ACG Newsletter Seeks to Highlight Published Observational Results Which Seem Anomalous in Terms of the ΛCDM Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Dusty, Normal Galaxy in the Epoch of Reionization
A dusty, normal galaxy in the epoch of reionization Darach Watson1, Lise Christensen1, Kirsten Kraiberg Knudsen2, Johan Richard3, Anna Gallazzi4,1, and Michał Jerzy Michałowski5 Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-UV imaging1. But it has proved difficult for existing spectrographs to characterise them in the UV2,3,4. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at z = 3.25, and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at this early epoch6,7,8. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5±0.2 from a spectroscopic detection of the Lyα break. A1689-zD1 is representative of the star-forming population during reionisation9, with a total star- –1 formation rate of about 12 M yr . The galaxy is highly evolved: it has a large stellar mass, and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7, in spite of the very short time since they first appeared. -
The Large Scale Universe As a Quasi Quantum White Hole
International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience. -
Modeling and Interpretation of the Ultraviolet Spectral Energy Distributions of Primeval Galaxies
Ecole´ Doctorale d'Astronomie et Astrophysique d'^Ile-de-France UNIVERSITE´ PARIS VI - PIERRE & MARIE CURIE DOCTORATE THESIS to obtain the title of Doctor of the University of Pierre & Marie Curie in Astrophysics Presented by Alba Vidal Garc´ıa Modeling and interpretation of the ultraviolet spectral energy distributions of primeval galaxies Thesis Advisor: St´ephane Charlot prepared at Institut d'Astrophysique de Paris, CNRS (UMR 7095), Universit´ePierre & Marie Curie (Paris VI) with financial support from the European Research Council grant `ERC NEOGAL' Composition of the jury Reviewers: Alessandro Bressan - SISSA, Trieste, Italy Rosa Gonzalez´ Delgado - IAA (CSIC), Granada, Spain Advisor: St´ephane Charlot - IAP, Paris, France President: Patrick Boisse´ - IAP, Paris, France Examinators: Jeremy Blaizot - CRAL, Observatoire de Lyon, France Vianney Lebouteiller - CEA, Saclay, France Dedicatoria v Contents Abstract vii R´esum´e ix 1 Introduction 3 1.1 Historical context . .4 1.2 Early epochs of the Universe . .5 1.3 Galaxytypes ......................................6 1.4 Components of a Galaxy . .8 1.4.1 Classification of stars . .9 1.4.2 The ISM: components and phases . .9 1.4.3 Physical processes in the ISM . 12 1.5 Chemical content of a galaxy . 17 1.6 Galaxy spectral energy distributions . 17 1.7 Future observing facilities . 19 1.8 Outline ......................................... 20 2 Modeling spectral energy distributions of galaxies 23 2.1 Stellar emission . 24 2.1.1 Stellar population synthesis codes . 24 2.1.2 Evolutionary tracks . 25 2.1.3 IMF . 29 2.1.4 Stellar spectral libraries . 30 2.2 Absorption and emission in the ISM . 31 2.2.1 Photoionization code: CLOUDY ....................... -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
A RADIO RELIC and a SEARCH for the CENTRAL BLACK HOLE in the ABELL 2261 BRIGHTEST CLUSTER GALAXY Sarah Burke-Spolaor1,2,3,4 Kayhan Gultekin¨ 5, Marc Postman6, Tod R
Faculty Scholarship 2017 A Radio Relic And A Search For The eC ntral Black Hole In The Abell 2261 Brightest Cluster Galaxy Sarah Burke-Spolaor Kayhan Gültekin Marc Postman Tod R. Lauer Joanna M. Taylor See next page for additional authors Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Digital Commons Citation Burke-Spolaor, Sarah; Gültekin, Kayhan; Postman, Marc; Lauer, Tod R.; Taylor, Joanna M.; Lazio, T. Joseph W.; and Moustakas, Leonidas A., "A Radio Relic And A Search For The eC ntral Black Hole In The Abell 2261 Brightest Cluster Galaxy" (2017). Faculty Scholarship. 448. https://researchrepository.wvu.edu/faculty_publications/448 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Authors Sarah Burke-Spolaor, Kayhan Gültekin, Marc Postman, Tod R. Lauer, Joanna M. Taylor, T. Joseph W. Lazio, and Leonidas A. Moustakas This article is available at The Research Repository @ WVU: https://researchrepository.wvu.edu/faculty_publications/448 Draft version September 5, 2018 Preprint typeset using LATEX style emulateapj v. 12/16/11 A RADIO RELIC AND A SEARCH FOR THE CENTRAL BLACK HOLE IN THE ABELL 2261 BRIGHTEST CLUSTER GALAXY Sarah Burke-Spolaor1,2,3,4 Kayhan Gultekin¨ 5, Marc Postman6, Tod R. Lauer7, Joanna M. Taylor6, T. Joseph W. Lazio8, and Leonidas A. Moustakas8 Draft version September 5, 2018 ABSTRACT We present VLA images and HST/STIS spectra of sources within the center of the brightest cluster galaxy (BCG) in Abell 2261. -
Aaron J. Romanowsky Curriculum Vitae (Rev. 1 Septembert 2021) Contact Information: Department of Physics & Astronomy San
Aaron J. Romanowsky Curriculum Vitae (Rev. 1 Septembert 2021) Contact information: Department of Physics & Astronomy +1-408-924-5225 (office) San Jose´ State University +1-409-924-2917 (FAX) One Washington Square [email protected] San Jose, CA 95192 U.S.A. http://www.sjsu.edu/people/aaron.romanowsky/ University of California Observatories +1-831-459-3840 (office) 1156 High Street +1-831-426-3115 (FAX) Santa Cruz, CA 95064 [email protected] U.S.A. http://www.ucolick.org/%7Eromanow/ Main research interests: galaxy formation and dynamics – dark matter – star clusters Education: Ph.D. Astronomy, Harvard University Nov. 1999 supervisor: Christopher Kochanek, “The Structure and Dynamics of Galaxies” M.A. Astronomy, Harvard University June 1996 B.S. Physics with High Honors, June 1994 College of Creative Studies, University of California, Santa Barbara Employment: Professor, Department of Physics & Astronomy, Aug. 2020 – present San Jose´ State University Associate Professor, Department of Physics & Astronomy, Aug. 2016 – Aug. 2020 San Jose´ State University Assistant Professor, Department of Physics & Astronomy, Aug. 2012 – Aug. 2016 San Jose´ State University Research Associate, University of California Observatories, Santa Cruz Oct. 2012 – present Associate Specialist, University of California Observatories, Santa Cruz July 2007 – Sep. 2012 Researcher in Astronomy, Department of Physics, Oct. 2004 – June 2007 University of Concepcion´ Visiting Adjunct Professor, Faculty of Astronomical and May 2005 Geophysical Sciences, National University of La Plata Postdoctoral Research Fellow, School of Physics and Astronomy, June 2002 – Oct. 2004 University of Nottingham Postdoctoral Fellow, Kapteyn Astronomical Institute, Oct. 1999 – May 2002 Rijksuniversiteit Groningen Research Fellow, Harvard-Smithsonian Center for Astrophysics June 1994 – Oct. -
The Early Universe Transcript
The Early Universe Transcript Date: Wednesday, 4 February 2015 - 1:00PM Location: Museum of London 04 February 2015 The Early Universe Professor Carolin Crawford In my previous lectures I have discussed both the earliest glimpse of the Universe available to us, the cosmic microwave background, and the wide variety of astronomical sources that we observe all around us in the present day. Today’s talk is an attempt to join the dots between these two extremes: how do we move from an almost completely smooth distribution of matter when Universe was only 380,000 years old, to the complexity of stars, planets, gas clouds, galaxies and even larger scale structure? Galaxies don’t just simply appear shortly after the Big Bang, but they take tens of millions of years (at least) to form; and then they continue to change and evolve. Today’s topic is observational cosmology – the study of the most remote parts of the cosmos. This is a major growth area in astrophysics, where huge advances in our understanding have been made over the last 15-20 years, primarily due to cutting-edge advances in the design of the telescopes and their adaptive optics. What was this very early Universe like? What happened after the release of the cosmic microwave background light? What did the very first stars and the first galaxies look like? And what do they tell us about the history of galaxies like our own? Recombination Immediately after the Big Bang, the Universe was extremely hot and dense. After 380,000 years, it had expanded and cooled sufficiently for the elementary particles to join together and form the very first atoms. -
Arxiv:2009.10092V2 [Astro-Ph.GA] 3 Dec 2020
DRAFT VERSION DECEMBER 4, 2020 Typeset using LATEX twocolumn style in AASTeX62 Texas Spectroscopic Search for Lyα Emission at the End of Reionization. III. the Lyα Equivalent-width Distribution and Ionized Structures at z > 7 INTAE JUNG,1, 2, 3, 4 STEVEN L. FINKELSTEIN,4 MARK DICKINSON,5 TAYLOR A. HUTCHISON,6, 7 REBECCA L. LARSON,4 CASEY PAPOVICH,6, 7 LAURA PENTERICCI,8 AMBER N. STRAUGHN,1 YICHENG GUO,9 SANGEETA MALHOTRA,1, 10 JAMES RHOADS,1, 10 MIMI SONG,11 VITHAL TILVI,10 AND ISAK WOLD1 1Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771, USA 2Department of Physics, The Catholic University of America, Washington, DC 20064, USA 3Center for Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, MD 20771 4Department of Astronomy, The University of Texas at Austin, Austin, TX 78712, USA 5NSF’s National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ 85719, USA 6Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843-4242 USA 7George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX, 77843-4242 USA 8INAF, Osservatorio Astronomico di Roma, via Frascati 33, 00078, Monteporzio Catone, Italy 9Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA 10School of Earth & Space Exploration, Arizona State University, Tempe, AZ 85287, USA 11Department of Astronomy, University of Massachusetts, Amherst, MA 01002, USA (Published 2020 November 27 in ApJ) ABSTRACT Lyα emission from galaxies can be utilized to characterize the ionization state in the intergalactic medium (IGM). We report our search for Lyα emission at z > 7 using a comprehensive Keck/MOSFIRE near-infrared spectroscopic dataset, as part of the Texas Spectroscopic Search for Lyα Emission at the End of Reionization Survey. -
The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type
UC Irvine UC Irvine Electronic Theses and Dissertations Title The Structure and Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies Permalink https://escholarship.org/uc/item/3634g66n Author Carson, Daniel James Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE The Structure & Stellar Populations of Nuclear Star Clusters in Late-Type Spiral Galaxies DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics by Daniel J. Carson Dissertation Committee: Professor Aaron Barth, Chair Associate Professor Michael Cooper Professor James Bullock 2016 Portion of Chapter 1 c 2015 The Astronomical Journal Chapter 2 c 2015 The Astronomical Journal Chapter 3 c 2015 The Astronomical Journal Portion of Chapter 5 c 2015 The Astronomical Journal All other materials c 2016 Daniel J. Carson TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES vi ACKNOWLEDGMENTS vii CURRICULUM VITAE viii ABSTRACT OF THE DISSERTATION x 1 Introduction 1 2 HST /WFC3 data 9 2.1 SampleSelection ................................. 9 2.2 DescriptionofObservations . 10 2.3 DataReduction.................................. 14 3 Analysis of Structural Properties 17 3.1 Surface Brightness Profile Fitting . 17 3.1.1 PSFModels................................ 18 3.1.2 FittingMethod .............................. 19 3.1.3 Comparison with ISHAPE ......................... 21 3.1.4 1DRadialProfiles ............................ 22 3.1.5 Uncertainties in Cluster Parameters . 25 3.2 Results....................................... 29 3.2.1 SingleBandResults ........................... 29 3.2.2 PanchromaticResults........................... 40 3.2.3 Stellar Populations . 46 3.3 CommentsonIndividualObjects . 51 3.3.1 IC342................................... 51 3.3.2 M33 ................................... -
HST Detection of Spiral Structure in Two Coma Cluster Dwarf Galaxies
HST DETECTION OF SPIRAL STRUCTURE IN TWO COMA CLUSTER DWARF GALAXIES1 Alister W. Graham Department of Astronomy, University of Florida, P.O. Box 112055, Gainesville, FL 32611, USA [email protected] Helmut Jerjen Research School of Astronomy and Astrophysics, Australian National University, Private Bag, Weston Creek PO, ACT 2611, Canberra, Australia and Rafael Guzm´an Department of Astronomy, University of Florida, P.O. Box 112055, Gainesville, FL 32611, USA ABSTRACT We report the discovery of spiral-like structure in Hubble Space Telescope images of two dwarf galaxies (GMP 3292 and GMP 3629) belonging to the Coma cluster. GMP 3629 is the faintest such galaxy detected in a cluster environment, and it is the first such galaxy observed in the dense Coma cluster. The large bulge and the faintness of the broad spiral-like pattern in GMP 3629 suggests that its disk may have been largely depleted. We may therefore have found an example of the “missing link” in theories of galaxy evolution which have predicted that dwarf spiral galaxies, particularly in clusters, evolve into dwarf elliptical galaxies. Subject headings: galaxies: dwarf — galaxies: elliptical and lenticular, cD — galaxies: formation — galaxies: individual (GMP 3292, GMP 3629) — galaxies: spiral — galaxies: structure 1. Introduction happen when unsharp masking of a galaxy’s im- arXiv:astro-ph/0308241v1 14 Aug 2003 age reveals features indicative of a disk, such as Evidence for embedded, geometrically-flat, stel- bars and/or spiral patterns, or after a closer ex- lar disks has been found in a steadily increas- amination of a galaxy’s surface brightness profile ing number of objects that were once regarded reveals multiple component structure (e.g., Scorza as purely elliptical (E) galaxies (e.g., Capaccioli et al. -