CSF Tau and Amyloid-Beta Predict Cerebral Synucleinopathy in Autopsied Lewy Body Disorders

Total Page:16

File Type:pdf, Size:1020Kb

CSF Tau and Amyloid-Beta Predict Cerebral Synucleinopathy in Autopsied Lewy Body Disorders ARTICLE CSF tau and amyloid-beta predict cerebral synucleinopathy in autopsied Lewy body disorders David J. Irwin, MD, MTR, Sharon X. Xie, PhD, David Coughlin, MD, Naomi Nevler, MD, Correspondence Rizwan S. Akhtar, MD, PhD, Corey T. McMillan, PhD, Edward B. Lee, MD, PhD, David A. Wolk, MD, Dr. Irwin Daniel Weintraub, MD, Alice Chen-Plotkin, MD, John E. Duda, MD, Meredith Spindler, MD, dirwin@pennmedicine. Andrew Siderowf, MD, MSCE, Howard I. Hurtig, MD, Leslie M. Shaw, PhD, Murray Grossman, MD, upenn.edu and John Q. Trojanowski, MD, PhD Neurology® 2018;90:1-9. doi:10.1212/WNL.0000000000005166 Abstract RELATED ARTICLE Objective Editorial To test the association of antemortem CSF biomarkers with postmortem pathology in Lewy Alzheimer disease body disorders (LBD). biomarkers and synucleinopathy Methods Page XXX Patients with autopsy-confirmed LBD (n = 24) and autopsy-confirmed Alzheimer disease (AD) (n = 23) and cognitively normal (n = 36) controls were studied. In LBD, neuropathologic criteria defined Lewy body α-synuclein (SYN) stages with medium/high AD copathology (SYN + AD = 10) and low/no AD copathology (SYN − AD = 14). Ordinal pathology scores for tau, β-amyloid (Aβ), and SYN pathology were averaged across 7 cortical regions to obtain a global cerebral score for each pathology. CSF total tau (t-tau), phosphorylated tau at thre- β onine181, and A 1-42 levels were compared between LBD and control groups and correlated with global cerebral pathology scores in LBD with linear regression. Diagnostic accuracy for postmortem categorization of LBD into SYN + AD vs SYN − AD or neocortical vs brainstem/ limbic SYN stage was tested with receiver operating curves. Results ff β SYN + AD had higher CSF t-tau (mean di erence 27.0 ± 8.6 pg/mL) and lower A 1-42 (mean difference −84.0 ± 22.9 g/mL) compared to SYN − AD (p < 0.01, both). Increasing global cerebral tau and plaque scores were associated with higher CSF t-tau (R2 = 0.15–0.16, p < 0.05, β 2 – both) and lower A 1-42 (R = 0.43 0.49, p < 0.001, both), while increasing cerebral SYN scores β 2 β were associated with lower CSF A 1-42 (R = 0.31, p < 0.001) and higher CSF t-tau/A 1-42 ratio 2 β fi (R = 0.27, p = 0.01). CSF t-tau/A 1-42 ratio had 100% speci city and 90% sensitivity for SYN + β fi AD, and CSF A 1-42 had 77% speci city and 82% sensitivity for neocortical SYN stage. Conclusions β β Higher antemortem CSF t-tau/A 1-42 and lower A 1-42 levels are predictive of increasing cerebral AD and SYN pathology. These biomarkers may identify patients with LBD vulnerable to cortical SYN pathology who may benefit from both SYN and AD-targeted disease-modifying therapies. From Penn Frontotemporal Degeneration Center (D.J.I., N.N., C.T.M., M.G.), Alzheimer’s Disease Core Center (D.A.W., J.Q.T.), Department of Neurology (D.J.I., D.C., R.S.A., C.T.M., D.A. W., D.W., A.C.-P., M.S., A.S., H.I.H., M.G.), Penn Morris K. Udall Parkinson’s Disease Research Center of Excellence (D.J.I., R.S.A., C.T.M., D.W., A.C.-P., J.E.D., M.G., J.Q.T.), Center for Neurodegenerative Disease Research (L.M.S., J.Q.T.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (E.B.L., L.M.S., J.Q.T.), and Department of Biostatistics and Epidemiology Perelman School of Medicine (S.X.X.), University of Pennsylvania; and Parkinson’s Disease Research, Education and Clinical Center (D.W., J.E.D.), Michael J. Crescenz VA Medical Center, Philadelphia, PA. Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article. Copyright © 2018 American Academy of Neurology 1 Copyright ª 2018 American Academy of Neurology. Unauthorized reproduction of this article is prohibited. GLOSSARY Aβ = β-amyloid; AD = Alzheimer disease; AUC = area under the curve; CI = confidence interval; DLB = dementia with Lewy bodies; LBD = Lewy body disorders; PD = Parkinson disease; PDD = Parkinson disease with dementia; p-tau = phosphorylated tau; ROC = receiver operating curve; SYN = α-synuclein; t-tau = total tau. Roughly 40% of all patients with Lewy body disorders Standard protocol approvals, registrations, (LBD) (i.e., Parkinson disease [PD], PD with dementia and patient consents [PDD]; dementia with Lewy bodies [DLB]) have sufficient All procedures were performed with informed consent under amyloid plaque and tau tangle pathology for a concomitant institutional review board approval. – diagnosis of Alzheimer disease (AD) at autopsy.1 6 Fur- thermore, increasing levels of cerebral tau and amyloid CSF collection and analysis pathology in postmortem brains of patients with LBD are CSF was collected under standard operating procedures and associated with shorter survival, rapider time to develop analyzed with a Luminex xMAP immunoassay platform dementia in relation to onset of motor parkinsonism, and (Luminex, Austin, TX) to measure CSF t-tau, p-tau (phos- 2 β 8 higher burden of cortical α-synuclein (SYN) pathology. phorylated at threonine-181), and A 1-42 as described. Thus, AD copathology has significant consequences in LBD, and antemortem identification of this patient sub- Neuropathologic examination group has important implications for prognosis and clinical Autopsy procedures were performed as previously de- 11 management in LBD.7 CSF levels of the protein con- scribed with sampling of fresh brain tissue according to fi ff stituents of AD neuropathology (i.e., total tau [t-tau], a standardized atlas and xed in 10% neutral bu ered for- β β phosphorylated tau [p-tau], and -amyloid [A 1-42]) have malin or 70% ethanol with 150 mmol/L NaCl overnight, 8 ffi been extensively studied in the context of AD, but CSF processed, and embedded in para n for sectioning. For μ biomarker work in LBD is largely restricted to living neuropathologic diagnosis, 6- m sections were cut and cohorts without postmortem validation. Furthermore, stained with immunohistochemistry with established anti- fi neuroimaging modalities to visualize cerebral SYN pa- bodies speci c for hyperphosphorylated tau (PHF-1), SYN β thology during life are lacking, and CSF SYN analytes are (SYN303), A (Nab228), and phosphorylated TDP-43 yet to be validated,9 so in vivo measures that predict ce- (p409-410) and chemically stained with the amyloid- fl rebral SYN pathology are urgently needed. binding dye Thio avin-S to detect neuritic plaques. Expert neuropathologists (E.B.L., J.Q.T.) applied currently validated 12,13 Here, we test the hypothesis that AD CSF biomarkers mea- diagnostic criteria to assign Braak tau, Thal amyloid, ’ sured during life predict postmortem cortical severity of both Consortium to Establish a Registry for Alzheimer sDisease AD-associated tau tangles and Aβ plaques, as well as SYN neuritic plaque, and SYN Lewy body stages, as well as the fi Lewy pathology, in a cohort of 24 patients with autopsy- nal diagnosis for each case. confirmed LBD. We find evidence of a direct association of β β CSF A 1-42 and CSF t-tau/A 1-42 ratio with cerebral SYN We categorized patients with medium- or high-level AD as Lewy pathology. having AD copathology (SYN + AD) and patients with no or low-level AD pathology as those without significant AD copathology (SYN − AD) according to neuropathologic cri- Methods teria12 as described.1,2 Alternative analyses compared patients with low/medium/high AD copathology (n = 18) to SYN Patients with no AD (n = 6). Patients were followed up in clinical cores of the Penn Udall Center for Parkinson’s Disease Research, Frontotemporal To obtain a continuous measure of global neuropathologic Degeneration Center, or Alzheimer’s Disease Core Center severity for tau-positive tangles, amyloid-positive plaques, and and selected from the Penn Integrated Neurodegenerative SYN-positive Lewy bodies/Lewy neurites, we calculated an Disease Database10 as of April 1, 2017, to identify patients average of ordinal scores (i.e., 0 = rare/none, 1 = mild, 2 = with an antemortem clinical diagnosis of LBD (PD, PDD, moderate, 3 = severe) obtained at autopsy using diagnostic DLB), autopsy confirmation through the Penn Center for criteria in 7 cortical regions. Briefly, the medial temporal lobe Neurodegenerative Disease brain bank of SYN pathology severity was calculated by averaging the ordinal scores in the (brainstem, limbic, or neocortical stage), and baseline ante- amygdala, hippocampal entorhinal cortex, and cornu mortem CSF samples for study. We included reference ammonis/subiculum regions. The global cerebral scores were cohorts with available CSF data and age-matched normal derived from the average of ordinal scores in the medial cognition (n = 36) or autopsy-confirmed AD neuropathology temporal lobe, superior/midtemporal lobe, angular cortex, without SYN copathology (n = 23) (table e-1, links.lww.com/ midfrontal cortex, and anterior cingulate gyrus as described.1,2 WNL/A257). We also calculated a global subcortical score for SYN 2 Neurology | Volume 90, Number 12 | March 20, 2018 Neurology.org/N Copyright ª 2018 American Academy of Neurology. Unauthorized reproduction of this article is prohibited. pathology from sections of medulla, substantia nigra, non- nigral midbrain, pons, striatum, globus pallidus, and thalamus. Table 1 Autopsy-confirmed LBD cohort clinical, demographic, and neuropathologic data Statistical analysis SYN 2 AD SYN + AD p 2 Demographics were compared between groups by use of χ (n = 14) (n = 10) Value analysis for categorical data and cerebral neuropathology Clinical phenotype, n scores with the Mann-Whitney U test. CSF analyte meas- urements did not have a normal distribution and thus were PD 10 0.1 – natural log transformed for analysis.
Recommended publications
  • Lewy Bodies in the Amygdala Increase of ␣-Synuclein Aggregates in Neurodegenerative Diseases with Tau-Based Inclusions
    ORIGINAL CONTRIBUTION Lewy Bodies in the Amygdala Increase of ␣-Synuclein Aggregates in Neurodegenerative Diseases With Tau-Based Inclusions Anca Popescu, MD; Carol F. Lippa, MD; Virginia M.-Y. Lee, PhD; John Q. Trojanowski, MD, PhD Background: Increased attention has been given to Results: Lewy bodies were often abundant in classic Pick ␣-synuclein aggregation in nonsynucleinopathies be- disease, argyrophilic grain disease, Alzheimer disease, and cause ␣-synuclein–containing Lewy bodies (LBs) influ- dementia with LBs but not in cases with amygdala de- ence symptoms. However, the spectrum of disorders in generation lacking tau-based inclusions, control cases, which secondary inclusions are likely to occur has not preclinical disease carriers, or degenerative diseases lack- been defined. Amygdala neurons commonly develop large ing pathologic involvement of the amygdala. The ex- numbers of secondary LBs, making it a practical region posed ␣-synuclein epitopes were similar in all cases con- for studying this phenomenon. taining LBs. Objective: To characterize the spectrum of diseases as- Conclusions: Abnormal ␣-synuclein aggregation in the sociated with LB formation in the amygdala of neurode- amygdala is disease selective, but not restricted to dis- generative disease and control cases. orders of ␣-synuclein and ␤-amyloid. Our data are com- patible with the notion that tau aggregates predispose neu- Design: An autopsy series of 101 neurodegenerative dis- ease and 34 aged control cases. Using immunohisto- rons to develop secondary LBs. chemistry studies, we examined the amygdala for ␣-synuclein aggregates. Arch Neurol. 2004;61:1915-1919 GGREGATION OF ␣-SY- of these subjects.7-9 It is unknown whether nuclein has a primary this curious finding is restricted to AD, or pathogenic role in spo- whether it is a more universal phenom- radic and familial autoso- enon.
    [Show full text]
  • When DLB, PD, and PSP Masquerade As MSA an Autopsy Study of 134 Patients
    When DLB, PD, and PSP masquerade as MSA An autopsy study of 134 patients Shunsuke Koga, MD ABSTRACT Naoya Aoki, MD Objective: To determine ways to improve diagnostic accuracy of multiple system atrophy (MSA), Ryan J. Uitti, MD we assessed the diagnostic process in patients who came to autopsy with antemortem diagnosis Jay A. van Gerpen, MD of MSA by comparing clinical and pathologic features between those who proved to have MSA William P. Cheshire, MD and those who did not. We focus on likely explanations for misdiagnosis. Keith A. Josephs, MD Methods: This is a retrospective review of 134 consecutive patients with an antemortem clinical Zbigniew K. Wszolek, diagnosis of MSA who came to autopsy with neuropathologic evaluation of the brain. Of the 134 MD patients, 125 had adequate medical records for review. Clinical and pathologic features were J. William Langston, MD compared between patients with autopsy-confirmed MSA and those with other pathologic diag- Dennis W. Dickson, MD noses, including dementia with Lewy bodies (DLB), Parkinson disease (PD), and progressive supra- nuclear palsy (PSP). Correspondence to Results: Of the 134 patients with clinically diagnosed MSA, 83 (62%) had the correct diagnosis Dr. Dickson: at autopsy. Pathologically confirmed DLB was the most common misdiagnosis, followed by PSP [email protected] and PD. Despite meeting pathologic criteria for intermediate to high likelihood of DLB, several pa- tients with DLB did not have dementia and none had significant Alzheimer-type pathology. Auto- nomic failure was the leading cause of misdiagnosis in DLB and PD, and cerebellar ataxia was the leading cause of misdiagnosis in PSP.
    [Show full text]
  • Lewy Body Diseases and Multiple System Atrophy As ␣-Synucleinopathies
    Molecular Psychiatry (1998) 3, 462–465 1998 Stockton Press All rights reserved 1359–4184/98 $12.00 GUEST EDITORIAL Lewy body diseases and multiple system atrophy as ␣-synucleinopathies Parkinson’s disease and dementia with Lewy bodies synuclein are the first known genetic causes of Parkin- are among the most common neurodegenerative dis- son’s disease. They are located in the amino-terminal eases. They share the Lewy body and the Lewy neurite half of ␣-synuclein, which consists of seven imperfect as their defining neuropathological characteristics. repeats of 11 amino acids each, with the consensus Originally described in 1912 as a light-microscopic sequence KTKEGV (Figure 1). It has been suggested entity, the Lewy body was shown to be made of abnor- that ␣-synuclein may bind through these repeats to mal filaments in the 1960s. Over the past year, the bio- membranes rich in acidic phospholipids.3 chemical nature of the Lewy body filament has been This work raised the question whether ␣-synuclein revealed. is a component of Lewy bodies and Lewy neurites of A large number of different proteins has been idiopathic Parkinson’s disease and of dementia with reported to be present in Lewy bodies and Lewy neur- Lewy bodies. Using well-characterised anti-␣-synuc- ites by immunohistochemical methods. However, these lein antibodies, Spillantini et al showed strong staining findings do not permit us to distinguish between of both Lewy bodies and Lewy neurites in idiopathic intrinsic Lewy body components and normal cellular Parkinson’s disease and dementia with Lewy bodies.4 constituents that get merely trapped in the filaments They also reported the lack of staining of these patho- that make up the Lewy body.
    [Show full text]
  • Synuclein in PARK2-Mediated Parkinson's Disease
    cells Review Interaction between Parkin and a-Synuclein in PARK2-Mediated Parkinson’s Disease Daniel Aghaie Madsen 1, Sissel Ida Schmidt 1, Morten Blaabjerg 1,2,3,4 and Morten Meyer 1,2,3,4,* 1 Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; [email protected] (D.A.M.); [email protected] (S.I.S.); [email protected] (M.B.) 2 Department of Neurology, Odense University Hospital, 5000 Odense, Denmark 3 Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark 4 BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark * Correspondence: [email protected]; Tel.: +45-65503802 Abstract: Parkin and a-synuclein are two key proteins involved in the pathophysiology of Parkinson’s disease (PD). Neurotoxic alterations of a-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and a-synuclein in the regulation of protein aggregates including Lewy bodies.
    [Show full text]
  • Multiple System Atrophy the Putative Causative Role of Environmental Toxins
    ORIGINAL CONTRIBUTION Multiple System Atrophy The Putative Causative Role of Environmental Toxins Philip A. Hanna, MD; Joseph Jankovic, MD; Joel B. Kirkpatrick, MD Background: Whereas a number of studies have inves- system atrophy after environmental toxin exposure. tigated the putative role of environmental toxins in the pathogenesis of idiopathic Parkinson disease, the possi- Results: Eleven patients had a notable history of heavy bility of such a role in multiple system atrophy has re- exposure to environmental toxins. One patient with ceived little attention. multiple system atrophy confirmed by postmortem evaluation was exposed to high concentrations of mala- Design and Setting: Review of records of patients ex- thion, diazinon, and formaldehyde, while the other amined in the Parkinson’s Disease Center and Move- patients with multiple system atrophy had well- ment Disorder Clinic, Baylor College of Medicine, Hous- documented high exposures to agents including ton, Tex, from July 1, 1977, to February 4, 1998. n-hexane, benzene, methyl isobutyl ketone, and pesti- cides. The case studied pathologically demonstrated Patients: We reviewed 100 consecutive medical rec- extensive advanced glial changes, including glial cyto- ords of patients who satisfied the diagnostic criteria for plasmic inclusions in deep cerebellar white matter, multiple system atrophy formulated by the Consensus brainstem, cortex (superior frontal, insula) and puta- Committee of the American Autonomic Society and the men, with notable cell loss and depigmentation of the American Academy of Neurology. substantia nigra and locus ceruleus. Intervention: The type and amount of toxin exposure Conclusion: While many studies report a possible role were verified by history and examination of records when- of environmental toxins in Parkinson disease, such a role ever possible.
    [Show full text]
  • Microglia Implicated in Tauopathy in the Striatum of Neurodegenerative Disease Patients from Genotype to Phenotype
    International Journal of Molecular Sciences Article Microglia Implicated in Tauopathy in the Striatum of Neurodegenerative Disease Patients from Genotype to Phenotype Huifangjie Li 1, William C. Knight 1, Pengfei Yang 1, Yingqiu Guo 1 , Joel S. Perlmutter 1,2,3,4,5, John C. Morris 2, Randall J. Bateman 2, Tammie L. S. Benzinger 1 and Jinbin Xu 1,* 1 Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; [email protected] (H.L.); [email protected] (W.C.K.); [email protected] (P.Y.); [email protected] (Y.G.); [email protected] (J.S.P.); [email protected] (T.L.S.B.) 2 Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; [email protected] (J.C.M.); [email protected] (R.J.B.) 3 Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA 4 Department of Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA 5 Department of Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA * Correspondence: [email protected]; Tel.: +314-747-0693; Fax: +314-362-8555 Received: 7 August 2020; Accepted: 20 August 2020; Published: 22 August 2020 Abstract: We found interactions between dopamine and oxidative damage in the striatum involved in advanced neurodegeneration, which probably change the microglial phenotype. We observed possible microglia dystrophy in the striatum of neurodegenerative brains. To investigate the interactions between oxidative damage and microglial phenotype, we quantified myeloperoxidase (MPO), poly (ADP-Ribose) (PAR), and triggering receptors expressed on myeloid cell 2 (TREM2) using enzyme-linked immunosorbent assay (ELISA).
    [Show full text]
  • The Relevance of the Lewy Body to the Pathogenesis of Idiopathic Parkinson's Disease
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.6.745 on 1 June 1988. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1988;51:745-752 Occasional review The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease W R G GIBB, A J LEES From the Department ofNeuropathology, National Hospitalsfor Nervous Diseases, Maida Vale, London, UK SUMMARY The Lewy body is a distinctive neuronal inclusion that is always found in the substantia nigra and other specific brain regions in Parkinson's disease. It is mainly composed of structurally altered neurofilament, and occurs wherever there is excessive loss of neurons. It occurs in some elderly individuals and rarely in other degenerative diseases of the central nervous system. In 273 brains of patients dying from disorders other than Parkinson's disease, the age-specific prevalence of Lewy bodies increased from 3-8% to 12-8% between the sixth and ninth decades. Associated pathological findings suggest that these cases of incidental Lewy body disease are presymptomatic cases of Parkinson's disease, and confirm the importance of age (time) in the evolution of the Protected by copyright. disease. In view of the common and widespread occurrence of this disorder we propose that endo- genous mechanisms operating in early life may be more important than environmental agents in the pathogenesis of Lewy bodies and Parkinson's disease. Neuronal inclusions called Lewy bodies are present in rare disorders or rare variants of common disorders many surviving cells of the substantia nigra in all are also sometimes associated with Lewy bodies in the cases of Parkinson's disease fulfilling the UK Parkin- nervous system, usually in some of the same areas son's Disease Society Brain Bank clinical diagnostic affected in idiopathic Lewy body disease (table 2).
    [Show full text]
  • Lewy Body Dementia: Putting the Puzzle Pieces Together When The
    Lewy Body Dementia: Putting the Puzzle Pieces Together When the world first heard that Robin Williams committed suicide, most people were shocked. After the release of his final medical autopsy report that showed he had advanced Lewy Body Dementia: his suicide became more understandable. His mind was very sick, and his prognosis was not good. When we look at all the facts and observations about Lewy Bodies, we are presented with a puzzle that just doesn’t make sense. How do Lewy Bodies form? Why are some Lewy bodies located inside brain-neurons? While other Lewy Bodies float in the extracellular spaces between brain cells? Why are they observably different? Why do Lewy Bodies predominate in Parkinson’s regions of the brain like the Substantia Nigra, but can also be seen in the hippocampus, the temporal lobes, the basal forebrain and the neo-cortex? Lewy Bodies contain two common brain proteins Ubiquitin and Alpha Synuclein, but modifying proteins inside the neuron and chaperone proteins alter these two completely normal brain proteins, and the two proteins recombine in a way that is toxic to neurons. Alpha-Synuclein forms structured fibrils. The protein went from an amorphous flexible unstructured state to an organized rigid structure that forms fibrils. Traditional Lewy Body research points out the observed facts, but no Lewy Body researcher has ever answered the question: Why do Lewy Bodies form? Until the last six months no one had any new theories, but I am going to suggest something radical based on new observations and data from the work done at the Dr.
    [Show full text]
  • Characterization of Lewy Body Pathology in 12
    Movement Disorders Vol. 00, No. 00, 2010, pp. 000–000 Ó 2010 Movement Disorder Society Brief Report dopaminergic neurons in a fashion similar to that in do- Characterization of Lewy Body paminergic neurons in the host substantia nigra. Ó 2010 Pathology in 12- and 16-Year-Old Movement Disorder Society Key words: neural transplantation; Lewy body; protein Intrastriatal Mesencephalic Grafts aggregation; a-synuclein; transmissible neurological disease Surviving in a Patient With Parkinson’s disease In Parkinson’s disease (PD), neurodegeneration is 1* 2 prominent in substantia nigra dopaminergic neurons. Jia-Yi Li, MD, PhD, Elisabet Englund, MD, Intraneuronal protein aggregates, rich in a-synuclein Ha˚kan Widner, MD, PhD,3 Stig Rehncrona, MD,4 and called Lewy bodies/neurites (LBs/LNs), develop in Anders Bjo¨rklund, MD,5 Olle Lindvall, MD, PhD,3,6 and Patrik Brundin, MD, PhD1 several brain regions and become widespread with 1Neuronal Survival Unit, Wallenberg Neuroscience Center, advancing disease. Patients with intrastriatal transplants Lund University, Lund, Sweden; 2Department of of human fetal mesencephalic tissue, rich in dopami- Neuropathology, Lund University, Lund, Sweden; nergic neurons, have displayed long-term clinical bene- 3 Division of Neurology, Department of Clinical Sciences, fits in open label trials (see Refs. 1 and 2). Brain imag- Lund University, Lund, Sweden; 4Neurosurgery, Department of Clinical Sciences, Lund University, ing studies provide evidence that the grafted neurons Lund, Sweden; 5Neurobiology Unit, survive and
    [Show full text]
  • Alpha-Synuclein Biology in Lewy Body Diseases Woojin Scott Kim1,2*, Katarina Kågedal3 and Glenda M Halliday1,2
    Kim et al. Alzheimer's Research & Therapy 2014, 6:73 http://alzres.com/content/6/5/73 REVIEW Alpha-synuclein biology in Lewy body diseases Woojin Scott Kim1,2*, Katarina Kågedal3 and Glenda M Halliday1,2 Abstract α-Synuclein is an abundantly expressed neuronal protein that is at the center of focus in understanding a group of neurodegenerative disorders called α-synucleinopathies, which are characterized by the presence of aggregated α-synuclein intracellularly. Primary α-synucleinopathies include Parkinson’s disease (PD), dementia with Lewy bodies and multiple system atrophy, with α-synuclein also found secondarily in a number of other diseases, including Alzheimer’s disease. Understanding how α-synuclein aggregates form in these different disorders is important for the understanding of its pathogenesis in Lewy body diseases. PD is the most prevalent of the α-synucleinopathies and much of the initial research on α-synuclein Lewy body pathology was based on PD but is also relevant to Lewy bodies in other diseases (dementia with Lewy bodies and Alzheimer’s disease). Polymorphism and mutation studies of SNCA, the gene that encodes α-synuclein, provide much evidence for a causal link between α-synuclein and PD. Among the primary α-synucleinopathies, multiple system atrophy is unique in that α-synuclein deposition occurs in oligodendrocytes rather than neurons. It is unclear whether α-synuclein originates from oligodendrocytes or whether it is transmitted somehow from neurons. α-Synuclein exists as a natively unfolded monomer in the cytosol, but in the presence of lipid membranes it is thought to undergo a conformational change to a folded α-helical secondary structure that is prone to forming dimers and oligomers.
    [Show full text]
  • Diagnosis and Management of Dementia with Lewy Bodies Fourth Consensus Report of the DLB Consortium
    Published Ahead of Print on June 7, 2017 as 10.1212/WNL.0000000000004058 VIEWS & REVIEWS Diagnosis and management of dementia with Lewy bodies Fourth consensus report of the DLB Consortium Ian G. McKeith, MD, ABSTRACT F Med Sci The Dementia with Lewy Bodies (DLB) Consortium has refined its recommendations about the Bradley F. Boeve, MD clinical and pathologic diagnosis of DLB, updating the previous report, which has been in wide- Dennis W. Dickson, MD spread use for the last decade. The revised DLB consensus criteria now distinguish clearly Glenda Halliday, PhD between clinical features and diagnostic biomarkers, and give guidance about optimal methods John-Paul Taylor, PhD, to establish and interpret these. Substantial new information has been incorporated about pre- MRC Psych viously reported aspects of DLB, with increased diagnostic weighting given to REM sleep Daniel Weintraub, MD behavior disorder and 123iodine-metaiodobenzylguanidine (MIBG) myocardial scintigraphy. Dag Aarsland, MD The diagnostic role of other neuroimaging, electrophysiologic, and laboratory investigations James Galvin, MD, MPH is also described. Minor modifications to pathologic methods and criteria are recommended to Johannes Attems, MD take account of Alzheimer disease neuropathologic change, to add previously omitted Lewy- Clive G. Ballard, MRC related pathology categories, and to include assessments for substantia nigra neuronal loss. Psych, MD Recommendations about clinical management are largely based upon expert opinion since Ashley Bayston, BA, LLB randomized controlled trials in DLB are few. Substantial progress has been made since the Thomas G. Beach, MD, previous report in the detection and recognition of DLB as a common and important clinical PhD disorder. During that period it has been incorporated into DSM-5, as major neurocognitive Frédéric Blanc, MD, PhD disorder with Lewy bodies.
    [Show full text]
  • Corruptive Templating of Aβ in Alzheimer's Disease
    Corruptive Templating of Aβ In Alzheimer’s Disease Lary Walker Yerkes National Primate Research Center and Department of Neurology, Emory University Many thanks to Rebecca Rosen, Jeromy Dooyema, Amarallys Cintron, Jason Fritz, James Lah, Ranjita Betarbet, Harry LeVine III, Yvonne Eisele and Mathias Jucker Funding: PO1AG026423, P50AG025688, R21AG40589, CART Foundation ADC Directors Meeting April 21, 2012 Overview 1) The spectrum of proteopathies 2) Cerebral Aβ amyloidosis is inducible in APP-transgenic mice by Aβ-rich brain extracts 3) Aggregated Aβ itself is the seed 4) Aβ seeds travel within, and to, the brain 5) Aβ seeds vary in size 6) Implications, caveats and open questions The spectrum of proteopathies • Alzheimer’s disease (Aβ and tau) • Prion diseases (PrP) • Tauopathies (tau) • Huntington’s disease/triplet repeat disorders (polyQ) • Parkinson’s disease/Lewy body disease (α-synuclein) • Cerebral amyloid angiopathies (Aβ, cystatin, etc.) • Amyotrophic lateral sclerosis (SOD, TDP43, FUS) • FTLD ubi+, tau- (TDP43, FUS) • Familial British Dementia (ABri) • Familial Danish Dementia (ADan) • Familial Encephalopathy w/ Neuroserpin Inclusion Bodies (neuroserpin) • Systemic amyloidoses (AA, AL, Transthyretin, etc) • Type II diabetes (amylin) • Cirrhosis with hepatocytic inclusions (α1-antitrypsin) • … Disease or disease class Aggregating protein(s) Alzheimer's disease Amyloid β peptide (Aβ); Tau protein (see tauopathies) Cerebral β-amyloid angiopathy Amyloid β peptide (Aβ) Retinal ganglion cell degeneration in glaucoma Amyloid β peptide
    [Show full text]