Familial Diffuse Lewy Body Disease, Eye Movement Abnormalities, and Distribution of Pathology

Total Page:16

File Type:pdf, Size:1020Kb

Familial Diffuse Lewy Body Disease, Eye Movement Abnormalities, and Distribution of Pathology OBSERVATION Familial Diffuse Lewy Body Disease, Eye Movement Abnormalities, and Distribution of Pathology Francesca M. Brett, MD, FRCPath; Craig Henson, BS; Hugh Staunton, PhD, FRCP Background: Familial diffuse Lewy body disease (DLBD) sociated in one with a defect in vertical gaze and in both is rare and not yet associated with a defect in the synuclein with visual hallucinations. gene. In the differential diagnosis of the parkinsonian syn- dromes, defects in vertical gaze tend to be identified with Results: In both patients, results of pathological exami- progressive supranuclear palsy. False-positive diagno- nation revealed (1) Lewy bodies positive for ubiquitin and sis of progressive supranuclear palsy can occur, and de- ␣-synuclein together with cell loss and gliosis in the sub- fects in vertical gaze have been reported in DLBD, al- stantia nigra, locus ceruleus, and neocortex; and (2) simi- though so far a pure vertical gaze palsy associated with lar findings in the rostral interstitial nucleus of the medial pathological abnormalities in the substrate for vertical longitudinal fasciculus, the posterior commissure, and the gaze has not been described. interstitial nucleus of Cajal (substrates for vertical gaze). Objectives: To report the clinical and pathological find- Conclusions: Familial DLBD (not shown to be geneti- ings in 2 siblings with DLBD, and to relate the distribu- cally as distinct from environmentally transmitted) has been tion of the pathological abnormalities in the brainstem shown to exist in an Irish family. Caution should be en- to centers for vertical gaze. joined in the interpretation of defects in vertical gaze in the differential diagnosis of the parkinsonian syndromes. Materials: For several years, 2 Irish siblings experi- enced a progressive parkinsonism-dementia complex as- Arch Neurol. 2002;59:464-467 ARKINSONISM IS a feature of a Considerable overlap may exist in symp- number of disorders. The dis- tomatology, which is a function of topo- tinction of other conditions graphic distribution.6 Autopsy demonstra- from Parkinson disease (PD) tion of the appropriate pathological features requires the presence of cer- remains the gold standard for accurate di- Ptain features atypical for PD. Diagnosis in agnosis.7 Even here, the “specific” bodies elderly people and early PD cause addi- seen in some of these conditions repre- tional problems.1,2 Autopsy studies sug- sent neurotubular and filamentous break- gest that accurate distinction is fre- down products and may not be respon- quently not made, and many patients dying sible for either pathogenesis or clinical with a clinical diagnosis of PD may have symptomatology. A recent review has sug- parkinsonism due to another cause.3,4 gested that the density distribution ratios Those syndromes that cause differential of Lewy bodies is constant, independent of difficulty include progressive supra- the clinical mode of presentation (eg, cor- nuclear palsy (PSP), diffuse Lewy body dis- tical vs subcortical).8 The diagnostic ter- ease (DLBD), multiple system atrophy, and minology, which may include clinical and corticobasal ganglionic degeneration. The pathological elements (eg, dementia with true relative frequency of these condi- diffuse Lewy bodies, dementia of Alzhei- tions is difficult to obtain. Prevalence mer type with Lewy bodies), underlines a studies are usually clinical, of necessity, relative unspecificity. whereas autopsy studies represent sam- Therefore, clinical diagnosis as a pre- From the Department of pling. Thus, epidemiological conclu- dictor of pathology is open to error. For Clinical Neurological Sciences, sions based on clinicopathologic correla- instance, the clinical diagnosis of PSP, in 2-5 Royal College of Surgeons, tions prove difficult. Like PD, they are which impairment of vertical eye move- Beaumont Hospital, Dublin, all degenerative disorders for which there ment receives particular significance, ap- Ireland. is no reliable laboratory or imaging test. pears to be made more frequently than the (REPRINTED) ARCH NEUROL / VOL 59, MAR 2002 WWW.ARCHNEUROL.COM 464 ©2002 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/27/2021 clinical diagnosis of DLBD, whereas, at a pathological level, retrospectively. Her clinical signs included bradykine- dementia associated with Lewy bodies may be the sec- sia and rigidity, but not tremor. She had been treated with ond most common form of dementia after dementia of levadopa without effect. During the illness, which pro- Alzheimer type. This finding implies a significant false- gressed for about 11 years, she also had intermittently positive level of diagnosis of PSP.6,9,10 Clinically, vertical high blood pressure, and Doppler ultrasonography re- supranuclear palsy with postural instability, associated vealed bilateral carotid bifurcation atherosclerosis. She with mild dementia, is regarded as a reliable combina- underwent progressive severe physical and cognitive (not tion for predicting a diagnosis of PSP,11,12 but vertical gaze fluctuant) decline. When first seen by one of us (H.S.) 2 impairment may occur in DLBD13-15 and is a frequent ac- months before her death, she was permanently bed bound companiment of aging.16-19 and not communicating. It proved impossible to test eye In this report, we present clinical and pathological movements. All limbs were severely rigid, with cogwheel- details of 2 siblings who had DLBD and who experi- ing. Arm reflexes were brisk, and due to the rigidity, could enced a parkinsonism-dementia complex. One sibling not be elicited in the legs. There was small-muscle wast- manifested vertical (upward and downward) gaze palsy. ing in the hands and feet. Systematic examination of the brainstem revealed, in both Review of the family history revealed that the mother patients, cell loss, gliosis, and Lewy bodies affecting the had died in the middle of her fourth decade of life, and pathways for vertical gaze, in addition to the pathologi- the father had died in his ninth decade. Stepsiblings have cal features of DLBD. not demonstrated any neurologic deficit. No previous re- cord of a neurologic illness in either family was found. REPORT OF CASES RESULTS PATIENT 1 NEUROPATHOLOGIC EXAMINATION A 66-year-old man, previously healthy, began to expe- rience deterioration in his golf game, largely due to im- Postmortem examination was limited in each case (by paired balance when swinging a club. This imbalance con- request) to examination of the brain. Macroscopic ex- tinued and progressed up to his death 14 years later. His amination in both patients revealed no significant cere- memory had also become mildly impaired, and his bridge bral atrophy. Pallor was noted in the substantia nigra in game had suffered. When seen 6 years after onset, he had both. Representative sections were taken from the mid- a stiff gait with poor arm swinging. Bilateral cogwheel- frontal area; the superior and middle temporal, inferior ing and mild rigidity were present. He was treated with parietal, and occipital cortices; anterior cingulate; amyg- levadopa (300 mg/d) and carbidopa monohydrate (30 dala; hippocampus; striatum; thalamus; midbrain (lev- mg/d) with little response. He began to experience vi- els of the superior colliculus and pretectal regions); pons; sual hallucinations, eg, he began to see numerous black medulla; and cerebellum. Midbrain regions related to ver- balls scattered around him while playing golf. Other hal- tical eye movement, including the rostral interstitial lucinations were less clearly formed and could be articu- nucleus of the medial longitudinal fasciculus (riMLF), lated less clearly. Although the hallucinations persisted, posterior commissure, and interstitial nucleus of Cajal, they did not increase when the levadopa dosage was in- were examined. Sections were stained with hematoxylin- creased to 600 mg/d (to which he made some physical eosin, and the following immunocytochemical markers response). A defect in upward gaze gradually devel- were used: glial fibrillary acidic protein (1:1000; Dako, oped. This became accompanied by a defect in down- Cambridge, United Kingdom), BA4 (1:100; Dako), tau ward gaze of greater degree, of which he independently (1:90; Immunogenetics, Ghent, Belgium), ubiquitin (1: complained when he found that he could not read when 60; Novocastra, Newcastle, United Kingdom), and holding a book beneath eye level. He had brisk doll’s- ␣-synuclein (1:3000; Chemicon, Harrow, United eye movements. There were no upper motor signs. On Kingdom). the Wechsler Memory Scale–Revised, he achieved a ver- Gliosis in the region of riMLF, interstitial nucleus bal memory score of 81, a visual memory score below of Cajal, and posterior commissure were graded semi- the basal level of 50, and a general memory score of 58. quantitatively in conjunction with hematoxylin-eosin and On the Warrington Recognition Memory Test, verbal and glial fibrillary acidic protein staining, where 0 indicates facial memory aspects were defective, the latter more se- absent; 1, mild; 2, moderate; and 3, severe. verely. The one area of unaffected function was atten- tional memory, with a score of 112. His physical condi- NEUROPATHOLOGIC FINDINGS tion progressed to the point of incapacity. For the 2 years before his death, his intellectual deficit, which had been Concentric hyaline intracytoplasmic eosinophilic inclu- fluctuant, became more prominent. sions (Lewy bodies) were found in the substantia nigra and locus ceruleus of both patients
Recommended publications
  • Lewy Bodies in the Amygdala Increase of ␣-Synuclein Aggregates in Neurodegenerative Diseases with Tau-Based Inclusions
    ORIGINAL CONTRIBUTION Lewy Bodies in the Amygdala Increase of ␣-Synuclein Aggregates in Neurodegenerative Diseases With Tau-Based Inclusions Anca Popescu, MD; Carol F. Lippa, MD; Virginia M.-Y. Lee, PhD; John Q. Trojanowski, MD, PhD Background: Increased attention has been given to Results: Lewy bodies were often abundant in classic Pick ␣-synuclein aggregation in nonsynucleinopathies be- disease, argyrophilic grain disease, Alzheimer disease, and cause ␣-synuclein–containing Lewy bodies (LBs) influ- dementia with LBs but not in cases with amygdala de- ence symptoms. However, the spectrum of disorders in generation lacking tau-based inclusions, control cases, which secondary inclusions are likely to occur has not preclinical disease carriers, or degenerative diseases lack- been defined. Amygdala neurons commonly develop large ing pathologic involvement of the amygdala. The ex- numbers of secondary LBs, making it a practical region posed ␣-synuclein epitopes were similar in all cases con- for studying this phenomenon. taining LBs. Objective: To characterize the spectrum of diseases as- Conclusions: Abnormal ␣-synuclein aggregation in the sociated with LB formation in the amygdala of neurode- amygdala is disease selective, but not restricted to dis- generative disease and control cases. orders of ␣-synuclein and ␤-amyloid. Our data are com- patible with the notion that tau aggregates predispose neu- Design: An autopsy series of 101 neurodegenerative dis- ease and 34 aged control cases. Using immunohisto- rons to develop secondary LBs. chemistry studies, we examined the amygdala for ␣-synuclein aggregates. Arch Neurol. 2004;61:1915-1919 GGREGATION OF ␣-SY- of these subjects.7-9 It is unknown whether nuclein has a primary this curious finding is restricted to AD, or pathogenic role in spo- whether it is a more universal phenom- radic and familial autoso- enon.
    [Show full text]
  • When DLB, PD, and PSP Masquerade As MSA an Autopsy Study of 134 Patients
    When DLB, PD, and PSP masquerade as MSA An autopsy study of 134 patients Shunsuke Koga, MD ABSTRACT Naoya Aoki, MD Objective: To determine ways to improve diagnostic accuracy of multiple system atrophy (MSA), Ryan J. Uitti, MD we assessed the diagnostic process in patients who came to autopsy with antemortem diagnosis Jay A. van Gerpen, MD of MSA by comparing clinical and pathologic features between those who proved to have MSA William P. Cheshire, MD and those who did not. We focus on likely explanations for misdiagnosis. Keith A. Josephs, MD Methods: This is a retrospective review of 134 consecutive patients with an antemortem clinical Zbigniew K. Wszolek, diagnosis of MSA who came to autopsy with neuropathologic evaluation of the brain. Of the 134 MD patients, 125 had adequate medical records for review. Clinical and pathologic features were J. William Langston, MD compared between patients with autopsy-confirmed MSA and those with other pathologic diag- Dennis W. Dickson, MD noses, including dementia with Lewy bodies (DLB), Parkinson disease (PD), and progressive supra- nuclear palsy (PSP). Correspondence to Results: Of the 134 patients with clinically diagnosed MSA, 83 (62%) had the correct diagnosis Dr. Dickson: at autopsy. Pathologically confirmed DLB was the most common misdiagnosis, followed by PSP [email protected] and PD. Despite meeting pathologic criteria for intermediate to high likelihood of DLB, several pa- tients with DLB did not have dementia and none had significant Alzheimer-type pathology. Auto- nomic failure was the leading cause of misdiagnosis in DLB and PD, and cerebellar ataxia was the leading cause of misdiagnosis in PSP.
    [Show full text]
  • Lewy Body Diseases and Multiple System Atrophy As ␣-Synucleinopathies
    Molecular Psychiatry (1998) 3, 462–465 1998 Stockton Press All rights reserved 1359–4184/98 $12.00 GUEST EDITORIAL Lewy body diseases and multiple system atrophy as ␣-synucleinopathies Parkinson’s disease and dementia with Lewy bodies synuclein are the first known genetic causes of Parkin- are among the most common neurodegenerative dis- son’s disease. They are located in the amino-terminal eases. They share the Lewy body and the Lewy neurite half of ␣-synuclein, which consists of seven imperfect as their defining neuropathological characteristics. repeats of 11 amino acids each, with the consensus Originally described in 1912 as a light-microscopic sequence KTKEGV (Figure 1). It has been suggested entity, the Lewy body was shown to be made of abnor- that ␣-synuclein may bind through these repeats to mal filaments in the 1960s. Over the past year, the bio- membranes rich in acidic phospholipids.3 chemical nature of the Lewy body filament has been This work raised the question whether ␣-synuclein revealed. is a component of Lewy bodies and Lewy neurites of A large number of different proteins has been idiopathic Parkinson’s disease and of dementia with reported to be present in Lewy bodies and Lewy neur- Lewy bodies. Using well-characterised anti-␣-synuc- ites by immunohistochemical methods. However, these lein antibodies, Spillantini et al showed strong staining findings do not permit us to distinguish between of both Lewy bodies and Lewy neurites in idiopathic intrinsic Lewy body components and normal cellular Parkinson’s disease and dementia with Lewy bodies.4 constituents that get merely trapped in the filaments They also reported the lack of staining of these patho- that make up the Lewy body.
    [Show full text]
  • Synuclein in PARK2-Mediated Parkinson's Disease
    cells Review Interaction between Parkin and a-Synuclein in PARK2-Mediated Parkinson’s Disease Daniel Aghaie Madsen 1, Sissel Ida Schmidt 1, Morten Blaabjerg 1,2,3,4 and Morten Meyer 1,2,3,4,* 1 Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; [email protected] (D.A.M.); [email protected] (S.I.S.); [email protected] (M.B.) 2 Department of Neurology, Odense University Hospital, 5000 Odense, Denmark 3 Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark 4 BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark * Correspondence: [email protected]; Tel.: +45-65503802 Abstract: Parkin and a-synuclein are two key proteins involved in the pathophysiology of Parkinson’s disease (PD). Neurotoxic alterations of a-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and a-synuclein in the regulation of protein aggregates including Lewy bodies.
    [Show full text]
  • Multiple System Atrophy the Putative Causative Role of Environmental Toxins
    ORIGINAL CONTRIBUTION Multiple System Atrophy The Putative Causative Role of Environmental Toxins Philip A. Hanna, MD; Joseph Jankovic, MD; Joel B. Kirkpatrick, MD Background: Whereas a number of studies have inves- system atrophy after environmental toxin exposure. tigated the putative role of environmental toxins in the pathogenesis of idiopathic Parkinson disease, the possi- Results: Eleven patients had a notable history of heavy bility of such a role in multiple system atrophy has re- exposure to environmental toxins. One patient with ceived little attention. multiple system atrophy confirmed by postmortem evaluation was exposed to high concentrations of mala- Design and Setting: Review of records of patients ex- thion, diazinon, and formaldehyde, while the other amined in the Parkinson’s Disease Center and Move- patients with multiple system atrophy had well- ment Disorder Clinic, Baylor College of Medicine, Hous- documented high exposures to agents including ton, Tex, from July 1, 1977, to February 4, 1998. n-hexane, benzene, methyl isobutyl ketone, and pesti- cides. The case studied pathologically demonstrated Patients: We reviewed 100 consecutive medical rec- extensive advanced glial changes, including glial cyto- ords of patients who satisfied the diagnostic criteria for plasmic inclusions in deep cerebellar white matter, multiple system atrophy formulated by the Consensus brainstem, cortex (superior frontal, insula) and puta- Committee of the American Autonomic Society and the men, with notable cell loss and depigmentation of the American Academy of Neurology. substantia nigra and locus ceruleus. Intervention: The type and amount of toxin exposure Conclusion: While many studies report a possible role were verified by history and examination of records when- of environmental toxins in Parkinson disease, such a role ever possible.
    [Show full text]
  • Microglia Implicated in Tauopathy in the Striatum of Neurodegenerative Disease Patients from Genotype to Phenotype
    International Journal of Molecular Sciences Article Microglia Implicated in Tauopathy in the Striatum of Neurodegenerative Disease Patients from Genotype to Phenotype Huifangjie Li 1, William C. Knight 1, Pengfei Yang 1, Yingqiu Guo 1 , Joel S. Perlmutter 1,2,3,4,5, John C. Morris 2, Randall J. Bateman 2, Tammie L. S. Benzinger 1 and Jinbin Xu 1,* 1 Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; [email protected] (H.L.); [email protected] (W.C.K.); [email protected] (P.Y.); [email protected] (Y.G.); [email protected] (J.S.P.); [email protected] (T.L.S.B.) 2 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; [email protected] (J.C.M.); [email protected] (R.J.B.) 3 Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA 4 Department of Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA 5 Department of Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA * Correspondence: [email protected]; Tel.: +314-747-0693; Fax: +314-362-8555 Received: 7 August 2020; Accepted: 20 August 2020; Published: 22 August 2020 Abstract: We found interactions between dopamine and oxidative damage in the striatum involved in advanced neurodegeneration, which probably change the microglial phenotype. We observed possible microglia dystrophy in the striatum of neurodegenerative brains. To investigate the interactions between oxidative damage and microglial phenotype, we quantified myeloperoxidase (MPO), poly (ADP-Ribose) (PAR), and triggering receptors expressed on myeloid cell 2 (TREM2) using enzyme-linked immunosorbent assay (ELISA).
    [Show full text]
  • The Relevance of the Lewy Body to the Pathogenesis of Idiopathic Parkinson's Disease
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.6.745 on 1 June 1988. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1988;51:745-752 Occasional review The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease W R G GIBB, A J LEES From the Department ofNeuropathology, National Hospitalsfor Nervous Diseases, Maida Vale, London, UK SUMMARY The Lewy body is a distinctive neuronal inclusion that is always found in the substantia nigra and other specific brain regions in Parkinson's disease. It is mainly composed of structurally altered neurofilament, and occurs wherever there is excessive loss of neurons. It occurs in some elderly individuals and rarely in other degenerative diseases of the central nervous system. In 273 brains of patients dying from disorders other than Parkinson's disease, the age-specific prevalence of Lewy bodies increased from 3-8% to 12-8% between the sixth and ninth decades. Associated pathological findings suggest that these cases of incidental Lewy body disease are presymptomatic cases of Parkinson's disease, and confirm the importance of age (time) in the evolution of the Protected by copyright. disease. In view of the common and widespread occurrence of this disorder we propose that endo- genous mechanisms operating in early life may be more important than environmental agents in the pathogenesis of Lewy bodies and Parkinson's disease. Neuronal inclusions called Lewy bodies are present in rare disorders or rare variants of common disorders many surviving cells of the substantia nigra in all are also sometimes associated with Lewy bodies in the cases of Parkinson's disease fulfilling the UK Parkin- nervous system, usually in some of the same areas son's Disease Society Brain Bank clinical diagnostic affected in idiopathic Lewy body disease (table 2).
    [Show full text]
  • CSF Tau and Amyloid-Beta Predict Cerebral Synucleinopathy in Autopsied Lewy Body Disorders
    ARTICLE CSF tau and amyloid-beta predict cerebral synucleinopathy in autopsied Lewy body disorders David J. Irwin, MD, MTR, Sharon X. Xie, PhD, David Coughlin, MD, Naomi Nevler, MD, Correspondence Rizwan S. Akhtar, MD, PhD, Corey T. McMillan, PhD, Edward B. Lee, MD, PhD, David A. Wolk, MD, Dr. Irwin Daniel Weintraub, MD, Alice Chen-Plotkin, MD, John E. Duda, MD, Meredith Spindler, MD, dirwin@pennmedicine. Andrew Siderowf, MD, MSCE, Howard I. Hurtig, MD, Leslie M. Shaw, PhD, Murray Grossman, MD, upenn.edu and John Q. Trojanowski, MD, PhD Neurology® 2018;90:1-9. doi:10.1212/WNL.0000000000005166 Abstract RELATED ARTICLE Objective Editorial To test the association of antemortem CSF biomarkers with postmortem pathology in Lewy Alzheimer disease body disorders (LBD). biomarkers and synucleinopathy Methods Page XXX Patients with autopsy-confirmed LBD (n = 24) and autopsy-confirmed Alzheimer disease (AD) (n = 23) and cognitively normal (n = 36) controls were studied. In LBD, neuropathologic criteria defined Lewy body α-synuclein (SYN) stages with medium/high AD copathology (SYN + AD = 10) and low/no AD copathology (SYN − AD = 14). Ordinal pathology scores for tau, β-amyloid (Aβ), and SYN pathology were averaged across 7 cortical regions to obtain a global cerebral score for each pathology. CSF total tau (t-tau), phosphorylated tau at thre- β onine181, and A 1-42 levels were compared between LBD and control groups and correlated with global cerebral pathology scores in LBD with linear regression. Diagnostic accuracy for postmortem categorization of LBD into SYN + AD vs SYN − AD or neocortical vs brainstem/ limbic SYN stage was tested with receiver operating curves.
    [Show full text]
  • Lewy Body Dementia: Putting the Puzzle Pieces Together When The
    Lewy Body Dementia: Putting the Puzzle Pieces Together When the world first heard that Robin Williams committed suicide, most people were shocked. After the release of his final medical autopsy report that showed he had advanced Lewy Body Dementia: his suicide became more understandable. His mind was very sick, and his prognosis was not good. When we look at all the facts and observations about Lewy Bodies, we are presented with a puzzle that just doesn’t make sense. How do Lewy Bodies form? Why are some Lewy bodies located inside brain-neurons? While other Lewy Bodies float in the extracellular spaces between brain cells? Why are they observably different? Why do Lewy Bodies predominate in Parkinson’s regions of the brain like the Substantia Nigra, but can also be seen in the hippocampus, the temporal lobes, the basal forebrain and the neo-cortex? Lewy Bodies contain two common brain proteins Ubiquitin and Alpha Synuclein, but modifying proteins inside the neuron and chaperone proteins alter these two completely normal brain proteins, and the two proteins recombine in a way that is toxic to neurons. Alpha-Synuclein forms structured fibrils. The protein went from an amorphous flexible unstructured state to an organized rigid structure that forms fibrils. Traditional Lewy Body research points out the observed facts, but no Lewy Body researcher has ever answered the question: Why do Lewy Bodies form? Until the last six months no one had any new theories, but I am going to suggest something radical based on new observations and data from the work done at the Dr.
    [Show full text]
  • Characterization of Lewy Body Pathology in 12
    Movement Disorders Vol. 00, No. 00, 2010, pp. 000–000 Ó 2010 Movement Disorder Society Brief Report dopaminergic neurons in a fashion similar to that in do- Characterization of Lewy Body paminergic neurons in the host substantia nigra. Ó 2010 Pathology in 12- and 16-Year-Old Movement Disorder Society Key words: neural transplantation; Lewy body; protein Intrastriatal Mesencephalic Grafts aggregation; a-synuclein; transmissible neurological disease Surviving in a Patient With Parkinson’s disease In Parkinson’s disease (PD), neurodegeneration is 1* 2 prominent in substantia nigra dopaminergic neurons. Jia-Yi Li, MD, PhD, Elisabet Englund, MD, Intraneuronal protein aggregates, rich in a-synuclein Ha˚kan Widner, MD, PhD,3 Stig Rehncrona, MD,4 and called Lewy bodies/neurites (LBs/LNs), develop in Anders Bjo¨rklund, MD,5 Olle Lindvall, MD, PhD,3,6 and Patrik Brundin, MD, PhD1 several brain regions and become widespread with 1Neuronal Survival Unit, Wallenberg Neuroscience Center, advancing disease. Patients with intrastriatal transplants Lund University, Lund, Sweden; 2Department of of human fetal mesencephalic tissue, rich in dopami- Neuropathology, Lund University, Lund, Sweden; nergic neurons, have displayed long-term clinical bene- 3 Division of Neurology, Department of Clinical Sciences, fits in open label trials (see Refs. 1 and 2). Brain imag- Lund University, Lund, Sweden; 4Neurosurgery, Department of Clinical Sciences, Lund University, ing studies provide evidence that the grafted neurons Lund, Sweden; 5Neurobiology Unit, survive and
    [Show full text]
  • Alpha-Synuclein Biology in Lewy Body Diseases Woojin Scott Kim1,2*, Katarina Kågedal3 and Glenda M Halliday1,2
    Kim et al. Alzheimer's Research & Therapy 2014, 6:73 http://alzres.com/content/6/5/73 REVIEW Alpha-synuclein biology in Lewy body diseases Woojin Scott Kim1,2*, Katarina Kågedal3 and Glenda M Halliday1,2 Abstract α-Synuclein is an abundantly expressed neuronal protein that is at the center of focus in understanding a group of neurodegenerative disorders called α-synucleinopathies, which are characterized by the presence of aggregated α-synuclein intracellularly. Primary α-synucleinopathies include Parkinson’s disease (PD), dementia with Lewy bodies and multiple system atrophy, with α-synuclein also found secondarily in a number of other diseases, including Alzheimer’s disease. Understanding how α-synuclein aggregates form in these different disorders is important for the understanding of its pathogenesis in Lewy body diseases. PD is the most prevalent of the α-synucleinopathies and much of the initial research on α-synuclein Lewy body pathology was based on PD but is also relevant to Lewy bodies in other diseases (dementia with Lewy bodies and Alzheimer’s disease). Polymorphism and mutation studies of SNCA, the gene that encodes α-synuclein, provide much evidence for a causal link between α-synuclein and PD. Among the primary α-synucleinopathies, multiple system atrophy is unique in that α-synuclein deposition occurs in oligodendrocytes rather than neurons. It is unclear whether α-synuclein originates from oligodendrocytes or whether it is transmitted somehow from neurons. α-Synuclein exists as a natively unfolded monomer in the cytosol, but in the presence of lipid membranes it is thought to undergo a conformational change to a folded α-helical secondary structure that is prone to forming dimers and oligomers.
    [Show full text]
  • Diagnosis and Management of Dementia with Lewy Bodies Fourth Consensus Report of the DLB Consortium
    Published Ahead of Print on June 7, 2017 as 10.1212/WNL.0000000000004058 VIEWS & REVIEWS Diagnosis and management of dementia with Lewy bodies Fourth consensus report of the DLB Consortium Ian G. McKeith, MD, ABSTRACT F Med Sci The Dementia with Lewy Bodies (DLB) Consortium has refined its recommendations about the Bradley F. Boeve, MD clinical and pathologic diagnosis of DLB, updating the previous report, which has been in wide- Dennis W. Dickson, MD spread use for the last decade. The revised DLB consensus criteria now distinguish clearly Glenda Halliday, PhD between clinical features and diagnostic biomarkers, and give guidance about optimal methods John-Paul Taylor, PhD, to establish and interpret these. Substantial new information has been incorporated about pre- MRC Psych viously reported aspects of DLB, with increased diagnostic weighting given to REM sleep Daniel Weintraub, MD behavior disorder and 123iodine-metaiodobenzylguanidine (MIBG) myocardial scintigraphy. Dag Aarsland, MD The diagnostic role of other neuroimaging, electrophysiologic, and laboratory investigations James Galvin, MD, MPH is also described. Minor modifications to pathologic methods and criteria are recommended to Johannes Attems, MD take account of Alzheimer disease neuropathologic change, to add previously omitted Lewy- Clive G. Ballard, MRC related pathology categories, and to include assessments for substantia nigra neuronal loss. Psych, MD Recommendations about clinical management are largely based upon expert opinion since Ashley Bayston, BA, LLB randomized controlled trials in DLB are few. Substantial progress has been made since the Thomas G. Beach, MD, previous report in the detection and recognition of DLB as a common and important clinical PhD disorder. During that period it has been incorporated into DSM-5, as major neurocognitive Frédéric Blanc, MD, PhD disorder with Lewy bodies.
    [Show full text]