The Genetic Architecture of Osteoarthritis: Insights from UK Biobank
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Annotation of Exon Skipping Event in Human Pora Kim1,*,†, Mengyuan Yang1,†,Keyiya2, Weiling Zhao1 and Xiaobo Zhou1,3,4,*
D896–D907 Nucleic Acids Research, 2020, Vol. 48, Database issue Published online 23 October 2019 doi: 10.1093/nar/gkz917 ExonSkipDB: functional annotation of exon skipping event in human Pora Kim1,*,†, Mengyuan Yang1,†,KeYiya2, Weiling Zhao1 and Xiaobo Zhou1,3,4,* 1School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA, 2College of Electronics and Information Engineering, Tongji University, Shanghai, China, 3McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA and 4School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA Received August 13, 2019; Revised September 21, 2019; Editorial Decision October 03, 2019; Accepted October 03, 2019 ABSTRACT been used as therapeutic targets (3–8). For example, MET has lost the binding site of E3 ubiquitin ligase CBL through Exon skipping (ES) is reported to be the most com- exon 14 skipping event (9), resulting in an enhanced expres- mon alternative splicing event due to loss of func- sion level of MET. MET amplification drives the prolifera- tional domains/sites or shifting of the open read- tion of tumor cells. Multiple tyrosine kinase inhibitors, such ing frame (ORF), leading to a variety of human dis- as crizotinib, cabozantinib and capmatinib, have been used eases and considered therapeutic targets. To date, to treat patients with MET exon 14 skipping (10). Another systematic and intensive annotations of ES events example is the dystrophin gene (DMD) in Duchenne mus- based on the skipped exon units in cancer and cular dystrophy (DMD), a progressive neuromuscular dis- normal tissues are not available. -
Genetic Variants on Chromosome 1Q41 Influence Ocular Axial Length and High Myopia
Genetic Variants on Chromosome 1q41 Influence Ocular Axial Length and High Myopia Qiao Fan1, Veluchamy A. Barathi2,3, Ching-Yu Cheng1,2,3, Xin Zhou1, Akira Meguro4, Isao Nakata5,6, Chiea-Chuen Khor2,7,8,9, Liang-Kee Goh1,10,11, Yi-Ju Li12,13, Wan’e Lim2, Candice E. H. Ho2, Felicia Hawthorne13, Yingfeng Zheng2, Daniel Chua2, Hidetoshi Inoko14, Kenji Yamashiro5, Kyoko Ohno- Matsui15, Keitaro Matsuo16, Fumihiko Matsuda6, Eranga Vithana2,3, Mark Seielstad17, Nobuhisa Mizuki4, Roger W. Beuerman2,3,10, E.-Shyong Tai1,18, Nagahisa Yoshimura5, Tin Aung2,3, Terri L. Young10,13, Tien-Yin Wong1,2,3,19, Yik-Ying Teo1,7,20,21.*, Seang-Mei Saw1,2,3,10,20.* 1 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore, 2 Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, 3 Department of Ophthalmology, National University of Singapore, Singapore, Singapore, 4 Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan, 5 Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan, 6 Center for Genomic Medicine and Inserm U.852, Kyoto University Graduate School of Medicine, Kyoto, Japan, 7 Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore, 8 Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore, 9 Department of Pediatrics, National University of Singapore, Singapore, Singapore, 10 Duke–National University of Singapore Graduate Medical School, Singapore, -
Noelia Díaz Blanco
Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr. -
CSE642 Final Version
Eindhoven University of Technology MASTER Dimensionality reduction of gene expression data Arts, S. Award date: 2018 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Eindhoven University of Technology MASTER THESIS Dimensionality Reduction of Gene Expression Data Author: S. (Sako) Arts Daily Supervisor: dr. V. (Vlado) Menkovski Graduation Committee: dr. V. (Vlado) Menkovski dr. D.C. (Decebal) Mocanu dr. N. (Nikolay) Yakovets May 16, 2018 v1.0 Abstract The focus of this thesis is dimensionality reduction of gene expression data. I propose and test a framework that deploys linear prediction algorithms resulting in a reduced set of selected genes relevant to a specified case. Abstract In cancer research there is a large need to automate parts of the process of diagnosis, this is mainly to reduce cost, make it faster and more accurate. -
Ohnologs in the Human Genome Are Dosage Balanced and Frequently Associated with Disease
Ohnologs in the human genome are dosage balanced and frequently associated with disease Takashi Makino1 and Aoife McLysaght2 Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland Edited by Michael Freeling, University of California, Berkeley, CA, and approved April 9, 2010 (received for review December 21, 2009) About 30% of protein-coding genes in the human genome are been duplicated by WGD, subsequent loss of individual genes related through two whole genome duplication (WGD) events. would result in a dosage imbalance due to insufficient gene Although WGD is often credited with great evolutionary impor- product, thus leading to biased retention of dosage-balanced tance, the processes governing the retention of these genes and ohnologs. In fact, evidence for preferential retention of dosage- their biological significance remain unclear. One increasingly pop- balanced genes after WGD is accumulating (4, 7, 11–20). Copy ular hypothesis is that dosage balance constraints are a major number variation [copy number polymorphism (CNV)] describes determinant of duplicate gene retention. We test this hypothesis population level polymorphism of small segmental duplications and show that WGD-duplicated genes (ohnologs) have rarely and is known to directly correlate with gene expression levels (21– experienced subsequent small-scale duplication (SSD) and are also 24). Thus, CNV of dosage-balanced genes is also expected to be refractory to copy number variation (CNV) in human populations deleterious. This model predicts that retained ohnologs should be and are thus likely to be sensitive to relative quantities (i.e., they are enriched for dosage-balanced genes that are resistant to sub- dosage-balanced). -
Association of WNT7B and RSPO1 with Axial Length in School Children
Genetics Association of WNT7B and RSPO1 with Axial Length in School Children Shi Yao Lu,1 Shu Min Tang,1,* Fen Fen Li,1 Ka Wai Kam,1,2 Pancy O.S. Tam,1 Wilson W.K. Yip,1,2 Alvin L. Young,1,2 Clement C. Tham,1–3 Chi Pui Pang,1 Jason C. Yam,1 and Li Jia Chen1,2 1Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China 2Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China 3Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China Correspondence: Jason C. Yam, PURPOSE. To evaluate the association between single-nucleotide polymorphisms (SNPs) in Department of Ophthalmology and the ZC3H11B, RSPO1, C3orf26, GJD2, ZNRF3,andWNT7B genes and myopia endophe- Visual Sciences, Hong Kong Eye notypes in children. Hospital, The Chinese University of Hong Kong, 147K, Argyle Street, METHODS. Seven SNPs identified in previous genome-wide association studies of axial Kowloon, Hong Kong; length (AL) were genotyped in 2883 Southern Han Chinese children. Multiple linear [email protected]. regression analyses were conducted to evaluate the genotype association with AL, spher- Li Jia Chen, Department of ical equivalent (SE), corneal curvature (CC), and central corneal thickness (CCT). Ophthalmology and Visual Sciences, = β = Hong Kong Eye Hospital, The RESULTS. Two SNPs—namely, rs12144790 in RSPO1 (allele T, P 0.0066, 0.062) –6 Chinese University of Hong Kong, and rs10453441 in WNT7B (allele A, P = 8.03 × 10 , β = 0.103)—were significantly 147K, Argyle Street, Kowloon, Hong associated with AL. -
2012/037456 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date - 22 March 2012 (22.03.2012) 2012/037456 Al (51) International Patent Classification: (74) Agents: RESNICK, David, S. et al; Nixon Peabody CI2Q 1/68 (2006.01) LLP, 100 Summer Street, Boston, MA 021 10 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US201 1/05 193 1 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 16 September 201 1 (16.09.201 1) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, 61/384,030 17 September 2010 (17.09.2010) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 61/429,965 5 January 201 1 (05.01 .201 1) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for all designated States except US): PRESI¬ DENT AND FELLOWS OF HARVARD COLLEGE (84) Designated States (unless otherwise indicated, for every [US/US]; 17 Quincy Street, Cambridge, MA 02138 (US). -
Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham a Thesis Submitted in Conformity
Characterizing Genomic Duplication in Autism Spectrum Disorder by Edward James Higginbotham A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Molecular Genetics University of Toronto © Copyright by Edward James Higginbotham 2020 i Abstract Characterizing Genomic Duplication in Autism Spectrum Disorder Edward James Higginbotham Master of Science Graduate Department of Molecular Genetics University of Toronto 2020 Duplication, the gain of additional copies of genomic material relative to its ancestral diploid state is yet to achieve full appreciation for its role in human traits and disease. Challenges include accurately genotyping, annotating, and characterizing the properties of duplications, and resolving duplication mechanisms. Whole genome sequencing, in principle, should enable accurate detection of duplications in a single experiment. This thesis makes use of the technology to catalogue disease relevant duplications in the genomes of 2,739 individuals with Autism Spectrum Disorder (ASD) who enrolled in the Autism Speaks MSSNG Project. Fine-mapping the breakpoint junctions of 259 ASD-relevant duplications identified 34 (13.1%) variants with complex genomic structures as well as tandem (193/259, 74.5%) and NAHR- mediated (6/259, 2.3%) duplications. As whole genome sequencing-based studies expand in scale and reach, a continued focus on generating high-quality, standardized duplication data will be prerequisite to addressing their associated biological mechanisms. ii Acknowledgements I thank Dr. Stephen Scherer for his leadership par excellence, his generosity, and for giving me a chance. I am grateful for his investment and the opportunities afforded me, from which I have learned and benefited. I would next thank Drs. -
Integrating Population Genomics and Medical Genetics for Understanding the Genetic Aetiology of Eye Traits
INTEGRATING POPULATION GENOMICS AND MEDICAL GENETICS FOR UNDERSTANDING THE GENETIC AETIOLOGY OF EYE TRAITS FAN QIAO (M.Sc. University of Minnesota) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSPHY SAW SWEE HOCK SCHOOL OF PUBLIC HEALTH NATIONAL UNIVERSITY OF SINGAPORE 2012 Acknowledgements I would like to express my sincerest gratitude to my supervisor, Prof. Yik- Ying Teo, for his guidance, patience and encouraging high standards in my work through this study. He spent hours reviewing my original manuscripts, gave constructive feedback and made detailed corrections. His support has been invaluable for me to write this doctoral thesis. I am also deeply grateful to my supervisor, Prof. Seang-Mei Saw, for her continuous support, suggestions and providing research resources for me to accomplish my work. Her passion in research and the determination to slow the myopic progression in children has influenced me greatly. My sincere thanks also go to Dr. Yi-Ju Li, who encouraged me to move a step forward in my career and broadened my research experience. Her unflinching courage confronting ill health will inspire me for my whole life. I am also thankful to Dr. Ching-Yu Cheng. The conversations with Ching-Yu were always valuable for me to understand the clinical relevance of ocular diseases. My thanks are also due to Dr. Chiea-Chuen Khor for his prompt comments in reviewing my papers and the insight provided. I also wish to thank Dr. Liang Kee Goh for providing the infrastructure to support me at the beginning of this research, and Prof. Terri L Young and Prof. -
Title Identification of Myopia-Associated WNT7B
Identification of myopia-associated WNT7B polymorphisms Title provides insights into the mechanism underlying the development of myopia.( Dissertation_全文 ) Author(s) Miyake, Masahiro Citation 京都大学 Issue Date 2015-09-24 URL https://doi.org/10.14989/doctor.k19266 許諾条件により本文は2015-11-01に公開; 許諾条件により Right 要旨は2015-10-01に公開 Type Thesis or Dissertation Textversion ETD Kyoto University 主論文 ARTICLE Received 23 Jun 2014 | Accepted 20 Feb 2015 | Published 31 Mar 2015 DOI: 10.1038/ncomms7689 Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia Masahiro Miyake1,2, Kenji Yamashiro1, Yasuharu Tabara2, Kenji Suda1, Satoshi Morooka1, Hideo Nakanishi1, Chiea-Chuen Khor3,4,5,6, Peng Chen3, Fan Qiao3, Isao Nakata1,2, Yumiko Akagi-Kurashige1,2, Norimoto Gotoh2, Akitaka Tsujikawa1, Akira Meguro7, Sentaro Kusuhara8, Ozen Polasek9, Caroline Hayward10, Alan F. Wright10, Harry Campbell11, Andrea J. Richardson12, Maria Schache12, Masaki Takeuchi7,13, David A. Mackey12,14, Alex W. Hewitt12, Gabriel Cuellar15, Yi Shi16, Luling Huang16, Zhenglin Yang16,17,18, Kim Hung Leung19, Patrick Y.P. Kao20, Maurice K.H. Yap20, Shea Ping Yip19, Muka Moriyama21, Kyoko Ohno-Matsui21, Nobuhisa Mizuki7, Stuart MacGregor15, Veronique Vitart10, Tin Aung4,22, Seang-Mei Saw3,4,22, E-Shyong Tai3,23,24, Tien Yin Wong4,21,22, Ching-Yu Cheng4,22,24, Paul N. Baird12, Ryo Yamada2, Fumihiko Matsuda2, Nagahama Study Group* & Nagahisa Yoshimura1 Myopia can cause severe visual impairment. Here, we report a two-stage genome-wide association study for three myopia-related traits in 9,804 Japanese individuals, which was extended with trans-ethnic replication in 2,674 Chinese and 2,690 Caucasian individuals. -
Morphology, Behavior, and the Sonic Hedgehog Pathway in Mouse Models of Down Syndrome
MORPHOLOGY, BEHAVIOR, AND THE SONIC HEDGEHOG PATHWAY IN MOUSE MODELS OF DOWN SYNDROME by Tara Dutka A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2014 © 2014 Tara Dutka All Rights Reserved Abstract Down Syndrome (DS) is caused by a triplication of human chromosome 21 (Hsa21). Ts65Dn, a mouse model of DS, contains a freely segregating extra chromosome consisting of the distal portion of mouse chromosome 16 (Mmu16), a region orthologous to part of Hsa21, and a non-Hsa21 orthologous region of mouse chromosome 17. All individuals with DS display some level of craniofacial dysmorphology, brain structural and functional changes, and cognitive impairment. Ts65Dn recapitulates these features of DS and aspects of each of these traits have been linked in Ts65Dn to a reduced response to Sonic Hedgehog (SHH) in trisomic cells. Dp(16)1Yey is a new mouse model of DS which has a direct duplication of the entire Hsa21 orthologous region of Mmu16. Dp(16)1Yey’s creators found similar behavioral deficits to those seen in Ts65Dn. We performed a quantitative investigation of the skull and brain of Dp(16)1Yey as compared to Ts65Dn and found that DS-like changes to brain and craniofacial morphology were similar in both models. Our results validate examination of the genetic basis for these phenotypes in Dp(16)1Yey mice and the genetic links for these phenotypes previously found in Ts65Dn , i.e., reduced response to SHH. Further, we hypothesized that if all trisomic cells show a reduced response to SHH, then up-regulation of the SHH pathway might ameliorate multiple phenotypes. -
A Machine Learning Model for Discovery of Protein Isoforms As Biomarkers
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2016 A Machine Learning Model for Discovery of Protein Isoforms as Biomarkers Manal Alshehri University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Alshehri, Manal, "A Machine Learning Model for Discovery of Protein Isoforms as Biomarkers" (2016). Electronic Theses and Dissertations. 5900. https://scholar.uwindsor.ca/etd/5900 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. A Machine Learning Model for Discovery of Protein Isoforms as Biomarkers By Manal Alshehri A Thesis Submitted to the Faculty of Graduate Studies through the School of Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2016 ©2016 Manal Alshehri A Machine Learning Model for Discovery of Protein Isoforms as Biomarkers by Manal Alshehri APPROVED BY: E.