue US citizens held hostage in Iran, mechanical difficulties force several Navy RH-53 helicopter crews to turn back. Later, one of the RH-53s collides with an Air Force HC-130 in a sandstorm at the Desert One refueling site. Eight US servicemen are killed. Desert One May 18-June 5, 1980. Following the eruption of Mount Saint Helens in northwest Washington State, the Aerospace Rescue and Recovery Service, Military Airlift Command, and the 9th Strategic Reconnaissance Wing conduct humanitarian-relief efforts: Helicopter crews lift 61 people to safety, while SR–71 airplanes conduct aerial photographic reconnaissance. May 28, 1980. The Air Force Academy graduates its first female cadets. Ninety-seven women are commissioned as second lieutenants. Lt. Kathleen Conly graduates eighth in her class. Aug. 22, 1980. The Department of Defense reveals existence of stealth technology that “enables the United States to build manned and unmanned aircraft that cannot be successfully intercepted with existing air defense systems.” Sept.
    [Show full text]