Differential Proteomic Profiling of Spermatozoal Proteins of Infertile

Total Page:16

File Type:pdf, Size:1020Kb

Differential Proteomic Profiling of Spermatozoal Proteins of Infertile Infertility Differential Proteomic Profiling of Spermatozoal Proteins of Infertile Men With Unilateral or Bilateral Varicocele Ashok Agarwal, Rakesh Sharma, Damayanthi Durairajanayagam, Zhihong Cui, Ahmet Ayaz, Sajal Gupta, Belinda Willard, Banu Gopalan, and Edmund Sabanegh OBJECTIVE To compare the sperm protein profile between infertile men with unilateral varicocele and infertile men with bilateral varicocele. METHODS This prospective study investigated 50 infertile patients with clinical varicocele (33 unilateral and 17 bilateral) seeking fertility workup between March 2012 and April 2014. Routine sperm parameters, reactive oxygen species, total antioxidant capacity, and sperm deoxyribonucleic acid fragmentation were assessed in their semen. Sperm protein profile was characterized only in pooled samples of 5 unilateral and 3 bilateral varicocele samples, respectively, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an Linear Trap Quadrupole-Orbitrap Elite hybrid mass spectrophotometer system. Differences in protein expression were analyzed using gel analysis software, followed by protein identification using mass spectroscopy analysis. Differentially expressed proteins and their abundance were quantified by comparing spectral counts, followed by bioinformatics analysis. RESULTS Unique expression of 64 proteins in the bilateral group and 31 proteins in the unilateral group was obtained. Core functions of the top protein interaction networks were post-translational modi- fication (w122 proteins associated with acetylation), protein folding, free-radical scavenging, cell death, and survival. The top molecular and cellular functions were protein degradation, free radical scavenging, and post-translational modifications, whereas the top pathways were protein ubiquitination and mitochondrial dysfunction. Major biological pathways for the 253 differen- tially expressed proteins were metabolism, apoptosis, and signal transduction. CONCLUSION Functional proteomic profiling helps identify the differential processes or pathways that are affected based on the nature of varicocele (bilateral or unilateral) and provide insights into the mechanistic implications of varicocele-associated male infertility. UROLOGY 85: 580e588, 2015. Ó 2015 Elsevier Inc. aricoceles are found in 35%-50% of men with Proteomics is emerging as a new frontier in male infertility primary infertility and in w80% of men with research and is being extensively used to investigate protein V secondary infertility, suggesting a progressive alterations in different disease states.3 Proteomic analysis has decline in fertility over time. Factors that may contribute previously been used to screen for differentially expressed to the pathogenesis of varicocele include hypoperfusion sperm proteins in infertile men afflicted with various etiol- leading to hypoxia, heat stress, oxidative stress, hormonal ogies including varicocele.4-7 Two-dimensional electro- imbalances, and exogenous toxicants.1 However, the phoresis and MALDI-TOF/TOF-MS was used to compare exact mechanism underlying varicocele-associated testic- the proteomic profile of oligozoospermic, grade 3 varicocele ular dysfunction and infertility remains unclear.2 patients with that of healthy fertile men,8 and differentially expressed proteins in grade 2 varicocele patients.9 Ashok Agarwal and Rakesh Sharma contributed equally to this study. However, no proteomics-based study has as yet, to Financial Disclosure: The authors declare that they have no relevant financial interests. our knowledge, looked into the potential alteration in Funding Support: This study was supported by funds from the Center for Reproductive sperm protein expression within the varicocele patient Medicine, Cleveland Clinic. From the Department of Urology, the Center for Reproductive Medicine, Glickman pool, mainly between unilateral and bilateral varicocele Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH; Department of patients. Unilateral varicoceles are more commonly Physiology, MARA University of Technology, Selangor, Malaysia; Research Core present on the left side (35%-40%) compared with Services, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and Bioinfor- matics Consulting Services, Yorg Corporation, Plano, Texas. bilateral varicoceles (10%-15%). Thus, the aim of the Address correspondence to: Ashok Agarwal, Ph.D., HCLD, Department of Urology, present study was to examine and compare potential Center for Reproductive Medicine, Glickman Urological & Kidney Institute, Cleveland differences between the sperm protein profile within a Clinic, 10681 Carnegie Avenue, Mail Code X-11, Cleveland, OH 44195. E-mail: [email protected] subset of varicocele patients, that is, men with unilat- Submitted: November 4, 2014, accepted (with revisions): November 27, 2014 eral varicocele with that of bilateral varicocele patients. 580 ª 2015 Elsevier Inc. http://dx.doi.org/10.1016/j.urology.2014.11.030 All Rights Reserved 0090-4295/15 METHODS All MS/MS samples were analyzed using Mascot (version 2.3.02; Matrix Science, London, United Kingdom), SEQUEST (version Patients and Semen Samples 1.4.0.288; Thermo Fisher Scientific, San Jose, CA) and X! Tandem On study approval by the institutional review board, semen samples (version CYCLONE; 2010.12.01.1; The GPM; thegpm.org). were collected from 50 patients with infertility as a primary diagnosis To validate MS/MSebased peptide and protein identifications, and clinical varicocele (unilateral, n ¼ 33 and bilateral, n ¼ 17) as a Scaffold (version 4.0.6.1; Proteome Software Inc., Portland, OR) secondary diagnosis. All participating patients were examined, and was used. Peptide and protein identifications were accepted as 10 their varicocele(s) were diagnosed. Azoospermic men and men previously described.14 Protein probabilities were assigned by the with a sperm concentration of <10 million sperm/mL were excluded ProteinProphet (Systems Biology, Seattle, WA) algorithm.15 from the present study. After liquefaction, manual semen analysis Proteins were annotated with Gene Ontology (GO) terms.16 was performed to determine sperm concentration and motility, and smears were prepared for assessment of sperm morphology according to the World Health Organization criteria.11 Samples with a round Quantitative Proteomics cell concentration of >1 Â 106/mL were tested for leukocytospermia For proteomic analysis, the relative quantity of the proteins was (>1 Â 106 white blood cells/mL) and confirmed by the Endtz test.6 determined by comparing the number of spectra used to identify fi Samples positive for leukocytospermia were excluded from the final each protein. The total number of mass spectra that identi ed a proteomic pool. Reactive oxygen species (ROS) formation was particular protein (spectral counts [SpCs]) was used to measure measured by chemiluminescence assay using a Berthold lumin- the relative abundance of proteins in the samples being ometer (Autolumat Plus 953, Berthold Technologies, Oakland, compared. Normalization of SpCs using the normalized spectral TN), as described previously.12 Total antioxidant capacity was abundance factor (NSAF) approach was applied to each group fi 17 measured in the seminal plasma using the antioxidant assay kit.6 separately before relative protein quanti cation. Differentially Sperm deoxyribonucleic acid (DNA) fragmentation was evalu- expressed proteins (DEP) were obtained by applying different fi ated using a terminal deoxynucleotidyl transferaseemediated fluo- constraints for signi cance tests and/or fold-change cutoffs based rescein end labeling assay with an APO-DIRECT kit (BD on the average SpCs of the protein from multiple runs. fi Biosciences Pharmingen, San Diego, CA).13 Appropriate lters were used to identify DEP that were dependent on the overall abundance of the proteins.18 The fi Sperm Protein Extraction and In-gel Digestion abundance of the proteins was classi ed as high, medium, low, or very low based on their average SpCs among the 3 replicate Only samples with sufficient sperm concentration after running runs. Different constraints for significance tests (P value) and/or the ROS and sperm DNA fragmentation tests could be fold-change cutoffs (or NSAF ratio) were applied for these 4 considered for pooling. We therefore selected samples for abundance categories, as shown in the following: pooling from 5 of the 33 unilateral and 3 of the 17 bilateral varicocele patients who met the criteria. After complete lysis, Very Low. SpC range, 1.7-7; P .001; and NSAF ratio (2.5 protein concentration was determined using a bicinchoninic for upregulated and 0.4 for downregulated proteins). acid (BCA) protein assay kit (Thermo, Rockford, IL). Equal amounts of protein were fractionated using sodium dodecyl Low. SpC range, 8-19; P .01; and NSAF ratio (2.5 for sulfate-polyacrylamide gel electrophoresis 1-dimensional gel elec- upregulated and 0.4 for downregulated proteins). trophoresis. Samples were assayed in triplicate for global proteomic analysis and quantified using the label-free spectral counting Medium. SpC range, between 20 and 79; P .05; and NSAF method. The bands were reduced with dithiothreitol and alkylated ratio (2.0 for upregulated and 0.5 for downregulated proteins). with iodoacetamide before the in-gel digestion using trypsin. High. SpC, >80; P .05; and NSAF ratio (1.5 for upregu- Liquid ChromatographyeMass Spectrometer lated and 0.67 for downregulated proteins). After complete digestion, they were extracted from the poly- acrylamide in 2 aliquots of 30-mL
Recommended publications
  • Extinction of Chromosomes Due to Specialization Is a Universal Occurrence Jason Wilson1*, Joshua M
    www.nature.com/scientificreports OPEN Extinction of chromosomes due to specialization is a universal occurrence Jason Wilson1*, Joshua M. Staley2 & Gerald J. Wyckof1,2,3 The human X and Y chromosomes evolved from a pair of autosomes approximately 180 million years ago. Despite their shared evolutionary origin, extensive genetic decay has resulted in the human Y chromosome losing 97% of its ancestral genes while gene content and order remain highly conserved on the X chromosome. Five ‘stratifcation’ events, most likely inversions, reduced the Y chromosome’s ability to recombine with the X chromosome across the majority of its length and subjected its genes to the erosive forces associated with reduced recombination. The remaining functional genes are ubiquitously expressed, functionally coherent, dosage-sensitive genes, or have evolved male-specifc functionality. It is unknown, however, whether functional specialization is a degenerative phenomenon unique to sex chromosomes, or if it conveys a potential selective advantage aside from sexual antagonism. We examined the evolution of mammalian orthologs to determine if the selective forces that led to the degeneration of the Y chromosome are unique in the genome. The results of our study suggest these forces are not exclusive to the Y chromosome, and chromosomal degeneration may have occurred throughout our evolutionary history. The reduction of recombination could additionally result in rapid fxation through isolation of specialized functions resulting in a cost-beneft relationship during times of intense selective pressure. Te human Y chromosome has lost its ability to recombine with its once homologous partner, the X chromo- some, except in its pseudoautosomal regions (PARs) at the termini of the X and Y chromosomes1–3.
    [Show full text]
  • CSE642 Final Version
    Eindhoven University of Technology MASTER Dimensionality reduction of gene expression data Arts, S. Award date: 2018 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology MASTER THESIS Dimensionality Reduction of Gene Expression Data Author: S. (Sako) Arts Daily Supervisor: dr. V. (Vlado) Menkovski Graduation Committee: dr. V. (Vlado) Menkovski dr. D.C. (Decebal) Mocanu dr. N. (Nikolay) Yakovets May 16, 2018 v1.0 Abstract The focus of this thesis is dimensionality reduction of gene expression data. I propose and test a framework that deploys linear prediction algorithms resulting in a reduced set of selected genes relevant to a specified case. Abstract In cancer research there is a large need to automate parts of the process of diagnosis, this is mainly to reduce cost, make it faster and more accurate.
    [Show full text]
  • An “Expressionistic” Look at Serrated Precancerous Colorectal Lesions Giancarlo Marra
    Marra Diagnostic Pathology (2021) 16:4 https://doi.org/10.1186/s13000-020-01064-1 RESEARCH Open Access An “expressionistic” look at serrated precancerous colorectal lesions Giancarlo Marra Abstract Background: Approximately 60% of colorectal cancer (CRC) precursor lesions are the genuinely-dysplastic conventional adenomas (cADNs). The others include hyperplastic polyps (HPs), sessile serrated lesions (SSL), and traditional serrated adenomas (TSAs), subtypes of a class of lesions collectively referred to as “serrated.” Endoscopic and histologic differentiation between cADNs and serrated lesions, and between serrated lesion subtypes can be difficult. Methods: We used in situ hybridization to verify the expression patterns in CRC precursors of 21 RNA molecules that appear to be promising differentiation markers on the basis of previous RNA sequencing studies. Results: SSLs could be clearly differentiated from cADNs by the expression patterns of 9 of the 12 RNAs tested for this purpose (VSIG1, ANXA10, ACHE, SEMG1, AQP5, LINC00520, ZIC5/2, FOXD1, NKD1). Expression patterns of all 9 in HPs were similar to those in SSLs. Nine putatively HP-specific RNAs were also investigated, but none could be confirmed as such: most (e.g., HOXD13 and HOXB13), proved instead to be markers of the normal mucosa in the distal colon and rectum, where most HPs arise. TSAs displayed mixed staining patterns reflecting the presence of serrated and dysplastic glands in the same lesion. Conclusions: Using a robust in situ hybridization protocol, we identified promising tissue-staining markers that, if validated in larger series of lesions, could facilitate more precise histologic classification of CRC precursors and, consequently, more tailored clinical follow-up of their carriers.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Downloaded from the Tranche Distributed File System (Tranche.Proteomecommons.Org) and Ftp://Ftp.Thegpm.Org/Data/Msms
    Research Article Title: The shrinking human protein coding complement: are there now fewer than 20,000 genes? Authors: Iakes Ezkurdia1*, David Juan2*, Jose Manuel Rodriguez3, Adam Frankish4, Mark Diekhans5, Jennifer Harrow4, Jesus Vazquez 6, Alfonso Valencia2,3, Michael L. Tress2,*. Affiliations: 1. Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Melchor Fernández Almagro, 3, rid, 28029, MadSpain 2. Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain 3. National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain 4. Wellcome Trust Sanger Institute, Wellcome Trust Campus, Hinxton, Cambridge CB10 1SA, UK 5. Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), 1156 High Street, Santa Cruz, CA 95064, USA 6. Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Melchor Fernández Almagro, 3, 28029, Madrid, Spain *: these two authors wish to be considered as joint first authors of the paper. Corresponding author: Michael Tress, [email protected], Tel: +34 91 732 80 00 Fax: +34 91 224 69 76 Running title: Are there fewer than 20,000 protein-coding genes? Keywords: Protein coding genes, proteomics, evolution, genome annotation Abstract Determining the full complement of protein-coding genes is a key goal of genome annotation. The most powerful approach for confirming protein coding potential is the detection of cellular protein expression through peptide mass spectrometry experiments. Here we map the peptides detected in 7 large-scale proteomics studies to almost 60% of the protein coding genes in the GENCODE annotation the human genome.
    [Show full text]
  • Alterations in Seminal Plasma Proteomic Profile in Men with Primary and Secondary Infertility
    www.nature.com/scientificreports OPEN Alterations in seminal plasma proteomic profle in men with primary and secondary infertility Ana D. Martins1,2, Manesh Kumar Panner Selvam1, Ashok Agarwal1 ✉ , Marco G. Alves2 & Saradha Baskaran1 Proteome of seminal plasma provides profound information related to the male reproductive health. This pilot study was conducted to characterize proteomic profle of seminal plasma from men with primary, or secondary infertility and compare it with proven fertile men. Study participants (n = 59) were recruited at the Cleveland Clinic and divided according to their fertility status: proven fertile (n = 39); primary infertility (n = 11) and secondary infertility (n = 9). Proteomic shotgun analysis revealed a total of 515 peptides common to primary infertility and control group; whereas 523 peptides were common to secondary infertility and control group. Bioinformatic analysis revealed dysregulation of biological processes such as cell secretion and vesicle mediated transport in primary infertility, whereas immune system response, regulation of proteolysis and iron homeostasis were dysregulated in secondary infertility. Western blot validation showed overexpression of ANXA2 and CDC42, and underexpression of SEMG2 proteins in primary infertility; and overexpression of ANXA2 and APP proteins in secondary infertility. This study elucidates the potential role of diferentially expressed proteins in the seminal plasma as diagnostic biomarker for primary and secondary infertility. Furthermore, our results suggest maturation failure and immune reaction response as the main cause of infertility in men with primary and secondary infertility, respectively. Additional validation of the proteins involved in the above pathways is warranted. Infertility globally afects 15% of couples and is now classifed as a disease of the reproductive system by the World Health Organization (WHO)1.
    [Show full text]
  • Semenogelin II (SEMG2) (NM 003008) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP760462 Semenogelin II (SEMG2) (NM_003008) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Purified recombinant protein of Human semenogelin II (SEMG2), full length, with N-terminal HIS tag, expressed in E.Coli, 50ug Species: Human Expression Host: E. coli Tag: N-His Predicted MW: 62.9 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25mM Tris, pH8.0, 150 mM NaCl, 10% glycerol, 1 % Sarkosyl. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_002999 Locus ID: 6407 UniProt ID: Q02383 RefSeq Size: 1982 Cytogenetics: 20q13.12 RefSeq ORF: 1746 Synonyms: SGII Summary: The secreted protein encoded by this gene is involved in the formation of a gel matrix that encases ejaculated spermatozoa. Proteolysis by the prostate-specific antigen (PSA) breaks down the gel matrix and allows the spermatozoa to move more freely. The encoded protein is found in lesser abundance than a similar semenogelin protein. An antibacterial activity has been found for a antimicrobial peptide isolated from this protein. The genes encoding these two semenogelin proteins are found in a cluster on chromosome 20. [provided by RefSeq, Jan 2015] This product is to be used for laboratory only.
    [Show full text]
  • Proteomic Profiling of Two Distinct Populations of Extracellular
    International Journal of Molecular Sciences Article Proteomic Profiling of Two Distinct Populations of Extracellular Vesicles Isolated from Human Seminal Plasma Xiaogang Zhang 1, Harmjan R. Vos 2 , Weiyang Tao 3 and Willem Stoorvogel 1,* 1 Department of Biomolecular Health Sciences, Faculty of Veterinary Science, Utrecht University, 3584 CM Utrecht, The Netherlands; [email protected] 2 Center for Molecular Medicine, Molecular Cancer Research Section, University Medical Center, 3584 CX Utrecht, The Netherlands; [email protected] 3 Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, Netherlands; [email protected] * Correspondence: [email protected] Received: 1 September 2020; Accepted: 22 October 2020; Published: 26 October 2020 Abstract: Body fluids contain many populations of extracellular vesicles (EV) that differ in size, cellular origin, molecular composition, and biological activities. EV in seminal plasma are in majority originating from prostate epithelial cells, and hence are also referred to as prostasomes. Nevertheless, EV are also contributed by other accessory sex glands, as well as by the testis and epididymis. In a previous study, we isolated EV from seminal plasma of vasectomized men, thereby excluding contributions from the testis and epididymis, and identified two distinct EV populations with diameters of 50 and 100 nm, respectively. In the current study, we comprehensively analyzed the protein composition of these two EV populations using quantitative Liquid Chromatography-Mass Spectrometry (LC-MS/MS). In total 1558 proteins were identified. Of these, 45% was found only in ≈ the isolated 100 nm EV, 1% only in the isolated 50 nm EV, and 54% in both 100 nm and 50 nm EV.
    [Show full text]
  • The DNA Sequence and Comparative Analysis of Human Chromosome 20
    articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M.
    [Show full text]
  • Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
    Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs.
    [Show full text]
  • Update on the Proteomics of Male Infertility: a Systematic Review
    Arab Journal of Urology (2018) 16, 103–112 Arab Journal of Urology (Official Journal of the Arab Association of Urology) www.sciencedirect.com DIAGNOSIS ORIGINAL ARTICLE Update on the proteomics of male infertility: A systematic review Manesh Kumar Panner Selvam, Ashok Agarwal * American Centre for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA Received 28 October 2017, Received in revised form 17 November 2017, Accepted 19 November 2017 Available online 29 December 2017 KEYWORDS Abstract Objective: To assess the role of differentially expressed proteins as a resource for potential biomarker identification of infertility, as male infertility is Sperm proteomics; of rising concern in reproductive medicine and evidence pertaining to its aetiology Male infertility; at a molecular level particularly proteomic as spermatozoa lack transcription and Spermatozoa; translation. Proteomics is considered as a major field in molecular biology to vali- Varicocele; date the target proteins in a pathophysiological state. Differential expression analy- Biomarkers sis of sperm proteins in infertile men and bioinformatics analysis offer information about their involvement in biological pathways. Materials and methods: Literature search was performed on PubMed, Medline, and Science Direct databases using the keywords ‘sperm proteomics’ and ‘male infer- tility’. We also reviewed the relevant cross references of retrieved articles and included them in the review process. Articles written in any language other than Eng- lish were excluded. Results: Of 575 articles identified, preliminary screening for relevant studies elim- inated 293 articles. At the next level of selection, from 282 studies only 80 articles related to male infertility condition met the selection criteria and were included in this review.
    [Show full text]
  • (ZPBP2) and Several Proteins Containing BX7B Motifs in Human Sperm May Have Hyaluronic Acid Binding Or Recognition Properties
    This is a repository copy of Zona pellucida-binding protein 2 (ZPBP2) and several proteins containing BX7B motifs in human sperm may have hyaluronic acid binding or recognition properties. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/146678/ Version: Accepted Version Article: Torabi, F, Bogle, OA, Estanyol, JM et al. (2 more authors) (2017) Zona pellucida-binding protein 2 (ZPBP2) and several proteins containing BX7B motifs in human sperm may have hyaluronic acid binding or recognition properties. Molecular Human Reproduction, 23 (12). pp. 803-816. ISSN 1360-9947 https://doi.org/10.1093/molehr/gax053 (c) 2017, The Author. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. This is an author produced version of a paper published in Molecular Human Reproduction. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Draft Manuscript Submitted to MHR for Peer Review Draft Manuscript For Review.
    [Show full text]