INVISIBLE HIGGS DECAYS and NEUTRINO PHYSICS Anjan S. Joshipura1 J. W. F. Valle Y ABSTRACT

Total Page:16

File Type:pdf, Size:1020Kb

INVISIBLE HIGGS DECAYS and NEUTRINO PHYSICS Anjan S. Joshipura1 J. W. F. Valle Y ABSTRACT CERN-TH.6652/92 FTUV/92-35 IFIC/92-34 INVISIBLE HIGGS DECAYS AND NEUTRINO PHYSICS 1 Anjan S. Joshipura Theoretical Physics Division, CERN CH-1211 Geneve 23, Switzerland and y J. W. F. Valle Instituto de Fsica Corpuscular - IFIC/CSIC Dept. de Fsica Teorica, Universitat de Valencia 46100 Burjassot, Valencia, SPAIN ABSTRACT A wide class of neutrino physics-motivated mo dels are characterized by the sp onta- neous violation of a global U (1) lepton numb er symmetry at or b elow the electroweak < scale byan SU (2) U (1) singlet vacuum exp ectation value h i O (1) TeV. In all these mo dels the main Higgs decaychannel is likely to b e "invisible", e.g. h ! JJ, where J denotes the asso ciated weakly interacting pseudoscalar Goldstone b oson - the ma joron. This leads to events with large missing energy that could b e observable at LEP and a ect the Higgs mass b ounds obtained, as well as lead to novel ways to search for Higgs b osons at high energy sup ercolliders such as the LHC/SSC. CERN-TH.6652/92 Septemb er 1992 1 Permanent address: Theory Group, Physical Research Lab., Ahmedabad, India Bitnet JOSHIPUR@CERNVM y Bitnet VALLE@EVALUN11 - Decnet 16444::VALLE 1 Intro duction One of the main puzzles in particle physics to day is the problem of mass generation. It is b elieved that the masses of the fermions as well as that of gauge b osons arise as a result of the sp ontaneous breaking of the gauge symmetry. The key ingredient for this scenario, namely the Higgs b oson [1], has not yet b een found. It is only recently, with the LEP exp eriments, that one has seriously started constraining the relevant parameters, including the Higgs b oson mass [2]. The limits on the Higgs mass are, however, rather mo del dep endent. The present limit on the standard mo del Higgs + coming from the data on e e collisions at LEP is 60 GeV. An extension of the minimal standard mo del is desirable for many reasons. One is the question of neutrino masses. Indeed neutrino masses vanish in the mini- mal standard mo del and almost all attempts to induce them require an enlargement in the Higgs sector of the theory [3]. Among these, mo dels known as ma joron mo dels are particularly interesting and have b een extensively studied [3]. The ma joron is a Goldstone b oson asso ciated with the sp ontaneous breaking of the lepton numb er. In the mo dels we shall consider it has very tiny couplings to the charged fermions as well as to the gauge b osons. As a consequence, the ma joron remains invisible. The ma joron can however have signi cant couplings to Higgs b osons even if its other couplings are suppressed. This could have imp ortant implications for Higgs physics. In particular, the normal doublet Higgs b oson could decayinvisibly as h ! J + J; (1) where J denotes the Goldstone b oson {the ma joron { asso ciated with sp ontaneously broken lepton numb er symmetry. The p ossibility of a Higgs b oson decaying invisibly was raised by Shro ck and Suzuki and reconsidered by Li, Liu and Wolfenstein [4] in the context of the triplet ma joron mo del [5]. This typ e of mo dels are now excluded since they lead to an invisible Z width in con ict with LEP observations [6]. Despite this, the p ossibilityofinvisible Higgs decay still remains op en and exp erimentally very amusing [7]. A concrete example [8] was recently provided in the context of sup ersymmetric SU (2) U (1) mo dels where the R parityisspontaneously violated at (or b elow) the electroweak scale [9]. The lightest Higgs b oson h decays in this mo del through ma joron emission. Unfortunately, its pro duction rates are likely to b e small in this case, esp ecially in the low mass region. While this completely avoids 1 the existing LEP1 limits, it is not so useful for the exp erimental detection of the new e ects at LEP1 (prosp ects of observing such decays are b etter at higher energies). The ab ovetyp e of suppression in the pro duction of the low mass Higgs b oson need not o ccur in all mo dels. An example where such suppression can b e absentis provided [10 ] by the seesaw ma joron mo del [11 ], provided the scale of lepton number < O (1) TeV. This mo del, with suchvacuum exp ectation value violation ob eys h i (VEV), mayhaveinteresting physical implications including neutrinos with masses very near their present exp erimental limits [12 ]. However, this is not the most natural choice for the lepton numb er violation scale if neutrino masses are very tiny O (1) eV. The masses of the light neutrinos are given by 2 m D m ; (2) M R where m = h i and M hi. Here hi is the VEV that breaks the SU (2) U (1) D R symmetry while h i breaks the global lepton numb er symmetry. Barring unnaturally small Yukawa couplings , the smallness of neutrino masses follows only if h i O(1) TeV. Typical mo dels asso ciate h i to a large mass scale at which some higher symmetry such as left-right, Peccei-Quinn or grand-uni ed symmetries get realized. As we shall discuss the ma joron-Higgs coupling is suppressed in this case. In this pap er, we note that there exists a wide class of interesting mo dels for neutrino masses in which lepton numb er breaking is driven by an isosinglet VEV (as required by the LEP constraints), but in which the asso ciated scale ob eys < h i O (1) TeV. The distinguishing feature of these new mo dels is that, unlike 1 seesaw mo dels, where m /hi ,inany of the present mo dels m ! 0as hi!0. As a result a lowvalue of h i is required in order to obtain a small neutrino mass either at the tree level or radiatively. We discuss the invisible decay of the Higgs b osons in this typ e of mo dels. In contrast with the two situations discussed ab ove, neither the invisible decay nor the pro duction of the Higgs b osons need to b e suppressed in these mo dels. Moreover, this feature p ersists even when the lepton numb er symmetry is broken at a scale much smaller than the weak scale. The latter would lead to the p ossibility of enhanced ma joron-neutrino couplings. These could, in turn, haveinteresting implications in neutrinoless double b eta decayaswell as astrophysics [13 ]. In addition, in all cases these mo dels can lead to interesting physical e ects such as large rates for zen events at LEP, and avour{violating muon and tau decays with large branching ratios. The 2 former would b e asso ciated to single neutral heavy lepton pro duction and the latter to neutral heavy lepton exchange in higher order weak pro cesses. The corresp onding rates can b e large enough to b e exp erimentally measurable. [14]. In the next section, we discuss the main features of various mo dels of neutrino masses with the lepton numb er broken at a relatively low scale. The third section contains details of the Higgs p otentials and the ma joron couplings to the Higgs b osons. The corresp onding decay and pro duction rates are studied in section 4. The last section contains a discussion of some of the phenomenological implications. The technical details related to very low-scale breaking of the lepton numb er symmetry are given in the app endix. 2 Mo dels Wenow consider several SU (2) U (1) mo dels that have b een suggested in neutrino physics in order to generate naturally small neutrino masses, either as a result of z radiative corrections or at the tree level . In all these mo dels lepton number is a < symmetry of the Lagrangian. This is sp ontaneously broken by h i O (1) TeV, thus generating a ma joron given by J =Im: (3) In most resp ects, these mo dels all share the existence of a massless isosinglet pseu- doscalar ma joron, very much the same as the original one in ref. [11 ]. As a result, all astrophysical constraints [15] related to stellar co oling by ma joron emission can easily b e ob eyed. However, there is an imp ortant di erence. In the seesaw ma joron mo del, the smallness of neutrino masses is linked to the lepton numb er violation at a very high mass scale, i.e. m ! 0as hib ecomes large. In all the present mo dels m ! 0 as h i!0. The remarkable fact that no mass scale is intro duced ab ove the weak scale in any of these mo dels is crucial in ensuring the imp ortance of the invisible Higgs decay (1) relative to the standard mo des suchas h ! ff.Aswe will see, the invisibly decaying Higgs b oson signature may p ersist even in the limit where z For simplicitywe assume that all of the Yukawa coupling constants are real in all that follows. 3 h iO (1) TeV. This maybeinteresting from the p oint of view of pro cesses such as neutrinoless double b eta decay with ma joron emission [13]. 2.1 Singlet ma joron in "-mo del" This is an SU (2) U (1) variant [16] of the "seesaw" mo del with the heavy Dirac lepton suggested in ref.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model
    Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model Andr´ede Gouv^ea1 and Petr Vogel2 1 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, 60208, USA 2 Kellogg Radiation Laboratory, Caltech, Pasadena, California, 91125, USA April 1, 2013 Abstract The physics responsible for neutrino masses and lepton mixing remains unknown. More ex- perimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutrino masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the sta- tus of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos. arXiv:1303.4097v2 [hep-ph] 29 Mar 2013 1 1 Introduction In the absence of interactions that lead to nonzero neutrino masses, the Standard Model Lagrangian is invariant under global U(1)e × U(1)µ × U(1)τ rotations of the lepton fields. In other words, if neutrinos are massless, individual lepton-flavor numbers { electron-number, muon-number, and tau-number { are expected to be conserved.
    [Show full text]
  • Neutrino Opacity I. Neutrino-Lepton Scattering*
    PHYSICAL REVIEW VOLUME 136, NUMBER 4B 23 NOVEMBER 1964 Neutrino Opacity I. Neutrino-Lepton Scattering* JOHN N. BAHCALL California Institute of Technology, Pasadena, California (Received 24 June 1964) The contribution of neutrino-lepton scattering to the total neutrino opacity of matter is investigated; it is found that, contrary to previous beliefs, neutrino scattering dominates the neutrino opacity for many astro­ physically important conditions. The rates for neutrino-electron scattering and antineutrino-electron scatter­ ing are given for a variety of conditions, including both degenerate and nondegenerate gases; the rates for some related reactions are also presented. Formulas are given for the mean scattering angle and the mean energy loss in neutrino and antineutrino scattering. Applications are made to the following problems: (a) the detection of solar neutrinos; (b) the escape of neutrinos from stars; (c) neutrino scattering in cosmology; and (d) energy deposition in supernova explosions. I. INTRODUCTION only been discussed for the special situation of electrons 13 14 XPERIMENTS1·2 designed to detect solar neu­ initially at rest. · E trinos will soon provide crucial tests of the theory In this paper, we investigate the contribution of of stellar energy generation. Other neutrino experiments neutrino-lepton scattering to the total neutrino opacity have been suggested as a test3 of a possible mechanism of matter and show, contrary to previous beliefs, that for producing the high-energy electrons that are inferred neutrino-lepton scattering dominates the neutrino to exist in strong radio sources and as a means4 for opacity for many astrophysically important conditions. studying the high-energy neutrinos emitted in the decay Here, neutrino opacity is defined, analogously to photon of cosmic-ray secondaries.
    [Show full text]
  • Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)
    Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS) Paper submitted for the 2008 Carolina International Symposium on Neutrino Physics Yu Efremenko1,2 and W R Hix2,1 1University of Tennessee, Knoxville TN 37919, USA 2Oak Ridge National Laboratory, Oak Ridge TN 37981, USA E-mail: [email protected] Abstract. In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions. 1. Introduction It seems that only yesterday we gathered together here at Columbia for the first Carolina Neutrino Symposium on Neutrino Physics. To my great astonishment I realized it was already eight years ago. However by looking back we can see that enormous progress has been achieved in the field of neutrino science since that first meeting. Eight years ago we did not know which region of mixing parameters (SMA. LMA, LOW, Vac) [1] would explain the solar neutrino deficit. We did not know whether this deficit is due to neutrino oscillations or some other even more exotic phenomena, like neutrinos decay [2], or due to the some other effects [3]. Hints of neutrino oscillation of atmospheric neutrinos had not been confirmed in accelerator experiments. Double beta decay collaborations were just starting to think about experiments with sensitive masses of hundreds of kilograms. Eight years ago, very few considered that neutrinos can be used as a tool to study the Earth interior [4] or for non- proliferation [5].
    [Show full text]
  • Neutrino Physics
    SLAC Summer Institute on Particle Physics (SSI04), Aug. 2-13, 2004 Neutrino Physics Boris Kayser Fermilab, Batavia IL 60510, USA Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally, 1. PHYSICS OF NEUTRINO OSCILLATION 1.1. Introduction There has been a breakthrough in neutrino physics. It has been discovered that neutrinos have nonzero masses, and that leptons mix. The evidence for masses and mixing is the observation that neutrinos can change from one type, or “flavor”, to another. In this first section of these lectures, we will explain the physics of neutrino flavor change, or “oscillation”, as it is called. We will treat oscillation both in vacuum and in matter, and see why it implies masses and mixing. That neutrinos have masses means that there is a spectrum of neutrino mass eigenstates νi, i = 1, 2,..., each with + a mass mi. What leptonic mixing means may be understood by considering the leptonic decays W → νi + `α of the W boson. Here, α = e, µ, or τ, and `e is the electron, `µ the muon, and `τ the tau. The particle `α is referred to as the charged lepton of flavor α.
    [Show full text]
  • Neutrino-Nucleon Deep Inelastic Scattering
    ν NeutrinoNeutrino--NucleonNucleon DeepDeep InelasticInelastic ScatteringScattering 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 48 NeutrinoNeutrino--NucleonNucleon ‘‘nn aa NutshellNutshell ν • Charged - Current: W± exchange • Neutral - Current: Z0 exchange Quasi-elastic Scattering: Elastic Scattering: (Target changes but no break up) (Target unchanged) − νμ + n →μ + p νμ + N →νμ + N Nuclear Resonance Production: Nuclear Resonance Production: (Target goes to excited state) (Target goes to excited state) − 0 * * νμ + n →μ + p + π (N or Δ) νμ + N →νμ + N + π (N or Δ) n + π+ Deep-Inelastic Scattering: Deep-Inelastic Scattering (Nucleon broken up) (Nucleon broken up) − νμ + quark →μ + quark’ νμ + quark →νμ + quark Linear rise with energy Resonance Production 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 49 ν ScatteringScattering VariablesVariables Scattering variables given in terms of invariants •More general than just deep inelastic (neutrino-quark) scattering, although interpretation may change. 2 4-momentum Transfer22 : Qq=− 2 =− ppEE'' − ≈ 4 sin 2 (θ / 2) ( ) ( )Lab Energy Transfer: ν =⋅qP/ M = E − E' = E − M ()ThT()Lab ()Lab ' Inelasticity: yqPpPEM=⋅()()(/ ⋅ =hT − ) / EE h + ()Lab 22 Fractional Momentum of Struck Quark: xq=−/ 2() pqQM ⋅ = / 2 Tν 22 2 2 2 Recoil Mass : WqPM=+( ) =TT + 2 MQν − Q2 CM Energy222 : spPM=+( ) = + T xy 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 50 ν 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 51 ν PartonParton InterpretationInterpretation
    [Show full text]
  • Heavy Neutrino Search Via Semileptonic Higgs Decay at the LHC
    Eur. Phys. J. C (2019) 79:424 https://doi.org/10.1140/epjc/s10052-019-6937-7 Regular Article - Theoretical Physics Heavy neutrino search via semileptonic higgs decay at the LHC Arindam Das1,2,3,a,YuGao4,5,b, Teruki Kamon6,c 1 School of Physics, KIAS, Seoul 02455, Korea 2 Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea 3 Korea Neutrino Research Center, Seoul National University, Bldg 23-312, Sillim-dong, Gwanak-gu, Seoul 08826, Korea 4 Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 5 Department of Physics and Astronomy, Wayne State University, Detroit 48201, USA 6 Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA Received: 25 September 2018 / Accepted: 11 May 2019 / Published online: 20 May 2019 © The Author(s) 2019 Abstract In the inverse see-saw model the effective neu- the scale of top quark Yukawa coupling (YD ∼ 1) to the scale −6 trino Yukawa couplings can be sizable due to a large mixing of electron Yukawa coupling (YD ∼ 10 ). angle between the light (ν)and heavy neutrinos (N). When In high energy collider experimental point of view, it the right handed neutrino (N) can be lighter than the Stan- is interesting if the heavy neutrino mass lies at the TeV dard Model (SM) Higgs boson (h). It can be produced via scale or smaller, because such heavy neutrinos could be pro- the on-shell decay of the Higgs, h → Nν at a significant duced at high energy colliders, such as the Large Hadron branching fraction at the LHC.
    [Show full text]
  • Strange Mesons (S = ±1, C = B = 0)
    Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) STRANGE MESONS (S = 1, C = B = 0) K + = us, K 0 = ds, K±0 = d s, K − = u s, similarly for K ∗’s ± P 1 K I (J ) = 2 (0−) Mass m = 493.677 0.016 MeV [a] (S = 2.8) ± Mean life τ = (1.2380 0.0020) 10−8 s (S=1.8) ± × cτ = 3.711 m CPT violation parameters (∆ = rate difference/sum) ∆(K ± µ± ν )=( 0.27 0.21)% → µ − ± ∆(K ± π± π0) = (0.4 0.6)% [b] → ± CP violation parameters (∆ = rate difference/sum) ∆(K ± π± e+ e−)=( 2.2 1.6) 10−2 → − ± × ∆(K ± π± µ+ µ−)=0.010 0.023 → ± ∆(K ± π± π0 γ) = (0.0 1.2) 10−3 → ± × ∆(K ± π± π+ π−) = (0.04 0.06)% → ± ∆(K ± π± π0 π0)=( 0.02 0.28)% → − ± T violation parameters K + π0 µ+ ν P = ( 1.7 2.5) 10−3 → µ T − ± × K + µ+ ν γ P = ( 0.6 1.9) 10−2 → µ T − ± × K + π0 µ+ ν Im(ξ) = 0.006 0.008 → µ − ± Slope parameter g [c] (See Particle Listings for quadratic coefficients and alternative parametrization re- lated to ππ scattering) K ± π± π+ π− g = 0.21134 0.00017 → − ± (g g )/(g + g )=( 1.5 2.2) 10−4 + − − + − − ± × K ± π± π0 π0 g = 0.626 0.007 → ± (g g )/(g + g ) = (1.8 1.8) 10−4 + − − + − ± × K ± decay form factors [d,e] Assuming µ-e universality λ (K + ) = λ (K + ) = (2.97 0.05) 10−2 + µ3 + e3 ± × λ (K + ) = (1.95 0.12) 10−2 0 µ3 ± × HTTP://PDG.LBL.GOV Page1 Created:6/5/201818:58 Citation: M.
    [Show full text]
  • Phenomenology of Sterile Neutrinos
    Phenomenology of sterile neutrinos Carlo Giunti INFN, Sezione di Torino, Via P. Giuria 1, I–10125 Torino, Italy E-mail: [email protected] Abstract. The indications in favor of short-baseline neutrino oscillations, which require the existence of one or more sterile neutrinos, are reviewed. In the framework of 3+1 neutrino mixing, which is the simplest extension of the standard three-neutrino mixing which can partially explain the data, there is a strong tension in the interpretation of the data, mainly due to an incompatibility of the results of appearance and disappearance experiments. In the framework of 3+2 neutrino mixing, CP violation in short-baseline experiments can explain the difference between MiniBooNE neutrino and antineutrino data, but the tension between the data of appearance and disappearance experiments persists because the short-baseline disappearance of electron antineutrinos and muon neutrinos compatible with the LSND and MiniBooNE antineutrino appearance signal has not been observed. 1. Introduction From the results of solar, atmospheric and long-baseline neutrino oscillation experiments we know that neutrinos are massive and mixed particles (see [1]). There are two groups of experiments which measured two independent squared-mass differences (∆m2) in two different neutrino flavor transition channels: • Solar neutrino experiments (Homestake, Kamiokande, GALLEX/GNO, SAGE, Super- 2 Kamiokande, SNO, BOREXino) measured νe → νµ,ντ oscillations generated by ∆mSOL = +1.1 −5 2 2 +0.04 6.2−1.9 ×10 eV and a mixing angle tan ϑSOL = 0.42−0.02 [2]. The KamLAND experiment confirmed these oscillations by observing the disappearance of reactorν ¯e at an average distance of about 180 km.
    [Show full text]
  • Phenomenology of Gev-Scale Heavy Neutral Leptons Arxiv:1805.08567
    Prepared for submission to JHEP INR-TH-2018-014 Phenomenology of GeV-scale Heavy Neutral Leptons Kyrylo Bondarenko,1 Alexey Boyarsky,1 Dmitry Gorbunov,2;3 Oleg Ruchayskiy4 1Intituut-Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 2Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia 3Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia 4Discovery Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK- 2100 Copenhagen, Denmark E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We review and revise phenomenology of the GeV-scale heavy neutral leptons (HNLs). We extend the previous analyses by including more channels of HNLs production and decay and provide with more refined treatment, including QCD corrections for the HNLs of masses (1) GeV. We summarize the relevance O of individual production and decay channels for different masses, resolving a few discrepancies in the literature. Our final results are directly suitable for sensitivity studies of particle physics experiments (ranging from proton beam-dump to the LHC) aiming at searches for heavy neutral leptons. arXiv:1805.08567v3 [hep-ph] 9 Nov 2018 ArXiv ePrint: 1805.08567 Contents 1 Introduction: heavy neutral leptons1 1.1 General introduction to heavy neutral leptons2 2 HNL production in proton fixed target experiments3 2.1 Production from hadrons3 2.1.1 Production from light unflavored and strange mesons5 2.1.2
    [Show full text]
  • LIMITS on DIFFERENT MAJORON DECAY MODES of 100Mo, 116Cd, 82Se, and 96Zr for NEUTRINOLESS DOUBLE BETA DECAYS in the NEMO-2 EXPERIMENT V
    XJ0200048 B 3HAJL 2001. N»5[108] Particles and Nuclei, Letters. 2001. No.5[108] 539.165 LIMITS ON DIFFERENT MAJORON DECAY MODES OF 100Mo, 116Cd, 82Se, AND 96Zr FOR NEUTRINOLESS DOUBLE BETA DECAYS IN THE NEMO-2 EXPERIMENT V. Vasilyev et al. (NEMO collaboration1) The NEMO-2 tracking detector located in the Frejus underground laboratory was designed as a prototype for the NEMO-3 detector and to study different modes of double beta decay. Measurements with 100Mo, n6Cd, 82Se, and 96Zr were carried out. Presented here are the experimental half-life limits on double beta decays for new Majoron emission modes and limits on effective neutrino-Majoron coupling constants. NEMO-2, pacnario>KeHHbiH B nofl3eMHOH jiaSopaTopHH ©peaxyc H CKOHcrpynpoBaH- HHH KaK npoTOTHn aeTeKTopa NEMO-3, npeflHa3HaieH ana H3vqeHHa pa3HHHHbix MOB flBoflHoro 6era- pacnaaa. EbuiH npoBeaeHbi H3MepeHHs H3oronoB 100Mo, U6Cd, 82Se H 96Zr. B pa6oTe npeflcraBJieHbi HOBbie 3KcnepHMenTanbHbie npeaenu Ha pa3nnHHbie MOflbi flBOHHoro 6eTa-pacnana c HcnycKaHweM Mafl- OpOHa H 3CpcbeKTHBHb]X K0HCT8HT CBH3H HeHTpHHO-MaHOpOH. INTRODUCTION Spontaneous violation of global (B—L) symmetry in gauge theories leads to the existence of a massless Goldstone boson, the Majoron. At the beginning of the 1980's there were considered to be singlet [1], doublet [2] and triplet [3] Majoron models. All these models resulted in the neutrinoless double beta (2/3) decay with the emission of a Majoron (x°): (A,Z)-+(A,Z + 2) + 2e-+x°- (D However, the interaction of the triplet (or doublet) Majorons with the Z° boson would give a contribution to the width of the Z° decay, which corresponds to two (or 1/2) additional massless neutrino types (see, for example, [4-6]).
    [Show full text]
  • Neutrinoless Double-Β Decay with Nonstandard Majoron Emission
    PHYSICAL REVIEW LETTERS 122, 181801 (2019) Neutrinoless Double-β Decay with Nonstandard Majoron Emission † ‡ ∥ Ricardo Cepedello,1,2,* Frank F. Deppisch,2,3, Lorena González,4,2, Chandan Hati,5,§ and Martin Hirsch1, 1AHEP Group, Instituto de Física Corpuscular—CSIC/Universitat de Val`encia Edificio de Institutos de Paterna, Apartado 22085, E–46071 Val`encia, Spain 2Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom 3Institut für Hochenergiephysik, Österreichische Akademie der Wissenschaften, Nikolsdorfer Gasse 18, 1050 Wien, Austria 4Department of Physics, Universidad T´ecnica Federico Santa María, Avenida España 1680, Valparaíso, Chile 5Laboratoire de Physique de Clermont, CNRS/IN2P3 UMR 6533, Campus des C´ezeaux, 4 Avenue Blaise Pascal, F-63178 Aubi`ere Cedex, France (Received 13 November 2018; revised manuscript received 1 February 2019; published 7 May 2019) We present a novel mode of neutrinoless double-β decay with emission of a light Majoron-like scalar particle ϕ. We assume it couples via an effective seven-dimensional operator with a (V þ A) lepton current and (V Æ A) quark currents leading to a long-range contribution that is unsuppressed by the light neutrino mass. We calculate the total double-β decay rate and determine the fully differential shape for this mode. β Λ ≈ 1 We find that future double- decay searches are sensitive to scales of the order NP TeV for the effective operator and a light scalar mϕ < 0.2 MeV, based on ordinary double-β decay Majoron searches. The angular and energy distributions can deviate considerably from that of two-neutrino double-β decay, which is the main background.
    [Show full text]