EINLEITUNG 1 1.1 Das Nest 2 1.2 Freinistend (Definition) 3

Total Page:16

File Type:pdf, Size:1020Kb

EINLEITUNG 1 1.1 Das Nest 2 1.2 Freinistend (Definition) 3 Freinestbau von Ameisen (Hymenoptera: Formicidae) in der Kronenregion feuchttropischer Wälder Südostasiens Bestandsaufnahme und Phänologie, Ethoökologie und funktionelle Analyse des Nestbaus Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt im Fachbereich Biologie und Informatik der Johann Wolfgang Goethe-Universität in Frankfurt am Main von Andreas Weißflog aus Niederissigheim in Hessen Hanau am Main 2001 vom Fachbereich........................................................................................................................ der Johann Wolfgang Goethe - Universität (Frankfurt am Main) angenommen. Dekan:....................................................................................................................................................... Gutachter:.................................................................................................................................................. Datum der Disputation:.............................................................................................................................. Was dann nachher so schön fliegt, wie lange ist darauf rumgebrütet worden. Aus: Peter Rühmkorf. Drei Gedichte, Phönix voran!, Pavel Pán Presse Verlag. Inhaltsverzeichnis 1 EINLEITUNG 1 1.1 Das Nest 2 1.2 Freinistend (Definition) 3 1.2.1 Biwaknester 3 1.2.2 Seidennester 4 1.2.3 Kartonnester 5 1.3 Zielsetzung und Fragestellung 7 2 MATERIAL UND GENERELLE METHODEN 8 2.1 Bestandsaufnahme der aktiv freinestbauenden Ameisen in der Kronenregion 8 2.1.1 Lokalisierung von Nestanlagen 9 2.1.2 Sammeln der Tiere und der Nestanlagen 10 2.1.3 Bestimmung der Ameisen 11 2.1.4 Bestimmung der Trophobionten 11 2.1.5 Bestimmung der Pflanzen 11 2.2 Vergleichende Auswertung arborealer Nestanlagen 12 2.2.1 Nestposition und Nestsubstrat 12 2.2.2 Nestarchitektur und Nestausmaße 13 2.2.3 Funktionelle Aspekte 13 2.2.4 Zusammensetzung und Qualität von Nestmaterialien 15 2.2.4.1 Klebetest 16 2.3 Nestbauverhalten 18 2.3.1 Beobachtungen und Versuche im Freiland 18 2.4 Untersuchungsgebiete 20 2.4.1 Malaiische Halbinsel 21 2.4.2 Sumatra 22 2.4.3 Borneo (Sabah und Sarawak) 23 2.4.4 Philippinen (Palawan) 23 3 ERGEBNISSE UND SPEZIELLE METHODEN 24 3.1 Gesamtübersicht der freinestbauenden Ameisen 24 3.1.1 Kategorie Nestsubstrat 24 3.1.2 Kategorie Nestfunktion 26 3.1.3 Kategorie Nestmaterial 26 3.2 Andere arboreal nistende Ameisenarten 27 i Inhaltsverzeichnis 3.3 Biologie und Nestbau ausgewählter Arten 30 3.3.1 Polyrhachis 31 3.3.1.1 Artenverteilung, Nistverhalten und Beschreibung ausgewählter Nestbauten 31 3.3.1.2 Koloniegründungen 35 3.3.1.3 Beginn und Entwicklung eines Nestbaues 35 3.3.2 Camponotus (Karavaievia) 40 3.3.2.1 Trophobionten 40 3.3.2.2 Nestbeschreibungen ausgewählter Karavaievia-Arten 41 3.3.2.3 Koloniegründungen 44 3.3.3 Camponotus (Myrmotarsus) 48 3.3.3.1 Andere Formicinen in den Ameisengärten 49 3.3.3.2 Epiphyten in den Ameisengärten 50 3.3.3.3 Trophobionten 51 3.3.3.4 Wie ein Ameisengarten entsteht 51 3.3.3.4.1 Funktion der Pflanzen 51 3.3.3.4.2 Eintragen stickstoffreicher Insektenfragmente 54 3.3.3.4.3 Eintragen von Pflanzensamen 56 3.3.3.4.4 Nestbauverhalten 60 3.3.3.4.5 Nestentwicklung 62 3.3.4 Technomyrmex 68 3.3.4.1 Experimente zum Bauverhalten 73 3.3.4.1.1 Spezielle Methoden 74 3.3.4.1.2 Voraussetzungen für das Auslösen von Bauaktivität 74 3.3.4.1.3 Die Konstruktion eines neuen Nestes 75 3.3.4.2 Materialeigenschaften 81 3.3.4.3 Herkunft der Pilze und Pilzdüngung 81 3.3.4.4 Koloniegründung von Technomyrmex sp. 9 83 3.3.5 Dolichoderus 87 3.3.5.1 Experimente zum Bauverhalten 91 3.3.5.1.1 Spezielle Methoden 91 3.3.5.1.2 Voraussetzungen für das Auslösen von Bauaktivität 91 3.3.5.1.3 Die Konstruktion eines neuen Nestes 93 3.3.5.2 Materialeigenschaften 99 3.3.6 Myrmicaria 102 3.3.6.1 Experimente zum Bauverhalten 105 3.3.6.1.1 Spezielle Methoden 105 3.3.6.1.2 Voraussetzungen für das Auslösen von Bauaktivität 106 3.3.6.1.3 Die Konstruktion eines neuen Nestes 108 3.3.6.2 Materialeigenschaften 111 3.3.6.3 Koloniegründung 113 3.3.6.4 Entwicklung unterschiedlicher Nesttypen 113 3.3.7 Monomorium 118 3.3.7.1 Experimente zum Bauverhalten 121 3.3.7.1.1 Spezielle Methoden 122 3.3.7.1.2 Voraussetzungen für das Auslösen von Bauaktivität 122 3.3.7.1.3 Die Konstruktion eines neuen Nestes 122 3.3.7.2 Materialeigenschaften 126 3.3.8 Crematogaster 129 3.3.8.1 Experimente zum Bauverhalten 140 3.3.8.1.1 Spezielle Methoden 143 3.3.8.2 Crematogaster cf. artifex (Nesttyp I) 144 3.3.8.2.1 Voraussetzungen für das Auslösen von Bauaktivität 144 3.3.8.2.2 Die Konstruktion eines neuen Nestes 145 3.3.8.2.3 Materialeigenschaften 150 3.3.8.3 Crematogaster sp. 24 (Nesttyp II) 155 3.3.8.3.1 Voraussetzungen für das Auslösen von Bauaktivität 155 3.3.8.3.2 Die Konstruktion eines neuen Nestes 155 3.3.8.3.3 Materialeigenschaften 159 ii Inhaltsverzeichnis 4 DISKUSSION 163 4.1 Diversität, Abundanz und Struktur arborealer Ameisenzönosen 163 4.1.1 Nahrungsressourcen 166 4.1.2 Diversität von Nistressourcen 170 4.1.2.1 Nestverteilung und Nestfunktion 171 4.2 Das Nest 178 4.2.1 Substrattypen arborealer Ameisennester 181 4.2.1.1 Oberflächen von Blättern als Substrat 181 4.2.1.2 Oberflächen von Stämmen und Ästen als Substrat 184 4.2.2 Materialtypen arborealer Ameisennester 185 4.2.2.1 Nester aus pflanzlichen Materialien („Kartonnester“) 188 4.2.2.1.1 Myrmicaria arachnoides 189 4.2.2.1.2 Crematogaster cf. artifex 192 4.2.2.2 Pilznester 196 4.2.2.2.1 Pilznester unter Blättern (z. B. Technomyrmex sp. 9) 198 4.2.2.2.2 Pilznester am Stamm (z. B. Crematogaster sp. 24) 202 4.2.2.3 Seidennester 204 4.2.2.4 Trichomnester 209 4.2.2.5 Ameisengärten („Wurzelnester“) 211 4.2.2.5.1 Ameisengärten im Vergleich 214 4.2.2.5.2 Entstehung und Entwicklung eines Ameisengartens 216 4.2.2.5.3 Funktion der Pflanzen 218 4.2.2.5.4 Funktion der Ameisen 220 4.2.3 Nestarchitektur 222 4.2.4 Bearbeitungsmechanismen 225 4.3 Evolutionsbiologische Überlegungen und Ausblick 226 5 ZUSAMMENFASSUNG 230 6 LITERATUR 235 7 ANHANG 257 7.1 Abbildungsverzeichnis 257 7.2 Tabellenverzeichnis 259 7.3 Autoren- und Artenindex 260 7.4 Eigene Publikationen 265 7.5 Danksagung 266 7.6 Lebenslauf 267 7.7 Erklärung 268 iii 1 Einleitung 1 Einleitung Tropische Regenwälder gelten als die komplexesten Ökosysteme unserer Erde. Das herausragende Merkmal tropischer Lebensgemeinschaften ist die ungeheure Vielfalt der Lebensformen und Arten. Obwohl die tropischen Regenwälder entlang des Äquators gegenwärtig nur sieben Prozent der Landfläche der Erde bedecken, schätzt man, dass sie mindestens 50 Prozent aller Tier- und Pflanzenarten beherbergen, wahrscheinlich sogar einen noch viel höheren Anteil (MAY 1988, LINSENMAIR 1990, WILSON 1992b). Auf einer 50 ha großen Aufnahmefläche in Pasoh (West-Malaysia) wurden beispielsweise 830 verschiedene Baumarten gefunden. Diese Fläche repräsentiert 20–30 % der gesamten Baumflora des Landes (MANOKARAN et al. 1992). In ganz Europa nördlich der Alpen ist die Diversität der Bäume mit insgesamt 50 verschiedenen Arten dagegen vergleichsweise gering. Die weitaus meisten Tiere, die auf oder von den vielen verschiedenen Pflanzen leben, sind bis heute weder systematisch erfasst, geschweige denn in ihren ökologischen Funktionen untersucht worden. In den letzten Jahren sind insbesondere die arborealen Lebensräume in den Tropen verstärkt in das Zentrum ökologischen Interesses gerückt. Hochrechnungen, die auf der Basis von Benebelungen mit Insektiziden in der Kronenregion unternommen wurden, kamen zu Schätzungen, dass zwischen 5 und 30 Millionen Tierarten auf der Erde leben, die größte Zahl davon Insekten (ERWIN 1982, ERWIN 1983b, WILSON 1992a). Innerhalb der Insekten nehmen die Ameisen in vielerlei Hinsicht eine herausragende Stellung ein. In der Kronenregion feuchttropischer Tieflandregenwälder sind sie die nach Biomasse und Individuenzahl dominierende Tiergruppe (TOBIN 1995, FLOREN & LINSENMAIR 1997). Weltweit sind etwa 8 000 Arten beschrieben, dazu kommt wahrscheinlich noch einmal mehr als die doppelte Anzahl unbeschriebener Arten, vornehmlich aus den Tropenregionen (WILSON 1987b, BOLTON 1995). Die Vielfalt der bei den Ameisen realisierten Lebensformen ist enorm und übertrifft die jeder anderen sozialen Insektengruppe. Ameisen sind die wichtigsten Prädatoren in den Tropen, die den Bestand anderer Arthropoden regulieren (DARLINGTON 1971, VIEIRA & HÖFER 1994). Wie der Vergleich mit anderen, evolutiv weniger erfolgreichen staatenbildenden Insekten zeigt, ist ihr großer biologischer Erfolg nicht nur auf die für die meisten Ameisen charakteristische eusoziale Lebensweise zurückzuführen. Insbesondere die mannigfaltigen nichtprädatorischen Beziehungen, die Ameisen zu anderen Organismen unterhalten, sind verantwortlich für ihre herausragende ökologische Bedeutung. Durch enge Symbiosen mit Pflanzensaft saugenden Insekten konnten sich die ursprünglich rein karnivoren Ameisen neue Nahrungsressourcen erschließen. Honigtau, der Kot von Pflanzenläusen und Zikaden, liefert eine stark zuckerhaltige, energiereiche Nahrungsquelle. Dieser Honigtau wird von den Ameisen gesammelt und spielt für die Ernährung, vor allem bei Ameisen aus den Unterfamilien der Myrmicinae, Formicinae und Dolichoderinae, eine außerordentlich große Rolle (WAY 1963, KÖRNER 1981). Die Symbiosepartner erhalten im Gegenzug in vielen Fällen Schutz vor Prädatoren und Parasitoiden (MASCHWITZ 1992). Viele Pflanzen stellen Nahrung in Form von extrafloralem Nektar oder nährstoffreichen Futterkörperchen exklusiv für Ameisen zur Verfügung (FIALA & MASCHWITZ 1991, 1992). 1 1 Einleitung, 1.1
Recommended publications
  • Occurrence and Molecular Phylogeny of Honey Bee Viruses in Vespids
    viruses Article Occurrence and Molecular Phylogeny of Honey Bee Viruses in Vespids 1,2, 3, 4, 5, 5, Sa Yang y, Philippe Gayral y, Hongxia Zhao y, Yaojun Wu y, Xuejian Jiang y, 1,2 3, 1,2 1,2 3 Yanyan Wu , Diane Bigot z, Xinling Wang , Dahe Yang , Elisabeth A. Herniou , 1,2 1,2 1,2 3, , 1,2, , Shuai Deng , Fei Li , Qingyun Diao , Eric Darrouzet * y and Chunsheng Hou * y 1 Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; [email protected] (S.Y.); [email protected] (Y.W.); [email protected] (X.W.); [email protected] (D.Y.); [email protected] (S.D.); [email protected] (F.L.); [email protected] (Q.D.) 2 Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, China 3 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, F-37200 Tours, France; [email protected] (P.G.); [email protected] (D.B.); [email protected] (E.A.H.) 4 Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou 510260, China; [email protected] 5 Institute of Forestry Protection, Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, China; [email protected] (Y.W.); [email protected] (X.J.) * Correspondence: [email protected] (E.D.); [email protected] (C.H.); Tel.: +33-(0)2-47-36-71-60 (E.D.); +86-1062597285 (C.H.) These authors contributed equally to this work.
    [Show full text]
  • Insecta: Hymenoptera: Vespidae: Vespinae) Based on the Material of the Naturhistorisches Museum Wien (Austria)
    ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien, B 114 27–35 Wien, Oktober 2012 Notes on the genus Provespa ASHMEAD, 1903 (Insecta: Hymenoptera: Vespidae: Vespinae) based on the material of the Naturhistorisches Museum Wien (Austria) M. Madl* Abstract An annotated catalogue of the genus Provespa ASHMEAD, 1903 is provided. New records are dealt with from Brunei, China, Indonesia, Malaysia, Myanmar and Thailand. Key words: Vespidae, Vespinae, Provespa, catalogue, new records, Brunei, China, Indonesia, Malaysia, Myanmar, Thailand, Oriental Region. Zusammenfassung Eine kommentierte Artenliste der Gattung Provespa ASHMEAD, 1903 wird vorgelegt. Neue Funddaten von Brunei, China, Indonesien, Malaysia, Myanmar und Thailand werden mitgeteilt. Introduction Currently the small subfamily Vespinae consists of four extant genera: Dolichovespula ROHWER, 1916, Provespa ASHMEAD, 1903, Vespa LINNAEUS, 1758, and Vespula THOMSON, 1869 (CARPENTER & KOJIMA 1997). The genus Provespa, which contains only three spe- cies, is restricted to the Oriental Region and occurs from India (East Himalayas) via southern China to Vietnam and via the Malaysian Peninsula to Sumatra, West-Java and Borneo including nearby smaller islands. There are occasional records from Sulawesi, but an established occurrence is still doubtful. Species of the genus Provespa can be easily recognized by their yellow-brown body colour and the enlarged ocelli. They are nocturnal in their habits and new colonies are founded by swarming. The larvae and pupae of Provespa species are consumed by people in China and Indonesia. In Indonesia Provespa anomala (DE SAUSSURE, 1854) is known as edible insect from Sumatra (VAN DER MEER MOHR 1941) and Kalimantan (CHUNG 2010) and Provespa nocturna VAN DER VECHT, 1935 from Sumatra (VAN DER MEER MOHR 1941).
    [Show full text]
  • The Asian Giant Hornet—What the Public and Beekeepers Need to Know
    THE ASIAN GIANT HORNET—WHAT THE PUBLIC AND BEEKEEPERS NEED TO KNOW Introduction The Asian giant hornet (AGH) or Japanese giant hornet, Vespa mandarinia, recently found in British Columbia, Canada, (B. C. Ministry of Agriculture 2019) and in Washington State (McGann 2019), poses a significant threat to European honey bee (EHB), Apis mellifera, colonies and is a public health issue. The AGH is the world’s largest species of hornet (Figure 1; Ono et al. 2003), native to temperate and tropical low mountains and forests of eastern Asia (Matsuura 1991). It appears the hornet is well adapted to conditions in the Pacific Northwest. If this hornet becomes established, it will have a severe and damaging impact on the honey bee population, the beekeeping industry, the environment, public health, and the economy. It is critical that we identify, trap, and attempt to eliminate this new pest before it becomes established and widespread. Attempts to Figure 1. Asian giant hornet macerating a honey bee into a meat ball for contain the spread and eradication of this invasive insect will be transport back to the nest. (Photo courtesy of Scott Camazine.) most effective by trapping queens during early spring before their nests become established. Another strategy is to locate and destroy nests prior to development of virgin queens and drones Impact on Honey Bees in the late summer and fall. This invasive hornet is a voracious predator of EHBs late in the It is critical that surveying and trapping occur before the fall season (late summer to early fall). Honey bee colonies provide a reproductive and dispersal phase of the hornet.
    [Show full text]
  • Phylogenetic Analysis and Biogeography of the Nocturnal Hornets, Provespa (Insecta: Hymenoptera: Vespidae: Vespinae)
    Species Diversity, 2011, 16, 65–74 Phylogenetic Analysis and Biogeography of the Nocturnal Hornets, Provespa (Insecta: Hymenoptera: Vespidae: Vespinae) Fuki Saito1,2 and Jun-ichi Kojima2 1 Postdoctoral Fellow of the Japan Society for the Promotion of Science E-mail: [email protected] 2 Natural History Laboratory, Faculty of Science, Ibaraki University, Mito, 310-8512 Japan (Received 30 March 2010; Accepted 21 September 2010) Relationships among the three species of nocturnal hornet of the genus Provespa Ashmead, 1903 are cladistically analyzed based on adult morpho- logical characters and mitochondrial DNA sequence data. Monophyly of Provespa is supported and the species relationships are expressed as (P. barthelemyiϩ(P. anomalaϩP. nocturna)). Provespa barthelemyi (Du Buysson, 1905) is distributed mainly in the southeastern part of the Asian continent from eastern India to Indochina, while P. nocturna Vecht, 1935 and P. anomala (Saussure, 1854) occur mainly in Sumatra, Borneo, and the southern part of the Malay Peninsula. The speciation and biogeography of Provespa are briefly discussed, with reference to a supposed vicariance event around the Isthmus of Kra. Key Words: Vespidae, Vespinae, Provespa, phylogeny, biogeography, South- east Asia. Introduction Wasps of the vespine genus Provespa Ashmead, 1903 are nocturnal and found new colonies as a swarm of workers accompanied by a single queen (Matsuura 1991). This genus, consisting of the three species P. anomala (Saussure, 1854), P. barthelemyi (Du Buysson, 1905), and P. nocturna Vecht, 1935, is distributed in southern Asia from eastern India in the west, through Indochina and southern China, to Sumatra, Borneo, and Java in the east. Archer (2000) analyzed three morphological characters (apex of the aedeagus, tyloides of the male antenna, and anterior margin of the clypeus) of the three species of Provespa and proposed on this basis that the relationship among them could be expressed as (P.
    [Show full text]
  • The Insect Sting Pain Scale: How the Pain and Lethality of Ant, Wasp, and Bee Venoms Can Guide the Way for Human Benefit
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2019 1 (Article): Special Issue: "Arthropod Venom Components and their Potential Usage" 2 The Insect Sting Pain Scale: How the Pain and Lethality of Ant, 3 Wasp, and Bee Venoms Can Guide the Way for Human Benefit 4 Justin O. Schmidt 5 Southwestern Biological Institute, 1961 W. Brichta Dr., Tucson, AZ 85745, USA 6 Correspondence: [email protected]; Tel.: 1-520-884-9345 7 Received: date; Accepted: date; Published: date 8 9 Abstract: Pain is a natural bioassay for detecting and quantifying biological activities of venoms. The 10 painfulness of stings delivered by ants, wasps, and bees can be easily measured in the field or lab using the 11 stinging insect pain scale that rates the pain intensity from 1 to 4, with 1 being minor pain, and 4 being extreme, 12 debilitating, excruciating pain. The painfulness of stings of 96 species of stinging insects and the lethalities of 13 the venoms of 90 species was determined and utilized for pinpointing future promising directions for 14 investigating venoms having pharmaceutically active principles that could benefit humanity. The findings 15 suggest several under- or unexplored insect venoms worthy of future investigations, including: those that have 16 exceedingly painful venoms, yet with extremely low lethality – tarantula hawk wasps (Pepsis) and velvet ants 17 (Mutillidae); those that have extremely lethal venoms, yet induce very little pain – the ants, Daceton and 18 Tetraponera; and those that have venomous stings and are both painful and lethal – the ants Pogonomyrmex, 19 Paraponera, Myrmecia, Neoponera, and the social wasps Synoeca, Agelaia, and Brachygastra.
    [Show full text]
  • Download PDF File (32KB)
    Myrmecological News 21 Digital supplementary material Digital supplementary material to PEETERS , C. & ITO , F. 2015: Wingless and dwarf workers underlie the ecological suc- cess of ants (Hymenoptera: Formicidae) . – Myrmecological News 21: 117-130. Appendix S1. List of 286 ant genera in which head width of workers was measured (maximum width of head capsule excluding eyes, in full-face view), as well as 21 eusocial bees and 25 eusocial wasps for which data were obtained in the literature. Species for which results are not indicated have worker heads wider than 1 mm, i.e., there are no "dwarf" workers. All data are summarized in Fig. 2. * measured from photographs available on www.antweb.org FORMICIDAE Aenictus sp. < 0.5 mm (see BOLTON 2015) Asphinctanilloides amazona* < 0.5 mm Cerapachys sp. < 0.5 mm Agroecomyrmecinae Cylindromyrmex brevitarsus* < 1 mm Ankylomyrma coronacantha* Dorylus laevigatus < 1 mm Tatuidris tatusia* Eciton sp. Labidus spininodis* < 1 mm Amblyoponinae Leptanilloides biconstricta* < 0.5 mm Adetomyrma caputleae* < 1 mm Neivamyrmex sp. cr01 * < 0.5 mm Amblyopone australis < 1 mm Nomamyrmex esenbeckii* < 1 mm Apomyrma stygia* < 0.5 mm Simopone occulta* < 1 mm Bannapone scrobiceps* < 1 mm Sphinctomyrmex cribratus* < 0.5 mm Concoctio concenta* < 0.5 mm Tanipone aversa* < 1 mm Myopopone castanea Vicinopone conciliatrix* < 0.5 mm Mystrium camillae < 0.5 mm Onychomyrmex hedleyi < 0.5 mm Ectatomminae Opamyrma hungvuong* < 0.5 mm Ectatomma sp. Prionopelta kraepelini < 0.5 mm Gnamptogenys cribrata < 1 mm Stigmatomma besucheti* < 0.5 mm Rhytidoponera sp. < 1 mm Xymmer sp. mg03 * < 0.5 mm Typhlomyrmex pusillus* < 0.5 mm Aneuretinae Formicinae Aneuretus simoni* < 0.5 mm Acanthomyops sp.
    [Show full text]
  • Phylogenetic Relationships and Classification of the Vespinae (Hymenoptera: Vespidae)·
    Systematic Entomology (1987) 12, 413-431 Phylogenetic relationships and classification of the Vespinae (Hymenoptera: Vespidae)· JAMES M. CARPENTER Museum of Comparative Zoology, Harvard University,'! Cambridge, Massachusetts, U.S.A. ABSTRACT. The phylogenetic relationships of the genera, subgenera and species-groups ofthe Vespinae are analysed using cladistic techniques. The results are used as the basis for a natural classification of these wasps. The cladogram for the four genera recognized is: Vespa + .cProvespa + (Dolichovespula + Vespula)). No subgenera are recognized; all those previously described are synonymized with the appropriate genus. The . synonymies of Nyctovespa with Vespa and Rugovespula with Vespula are new. Introduction Nomenclature. More serious is the lack of a comprehensive phylogenetic system. As a The yellowjack6ts and hornets are the· most result, paraphyletic taxa are in use, and much­ familiar of wasps. Almost ubiquitous through­ discussion of the evolutionary development of out the north temperate regions and oriental behaviour is misplaced. Without differentiation tropics, they are generally recognized - and of features into derived and primitive states, feared - by layrrmh. The history of human disputes ongroupings and evolutionary develop­ knowledge of these wasps is ancient (cf. Sprad­ ment are unresolvable (cf. Yamane, 1976; bery, 1973; Edwards, 1980). The fascination Greene, 1979; Matsuura & Yamane, 1984; Mac­ engendered by their eusocial behaviour is also Donald & Matthews, 1975, 1984). The present ancient, and so they are the subject of an ever­ work is intended to redress this situation, by burgeoning number of behavioural studies. In providing the first comprehensive cladistic treat­ addition to social organization, considerable ment of supraspecific taxa in the Vespinae. current interest is focused on aspects of venom chemistry, economic injury and biological con­ trol potential (e.g.
    [Show full text]
  • ANALYSIS of Provespa Barthelemyi VENOM and EVALUATION for ANTICANCER, ANTIBACTERIAL ACTIVITIES of the PURIFIED TOXINS Upasana Medhi* and H
    Current Trends in Pharmaceutical Research, 2020 Vol 7 Issue 2 © Dibrugarh University www.dibru.ac.in/ctpr ISSN: 2319-4820 (Print) 2582-4783 (Online) Short Communication ANALYSIS OF Provespa barthelemyi VENOM AND EVALUATION FOR ANTICANCER, ANTIBACTERIAL ACTIVITIES OF THE PURIFIED TOXINS Upasana Medhi* and H. K. Sharma Centre for Biotechnology and Bioinformatics, Faculty of Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh- 786004, Assam, India. Abstract Background: The venom of wasp contains various biological activities. It is a potentially important drug. It is a mixture of several hundred different components and lethal toxins. Due to their presence, the venom shows potent antimicrobial, antifungal and antioxidant activity which can be used in the treatment of different infectious diseases. The consideration of the use of wasp venom is increasing nowadays. Objectives: The present study is an attempt to analyze the venom of Provespa barthelemyi and to check whether the toxin has any anticancer, antibacterial activity, or not. Materials and Method: Live Provespa barthelemyi species were collected and the venom was extracted for further experiment. For total protein concentration, Lowry’s method was used. For the antibacterial activity, theagar disc diffusion method was considered. The evaluation of anticancer activity, the process is undergoing. Result and Discussion: Fromthecurrent study, it was found that the amount of venom extracted from 10 samples is approximately 0.5 ml- 0.6 ml. The protein concentration of one sample was found to be 0.18 µg/µl. As for antibacterial activity, the venom shows some activity against E. coli. Anticancer activity is still undergoing. Conclusion: The finding shows the protein content of the venom may have some antibacterial activity and if the venom extract has any anticancer activity, it would be a valuable addition to the medical field.
    [Show full text]
  • Archiv Für Naturgeschichte
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Hymenoptera für 1903. Bearbeitet von Dr. Robert Lucas in Rixdorf bei Berlin. A. Publikationen (Autoren alphabetisch) mit Referaten. Abonvi, S. Ahäzi meh (Apis mellifica L.) belcsövenek alak es elet tani leiräsa. Allatt Kozl. 1903. p. 137—168, pls. XI—XIV. Adlerz, Cottfrid (1). Ceropales maculata Fab. en parasitisk Pompilid. Bih. svenska Vet.-Akad. Handl. Bd. 28. Afd. 4. No. 14. 20 pp. Adlerz hat Gelegenheit gehabt Ceropales unter so günstigen Umständen zu beobachten, daß er bisher noch nicht bekannte Auf- schlüsse geben kann über den Platz des Ceropales-Eies, über das Ver- hältnis, in welchem die Ceropaleslarve zur Pompiluslarve steht u. eine Erklärung für die absonderliche Bildung des letzten Bauchringes des Ceropales-Weibchens. Die Angaben dienen teils zur Bestätigung, teils zur Vervollständigung der Mitteilungen Ferton's. Das Ceropales-Weibchen lauert auf den mit der Spinne an- kommenden Pompilus, der eine Ahnung von den Absichten des Gegners hat. Oft mit großer Heftigkeit stürzt C. auf die Spinne zu, u. legt, falls es ihm gelingt den P. zu vertreiben, sein Ei an dieselbe ab, an einen ganz besonderen Ort, nämlich in die spaltenförmigen Stigmen, welche in die Lungensäckchen führen. Es wurde auch be- obachtet, daß das Weibchen vor Ungeduld nachsah, wie weit der P. mit seiner Höhle fertig ist, um eine Beutespinne zu holen. Durch die Art des Versteckens ist das Ei vollständig gegen Insulte beim Transport der Spinne gesichert. Zuweilen wurden 2 Eier abgelegt, in jede Tasche eins. Der als kurze, platte, abgestutzte Stachelscheide umgeformte letzte Bauchring des C. -Weibchens hat offenbar seine Form den schmal spaltenförmigen Stigmen der Spinne angepaßt.
    [Show full text]
  • Checklist of the Species in the Subfamily Vespinae (Insecta: Hymenoptera: Vespidae)
    Nat. Hist. Bull. 1baraki Univ. 1:51-92, 1997 Checklist of the species in the subfamily Vespinae (Insecta: Hymenoptera: Vespidae) James M. Carpenter1 and Jun-ichi Kojima2 IDepartment ofEntomology, American Museum ofNatural History, Central Park West at 79th Street, New York, NY 10024, U. S. A. 2Naiitral History Laboratory, Faculty ofScience, Ibaraki University, Mito 310, Japan Abstract A checklist of the species in the subfamily Vespinae is presented, including synonyms and distributional summaries. Sixty-seven extant species in four genera are treated as valid, with an additional ten fossil species listed. No subspecies are recognized. Lamarck (1801) did not designate Vespa crabro Linnaeus as the type species· of the genus Vespa. However, Latreille's (1810) designation of the same species is the first valid one, therefore existing generic nomenclature need not be disturbed. The following nomenclatural change is made: Vespa variabilis du ·Buysson, 1905, is a junior primary homonym of Vespa variabilis Fabricius, 1781. It is replaced by Vespa variabilis jumida van der Vecht, 1959, which is elevated to species rank, NEW STATUS. The lectotype of Vespa annulata Smith, 1858, is designated. Key words Hymenoptera, Vespidae, Vespinae, Vespa, checklist Introduction In recent years, several checklists of hornets and yel10wjackets (Vespinae) have been published (Edwards, 1980; Matsuura and Yamane, 1984, 1990; Archer, 1989). Their usefulness as taxonomic tools is quite limited however. Matsuura and Yamane's and Archer's lists include summaries of distributional data, but otherwise all four lists consist of no more than names, authors and the year of publication. The original publications are not cited at all, the minimal requirement for utility in taxonomic research.
    [Show full text]
  • Edible Forests Insect
    Forest insects as food: humans bite back / Proceedings of a workshop on Asia-Pacific resources and their potential for development RAP PUBLICATION 2010/02 Forest insects as food: humans bite back Proceedings of a workshop on Asia-Pacific resources and their potential for development 19-21 February 2008, Chiang Mai, Thailand Edited by Patrick B. Durst, Dennis V. Johnson, Robin N. Leslie and Kenichi Shono FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REGIONAL OFFICE FOR ASIA AND THE PACIFIC Bangkok, Thailand 2010 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. ISBN 978-92-5-106488-7 All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial users will be authorized free of charge. Repro- duction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials and all other queries on rights and licenses, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge, Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. © FAO 2010 Cover design: Chanida Chavanich For copies of the report, write to: Patrick B. Durst Senior Forestry Officer FAO Regional Office for Asia and the Pacific 39 Phra Atit Road Bangkok 10200 Thailand Tel: (66-2) 697 4000 Fax: (66-2) 697 4445 E-mail: [email protected] Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific Bangkok, Thailand ii Foreword In this fast-paced modern world, it is sometimes easy to lose sight of valuable traditional knowledge and practices.
    [Show full text]
  • Hornets (Hymenoptera: Vespinae) of Malaysia
    Malayan Nature Journal 1995, 49: 71-82 Hornets (Hymenoptera: Vespinae) of Malaysia s. J. MARTINI Abstract: The general biology and distribution of the seyen species of hornets (Vespa)and three species of nocturnal hornets (Provespa)found in Malaysia are given. A key ~nd plate should aid the rapid identification of all species occurring in Malaysia. INTRODUCTION The hornets (Vespaand Provespa)are a group of well known, conspicuous insects which are found predominantly in Eastern Asia. All hornets possess painful stings (only female hornets sting) which can be fatal to people especially to the young or old. Despite their bright warning colouration and large size, hornets still remain a little studied group. Malaysia has a rich hornet fauna with seven of the 23 species of Vespaand all three species of Provespa.Despite this, there is very little information readily available to either the amateur or professional entomologist about the hornets of tropical regions. Since the works of Bequaert (1936,1939) and van der Vetch (1957) there has been little published on the Vespinae of the Malaysian region. It is the aim of this publication to present up-to-date information for each of the Malaysian species along with an easy guide to identify all the species. It is hoped this will tempt workers into this exciting area of research. It must be stressed that all material collected should be fully labelled with the date and collection locality; other information such as altitude and habitat type are always useful. Malaysia is referred to as Peninsular Malaysia and East Malaysia (Sabah & Sarawak [Borneo]).
    [Show full text]