East Osage River Watershed Inventory and Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lake of the Ozarks Regional Housing Study Acknowledgments
LAKE OF THE OZARKS REGIONAL HOUSING STUDY ACKNOWLEDGMENTS The project team would like to acknowledge the contributions of the residents of the Lake Region, who gave their time, ideas, and exper- tise for the creation of this plan. It is only with their assistance and direction the plan gained the depth necessary to truly represent the spirit of the Lake Region and it is with their commitment that the plan will be implemented. We would also like to thank the partner organizations, Lake of the Ozarks Regional Economic Development Council who financially sup- ported this study and provided their leadership. A special thanks to everyone involved. Project Manager LOREDC BOARD Roger Corbin Tim Jacobsen Jeana Woods COMMITTEE Jacob Neusche Kim Willey Corey ten Bensel Linda Conner Brent Depeé Colleen Richey Debbie Hurr Russell Clay Jeff Hancock Cary Patterson Lori Hoelscher Vicki Devine Dennis Croxton Vicki Brown Kevin McRoberts Stan Schultz Roger Corbin CONSULTING TEAM RDG Planning & Design Omaha and Des Moines www.RDGUSA.com CHAPTER 1: INTRODUCTION 7 CHAPTER 2: PROFILE OF THE REGION 11 CHAPTER 3: CAMDEN COUNTY 49 CHAPTER 4: MORGAN COUNTY 79 CHAPTER 5: MILLER COUNTY 103 CHAPTER 6: LACLEDE COUNTY 127 CHAPTER 7: DEFINING HOUSING ISSUES / DIRECTIONS FORWARD 153 CHAPTER 1: Introduction 1 LAKE OF THE OZARKS REGIONAL HOUSING STUDY | Introduction INTRODUCTION The Lake of the Ozarks Regional Housing Study represents an in-depth study of the housing conditions of the three counties that constitute the Lake of the Ozarks Regional Economic Development Council (LOREDC). This includes the counties of Camden, Miller, and Morgan and the commercial centers of Camdenton, Eldon, Lake Ozark, Osage Beach, and Versailles. -
Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNT Digital Library ORNL/TM-2005/188 Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model MARCH 2006 Prepared by Mark S. Bevelhimer Charles C. Coutant Environmental Sciences Division DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. -
Island100.Pdf
PPRREMIEREMIER LLAAKEKE PPROPERROPERTIESTIES Northern Twin Island - Sunrise Beach, MO 65079 Less Than 1 Mile to Camden On The Lake 900 Feet of & Shady Gators Water Frontage Purchase Your Own Private Island Purchase Price: $899,000 Lot Size: Approx. 1 Acre ~ Water Frontage: 900 Feet ~ Mile Marker #: 8 Private Island: Your paradise awaits!!!! The northern Twin Island is only 750 feet from the mainland with 900 feet of Water Frontage, and less than a mile from Camden On The Lake. This is your chance to purchase your very own private island... at the Lake of the Ozarks. Electric & Septic System already on site and Water is prepped. Capture the peace and serenity of your own personal parcel of land with no neighbors. This is one of only a few islands at the Lake of the Ozarks, and even more rare is the fact that one has become available for purchase. See this unique island today! LEGAL SURVEY TO GOVERN P.O. Box 642 – Lake Ozark, Missouri 65049 – Toll Free: 888-LakeOzark (888-525-3692) – Fax: 573-303-5522 Premier Lake Properties – Premier Lake Homes – Premier Lake Developments – Premier Lake Rentals – Premier Lake Graphics PremierLakeProperties.net PPRREMIEREMIER LLAAKEKE PPROPERROPERTIESTIES Northern Twin Island - Sunrise Beach, MO 65079 Welcome to Lake of the Ozarks P.O. Box 642 – Lake Ozark, Missouri 65049 – Toll Free: 888-LakeOzark (888-525-3692) – Fax: 573-303-5522 Premier Lake Properties – Premier Lake Homes – Premier Lake Developments – Premier Lake Rentals – Premier Lake Graphics PremierLakeProperties.net PPRREMIEREMIER LLAAKEKE PPROPERROPERTIESTIES Northern Twin Island - Sunrise Beach, MO 65079 Gorgeous Lake of the Ozarks Scenery P.O. -
Big Niangua River Trail Starts at Ha Ha Tonka Big Niangua State Park
The Big Niangua River Trail starts at Ha Ha Tonka Big Niangua State Park. The first four miles are lake and require paddling. The kayak steps and launch rail provide a safe and For a river float try an upriver access. convenient way to access the Big Niangua River Trail and the Lake while protecting the shoreline from erosion. At Ÿ Distances River Trail the upper end of the cove Missouri’s 12th largest spring § Whistle Bridge to Ha Ha Tonka 13.3 miles flows into the lake. Ha Ha Tonka Spring has an average § Mother Nature’s Family Side to Ha Ha Tonka 11.7 output of 48 million gallons of water a day. On the south The Indigenous Osage People named this miles side of the cove, all that remains of a grist mill is the stone raceway and an old mill stone. Take State Highway D to river the Niangua § Mother Nature’s Wild Side to Ha Ha Tonka 9.5 Tonka Spring Road; turn left from the spring parking lot at which translates to miles the Lakeside Picnic Shelter to reach the kayak steps. Big Winding Stream of Many Springs. § Casa de Loco to Ha Ha Tonka 6.2 miles Ÿ The Lake of the Ozarks and Niangua River are public waterways available for fishing and boating. However, the Spencer Creek and Bank Branch join with the Niangua River shoreline and stream bank above the high waterline is in this area. These two spring-fed creeks can be navigated privately owned. Trespass laws do apply. Be considerate a short distance. -
The Biology and Management of the River Dee
THEBIOLOGY AND MANAGEMENT OFTHE RIVERDEE INSTITUTEofTERRESTRIAL ECOLOGY NATURALENVIRONMENT RESEARCH COUNCIL á Natural Environment Research Council INSTITUTE OF TERRESTRIAL ECOLOGY The biology and management of the River Dee Edited by DAVID JENKINS Banchory Research Station Hill of Brathens, Glassel BANCHORY Kincardineshire 2 Printed in Great Britain by The Lavenham Press Ltd, Lavenham, Suffolk NERC Copyright 1985 Published in 1985 by Institute of Terrestrial Ecology Administrative Headquarters Monks Wood Experimental Station Abbots Ripton HUNTINGDON PE17 2LS BRITISH LIBRARY CATALOGUING-IN-PUBLICATIONDATA The biology and management of the River Dee.—(ITE symposium, ISSN 0263-8614; no. 14) 1. Stream ecology—Scotland—Dee River 2. Dee, River (Grampian) I. Jenkins, D. (David), 1926– II. Institute of Terrestrial Ecology Ill. Series 574.526323'094124 OH141 ISBN 0 904282 88 0 COVER ILLUSTRATION River Dee west from Invercauld, with the high corries and plateau of 1196 m (3924 ft) Beinn a'Bhuird in the background marking the watershed boundary (Photograph N Picozzi) The centre pages illustrate part of Grampian Region showing the water shed of the River Dee. Acknowledgements All the papers were typed by Mrs L M Burnett and Mrs E J P Allen, ITE Banchory. Considerable help during the symposium was received from Dr N G Bayfield, Mr J W H Conroy and Mr A D Littlejohn. Mrs L M Burnett and Mrs J Jenkins helped with the organization of the symposium. Mrs J King checked all the references and Mrs P A Ward helped with the final editing and proof reading. The photographs were selected by Mr N Picozzi. The symposium was planned by a steering committee composed of Dr D Jenkins (ITE), Dr P S Maitland (ITE), Mr W M Shearer (DAES) and Mr J A Forster (NCC). -
Cumulative Effective Stream Power and Bank Erosion on the Sacramento River, California, Usa1
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION AUGUST AMERICAN WATER RESOURCES ASSOCIATION 2006 CUMULATIVE EFFECTIVE STREAM POWER AND BANK EROSION ON THE SACRAMENTO RIVER, CALIFORNIA, USA1 Eric W. Larsen, Alexander K. Fremier, and Steven E. Greco2 ABSTRACT: Bank erosion along a river channel determines the INTRODUCTION pattern of channel migration. Lateral channel migration in large alluvial rivers creates new floodplain land that is essential for Natural rivers and their surrounding areas consti- riparian vegetation to get established. Migration also erodes tute some of the world’s most diverse, dynamic, and existing riparian, agricultural, and urban lands, sometimes complex terrestrial ecosystems (Naiman et al., 1993). damaging human infrastructure (e.g., scouring bridge founda- Land deposition on the inside bank of a curved river tions and endangering pumping facilities) in the process. channel is a process that creates opportunities for Understanding what controls the rate of bank erosion and asso- vegetation to colonize the riparian corridor (Hupp and ciated point bar deposition is necessary to manage large allu- Osterkamp, 1996; Mahoney and Rood, 1998). Point vial rivers effectively. In this study, bank erosion was bar deposition and outside bank erosion are tightly proportionally related to the magnitude of stream power. Linear coupled. These physical processes (which constitute regressions were used to correlate the cumulative stream channel migration) maintain ecosystem heterogeneity power, above a lower flow threshold, with rates of bank erosion in floodplains over space and time (Malanson, 1993). at 13 sites on the middle Sacramento River in California. Two Channel migration structures and sustains riparian forms of data were used: aerial photography and field data. -
Defining the Moment of Erosion
Earth Surface Processes and Landforms EarthDefining Surf. the Process. moment Landforms of erosion 30, 1597–1615 (2005) 1597 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/esp.1234 Defining the moment of erosion: the principle of thermal consonance timing D. M. Lawler* School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham B15 2TT, UK *Correspondence to: Abstract D. M. Lawler, School of Geography, Earth and Geomorphological process research demands quantitative information on erosion and deposi- Environmental Sciences, tion event timing and magnitude, in relation to fluctuations in the suspected driving forces. University of Birmingham, This paper establishes a new measurement principle – thermal consonance timing (TCT) Birmingham B15 2TT. – which delivers clearer, more continuous and quantitative information on erosion and E-mail: [email protected] deposition event magnitude, timing and frequency, to assist understanding of the controlling mechanisms. TCT is based on monitoring the switch from characteristically strong tempera- ture gradients in sediment, to weaker gradients in air or water, which reveals the moment of erosion. The paper (1) derives the TCT principle from soil micrometeorological theory; (2) illustrates initial concept operationalization for field and laboratory use; (3) presents experimental data for simple soil erosion simulations; and (4) discusses initial application of TCT and perifluvial micrometeorology principles in the delivery of timing solutions for two bank erosion events on the River Wharfe, UK, in relation to the hydrograph. River bank thermal regimes respond, as soil temperature and energy balance theory pre- dicts, with strong horizontal thermal gradients (often >>>1Kcm−−−1 over 6·8 cm). -
Hydropower Technologies Program — Harnessing America’S Abundant Natural Resources for Clean Power Generation
U.S. Department of Energy — Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program — Harnessing America’s abundant natural resources for clean power generation. Contents Hydropower Today ......................................... 1 Enhancing Generation and Environmental Performance ......... 6 Large Turbine Field-Testing ............................... 9 Providing Safe Passage for Fish ........................... 9 Improving Mitigation Practices .......................... 11 From the Laboratories to the Hydropower Communities ..... 12 Hydropower Tomorrow .................................... 14 Developing the Next Generation of Hydropower ............ 15 Integrating Wind and Hydropower Technologies ............ 16 Optimizing Project Operations ........................... 17 The Federal Wind and Hydropower Technologies Program ..... 19 Mission and Goals ...................................... 20 2003 Hydropower Research Highlights Alden Research Center completes prototype turbine tests at their facility in Holden, MA . 9 Laboratories form partnerships to develop and test new sensor arrays and computer models . 10 DOE hosts Workshop on Turbulence at Hydroelectric Power Plants in Atlanta . 11 New retrofit aeration system designed to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri . 11 Low head/low power resource assessments completed for conventional turbines, unconventional systems, and micro hydropower . 15 Wind and hydropower integration activities in 2003 aim to identify potential sites and partners . 17 Cover photo: To harness undeveloped hydropower resources without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this stream in West Virginia. ii HYDROPOWER TODAY Water power — it can cut deep canyons, chisel majestic mountains, quench parched lands, and transport tons — and it can generate enough electricity to light up millions of homes and businesses around the world. -
Modification of Meander Migration by Bank Failures
JournalofGeophysicalResearch: EarthSurface RESEARCH ARTICLE Modification of meander migration by bank failures 10.1002/2013JF002952 D. Motta1, E. J. Langendoen2,J.D.Abad3, and M. H. García1 Key Points: 1Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, • Cantilever failure impacts migration 2National Sedimentation Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Oxford, Mississippi, through horizontal/vertical floodplain 3 material heterogeneity USA, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA • Planar failure in low-cohesion floodplain materials can affect meander evolution Abstract Meander migration and planform evolution depend on the resistance to erosion of the • Stratigraphy of the floodplain floodplain materials. To date, research to quantify meandering river adjustment has largely focused on materials can significantly affect meander evolution resistance to erosion properties that vary horizontally. This paper evaluates the combined effect of horizontal and vertical floodplain material heterogeneity on meander migration by simulating fluvial Correspondence to: erosion and cantilever and planar bank mass failure processes responsible for bank retreat. The impact of D. Motta, stream bank failures on meander migration is conceptualized in our RVR Meander model through a bank [email protected] armoring factor associated with the dynamics of slump blocks produced by cantilever and planar failures. Simulation periods smaller than the time to cutoff are considered, such that all planform complexity is Citation: caused by bank erosion processes and floodplain heterogeneity and not by cutoff dynamics. Cantilever Motta, D., E. J. Langendoen, J. D. Abad, failure continuously affects meander migration, because it is primarily controlled by the fluvial erosion at and M. -
The 1951 Kansas - Missouri Floods
The 1951 Kansas - Missouri Floods ... Have We Forgotten? Introduction - This report was originally written as NWS Technical Attachment 81-11 in 1981, the thirtieth anniversary of this devastating flood. The co-authors of the original report were Robert Cox, Ernest Kary, Lee Larson, Billy Olsen, and Craig Warren, all hydrologists at the Missouri Basin River Forecast Center at that time. Although most of the original report remains accurate today, Robert Cox has updated portions of the report in light of occurrences over the past twenty years. Comparisons of the 1951 flood to the events of 1993 as well as many other parenthetic remarks are examples of these revisions. The Storms of 1951 - Fifty years ago, the stage was being set for one of the greatest natural disasters ever to hit the Midwest. May, June and July of 1951 saw record rainfalls over most of Kansas and Missouri, resulting in record flooding on the Kansas, Osage, Neosho, Verdigris and Missouri Rivers. Twenty-eight lives were lost and damage totaled nearly 1 billion dollars. (Please note that monetary damages mentioned in this report are in 1951 dollars, unless otherwise stated. 1951 dollars can be equated to 2001 dollars using a factor of 6.83. The total damage would be $6.4 billion today.) More than 150 communities were devastated by the floods including two state capitals, Topeka and Jefferson City, as well as both Kansas Cities. Most of Kansas and Missouri as well as large portions of Nebraska and Oklahoma had monthly precipitation totaling 200 percent of normal in May, 300 percent in June, and 400 percent in July of 1951. -
Caves of Missouri
CAVES OF MISSOURI J HARLEN BRETZ Vol. XXXIX, Second Series E P LU M R I U BU N S U 1956 STATE OF MISSOURI Department of Business and Administration Division of GEOLOGICAL SURVEY AND WATER RESOURCES T. R. B, State Geologist Rolla, Missouri vii CONTENT Page Abstract 1 Introduction 1 Acknowledgments 5 Origin of Missouri's caves 6 Cave patterns 13 Solutional features 14 Phreatic solutional features 15 Vadose solutional features 17 Topographic relations of caves 23 Cave "formations" 28 Deposits made in air 30 Deposits made at air-water contact 34 Deposits made under water 36 Rate of growth of cave formations 37 Missouri caves with provision for visitors 39 Alley Spring and Cave 40 Big Spring and Cave 41 Bluff Dwellers' Cave 44 Bridal Cave 49 Cameron Cave 55 Cathedral Cave 62 Cave Spring Onyx Caverns 72 Cherokee Cave 74 Crystal Cave 81 Crystal Caverns 89 Doling City Park Cave 94 Fairy Cave 96 Fantastic Caverns 104 Fisher Cave 111 Hahatonka, caves in the vicinity of 123 River Cave 124 Counterfeiters' Cave 128 Robbers' Cave 128 Island Cave 130 Honey Branch Cave 133 Inca Cave 135 Jacob's Cave 139 Keener Cave 147 Mark Twain Cave 151 Marvel Cave 157 Meramec Caverns 166 Mount Shira Cave 185 Mushroom Cave 189 Old Spanish Cave 191 Onondaga Cave 197 Ozark Caverns 212 Ozark Wonder Cave 217 Pike's Peak Cave 222 Roaring River Spring and Cave 229 Round Spring Cavern 232 Sequiota Spring and Cave 248 viii Table of Contents Smittle Cave 250 Stark Caverns 256 Truitt's Cave 261 Wonder Cave 270 Undeveloped and wild caves of Missouri 275 Barry County 275 Ash Cave -
Fluvial Geomorphic Assessment of the South River Watershed, MA
Fluvial Geomorphic Assessment of the South River Watershed, MA Prepared for Franklin Regional Council of Governments Greenfield, MA South River Prepared by John Field Field Geology Services Farmington, ME February 2013 South River geomorphic assessment - February 2013 Page 2 of 108 Table of Contents EXECUTIVE SUMMARY ................................................................................................ 6 1.0 INTRODUCTION ........................................................................................................ 8 2.0 FLUVIAL GEOMORPHIC ASSESSMENT ............................................................... 8 2.1 Reach and segment delineation ................................................................................. 9 2.2 Review of existing studies ...................................................................................... 10 2.3 Watershed characterization ..................................................................................... 11 2.4 Historical aerial photographs and topographic maps .............................................. 12 2.5 Mapping of channel features ................................................................................... 13 2.5a Mill dams and impoundment sediments ............................................................ 14 2.5b Bar deposition ................................................................................................... 15 2.5c Bank erosion, mass wasting, and bank armoring ............................................. 15 2.5c Wood