GBE Sequence Diversity of Pan troglodytes Subspecies and the Impact of WFDC6 Selective Constraints in Reproductive Immunity Ze´lia Ferreira1,2,3,4,*,y, Belen Hurle1,y, Aida M. Andre´s5,WarrenW.Kretzschmar6, James C. Mullikin7, Praveen F. Cherukuri7, Pedro Cruz7, Mary Katherine Gonder8,AnneC.Stone9, Sarah Tishkoff10, Willie J. Swanson11, NISC Comparative Sequencing Program1,7, Eric D. Green1, Andrew G. Clark12,and Downloaded from Susana Seixas2 1National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 2Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal 3Department of Zoology and Anthropology, Faculty of Sciences, University of Porto, Porto, Portugal http://gbe.oxfordjournals.org/ 4Department of Computational and Systems Biology, University of Pittsburgh 5Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 6Genomic Medicine and Statistics, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom 7NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Rockville, MD 8Department of Biology, Drexel University 9School of Human Evolution and Social Change, Arizona State University 10Departments of Genetics and Biology, University of Pennsylvania at Max Planck Institut Fuer Evolutionaere Anthropologie on February 11, 2014 11Department of Genome Sciences, University of Washington 12Department of Biology of Molecular Biology and Genetics, Cornell University *Corresponding author: Department of Computational and Systems Biology, University of Pittsburgh. E-mail:
[email protected]. yThese authors contributed equally to this work. Accepted: December 2, 2013 Abstract Recent efforts have attempted to describe the population structure of common chimpanzee, focusing on four subspecies: Pan troglodytes verus, P.