How Are the Spiral and Other Types of Galaxies Formed?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Large Scale Universe As a Quasi Quantum White Hole
International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience. -
Modeling and Interpretation of the Ultraviolet Spectral Energy Distributions of Primeval Galaxies
Ecole´ Doctorale d'Astronomie et Astrophysique d'^Ile-de-France UNIVERSITE´ PARIS VI - PIERRE & MARIE CURIE DOCTORATE THESIS to obtain the title of Doctor of the University of Pierre & Marie Curie in Astrophysics Presented by Alba Vidal Garc´ıa Modeling and interpretation of the ultraviolet spectral energy distributions of primeval galaxies Thesis Advisor: St´ephane Charlot prepared at Institut d'Astrophysique de Paris, CNRS (UMR 7095), Universit´ePierre & Marie Curie (Paris VI) with financial support from the European Research Council grant `ERC NEOGAL' Composition of the jury Reviewers: Alessandro Bressan - SISSA, Trieste, Italy Rosa Gonzalez´ Delgado - IAA (CSIC), Granada, Spain Advisor: St´ephane Charlot - IAP, Paris, France President: Patrick Boisse´ - IAP, Paris, France Examinators: Jeremy Blaizot - CRAL, Observatoire de Lyon, France Vianney Lebouteiller - CEA, Saclay, France Dedicatoria v Contents Abstract vii R´esum´e ix 1 Introduction 3 1.1 Historical context . .4 1.2 Early epochs of the Universe . .5 1.3 Galaxytypes ......................................6 1.4 Components of a Galaxy . .8 1.4.1 Classification of stars . .9 1.4.2 The ISM: components and phases . .9 1.4.3 Physical processes in the ISM . 12 1.5 Chemical content of a galaxy . 17 1.6 Galaxy spectral energy distributions . 17 1.7 Future observing facilities . 19 1.8 Outline ......................................... 20 2 Modeling spectral energy distributions of galaxies 23 2.1 Stellar emission . 24 2.1.1 Stellar population synthesis codes . 24 2.1.2 Evolutionary tracks . 25 2.1.3 IMF . 29 2.1.4 Stellar spectral libraries . 30 2.2 Absorption and emission in the ISM . 31 2.2.1 Photoionization code: CLOUDY ....................... -
An Introduction to Our Universe
An Introduction to Our Universe Lyman Page Princeton, NJ [email protected] Draft, August 31, 2018 The full-sky heat map of the temperature differences in the remnant light from the birth of the universe. From the bluest to the reddest corresponds to a temperature difference of 400 millionths of a degree Celsius. The goal of this essay is to explain this image and what it tells us about the universe. 1 Contents 1 Preface 2 2 Introduction to Cosmology 3 3 How Big is the Universe? 4 4 The Universe is Expanding 10 5 The Age of the Universe is Finite 15 6 The Observable Universe 17 7 The Universe is Infinite ?! 17 8 Telescopes are Like Time Machines 18 9 The CMB 20 10 Dark Matter 23 11 The Accelerating Universe 25 12 Structure Formation and the Cosmic Timeline 26 13 The CMB Anisotropy 29 14 How Do We Measure the CMB? 36 15 The Geometry of the Universe 40 16 Quantum Mechanics and the Seeds of Cosmic Structure Formation. 43 17 Pulling it all Together with the Standard Model of Cosmology 45 18 Frontiers 48 19 Endnote 49 A Appendix A: The Electromagnetic Spectrum 51 B Appendix B: Expanding Space 52 C Appendix C: Significant Events in the Cosmic Timeline 53 D Appendix D: Size and Age of the Observable Universe 54 1 1 Preface These pages are a brief introduction to modern cosmology. They were written for family and friends who at various times have asked what I work on. The goal is to convey a geometrical picture of how to think about the universe on the grandest scales. -
Galaxies Through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars
Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz arXiv:1910.09849v1 [astro-ph.GA] 22 Oct 2019 Faculty of Physical Sciences University of Iceland 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Kasper Elm Heintz Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics PhD Committee Prof. Páll Jakobsson (supervisor) Assoc. Prof. Jesús Zavala Prof. Emeritus Einar H. Guðmundsson Opponents Prof. J. Xavier Prochaska Dr. Valentina D’Odorico Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, July 2019 Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Physics Copyright © Kasper Elm Heintz 2019 All rights reserved Faculty of Physical Sciences School of Engineering and Natural Sciences University of Iceland Dunhagi 107, Reykjavik Iceland Telephone: 525-4000 Bibliographic information: Kasper Elm Heintz, 2019, Galaxies through Cosmic Time Illuminated by Gamma-Ray Bursts and Quasars, PhD disserta- tion, Faculty of Physical Sciences, University of Iceland, 71 pp. ISBN 978-9935-9473-3-8 Printing: Háskólaprent Reykjavik, Iceland, July 2019 Contents Abstract v Útdráttur vii Acknowledgments ix 1 Introduction 1 1.1 The nature of GRBs and quasars 1 1.1.1 GRB optical afterglows...................................2 1.1.2 Late-stage emission components associated with GRBs..............3 1.1.3 Quasar classification and selection............................4 1.1.4 GRBs and quasars as cosmic probes..........................5 1.2 Damped Lyman-α absorbers 7 1.2.1 Gas-phase abundances and kinematics........................ 10 1.2.2 The effect of dust..................................... -
The Recent Star Formation in Sextans a Schuyler D
THE ASTRONOMICAL JOURNAL, 116:2341È2362, 1998 November ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE RECENT STAR FORMATION IN SEXTANS A SCHUYLER D. VAN DYK1 Infrared Processing and Analysis Center, California Institute of Technology, Mail Code 100-22, Pasadena, CA 91125; vandyk=ipac.caltech.edu DANIEL PUCHE1 Tellabs Transport Group, Inc., 3403 Griffith Street, Ville St. Laurent, Montreal, Quebec H4T 1W5, Canada; Daniel.Puche=tellabs.com AND TONY WONG1 Department of Astronomy, University of California at Berkeley, 601 Cambell Hall, Berkeley, CA 94720-3411; twong=astro.berkeley.edu Received 5 February 1998; revised 1998 July 8 ABSTRACT We investigate the relationship between the spatial distributions of stellar populations and of neutral and ionized gas in the Local Group dwarf irregular galaxy Sextans A. This galaxy is currently experi- encing a burst of localized star formation, the trigger of which is unknown. We have resolved various populations of stars via deepUBV (RI) imaging over an area with [email protected]. We have compared our photometry with theoretical isochronesC appropriate for Sextans A, in order to determine the ages of these populations. We have mapped out the history of star formation, most accurately for times [100 Myr. We Ðnd that star formation in Sextans A is correlated both in time and space, especially for the most recent([12 Myr) times. The youngest stars in the galaxy are forming primarily along the inner edge of the large H I shell. Somewhat older populations,[50 Myr, are found inward of the youngest stars. Progressively older star formation, from D50È100 Myr, appears to have some spatially coherent structure and is more centrally concentrated. -
A RADIO RELIC and a SEARCH for the CENTRAL BLACK HOLE in the ABELL 2261 BRIGHTEST CLUSTER GALAXY Sarah Burke-Spolaor1,2,3,4 Kayhan Gultekin¨ 5, Marc Postman6, Tod R
Faculty Scholarship 2017 A Radio Relic And A Search For The eC ntral Black Hole In The Abell 2261 Brightest Cluster Galaxy Sarah Burke-Spolaor Kayhan Gültekin Marc Postman Tod R. Lauer Joanna M. Taylor See next page for additional authors Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Digital Commons Citation Burke-Spolaor, Sarah; Gültekin, Kayhan; Postman, Marc; Lauer, Tod R.; Taylor, Joanna M.; Lazio, T. Joseph W.; and Moustakas, Leonidas A., "A Radio Relic And A Search For The eC ntral Black Hole In The Abell 2261 Brightest Cluster Galaxy" (2017). Faculty Scholarship. 448. https://researchrepository.wvu.edu/faculty_publications/448 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Authors Sarah Burke-Spolaor, Kayhan Gültekin, Marc Postman, Tod R. Lauer, Joanna M. Taylor, T. Joseph W. Lazio, and Leonidas A. Moustakas This article is available at The Research Repository @ WVU: https://researchrepository.wvu.edu/faculty_publications/448 Draft version September 5, 2018 Preprint typeset using LATEX style emulateapj v. 12/16/11 A RADIO RELIC AND A SEARCH FOR THE CENTRAL BLACK HOLE IN THE ABELL 2261 BRIGHTEST CLUSTER GALAXY Sarah Burke-Spolaor1,2,3,4 Kayhan Gultekin¨ 5, Marc Postman6, Tod R. Lauer7, Joanna M. Taylor6, T. Joseph W. Lazio8, and Leonidas A. Moustakas8 Draft version September 5, 2018 ABSTRACT We present VLA images and HST/STIS spectra of sources within the center of the brightest cluster galaxy (BCG) in Abell 2261. -
Aaron J. Romanowsky Curriculum Vitae (Rev. 1 Septembert 2021) Contact Information: Department of Physics & Astronomy San
Aaron J. Romanowsky Curriculum Vitae (Rev. 1 Septembert 2021) Contact information: Department of Physics & Astronomy +1-408-924-5225 (office) San Jose´ State University +1-409-924-2917 (FAX) One Washington Square [email protected] San Jose, CA 95192 U.S.A. http://www.sjsu.edu/people/aaron.romanowsky/ University of California Observatories +1-831-459-3840 (office) 1156 High Street +1-831-426-3115 (FAX) Santa Cruz, CA 95064 [email protected] U.S.A. http://www.ucolick.org/%7Eromanow/ Main research interests: galaxy formation and dynamics – dark matter – star clusters Education: Ph.D. Astronomy, Harvard University Nov. 1999 supervisor: Christopher Kochanek, “The Structure and Dynamics of Galaxies” M.A. Astronomy, Harvard University June 1996 B.S. Physics with High Honors, June 1994 College of Creative Studies, University of California, Santa Barbara Employment: Professor, Department of Physics & Astronomy, Aug. 2020 – present San Jose´ State University Associate Professor, Department of Physics & Astronomy, Aug. 2016 – Aug. 2020 San Jose´ State University Assistant Professor, Department of Physics & Astronomy, Aug. 2012 – Aug. 2016 San Jose´ State University Research Associate, University of California Observatories, Santa Cruz Oct. 2012 – present Associate Specialist, University of California Observatories, Santa Cruz July 2007 – Sep. 2012 Researcher in Astronomy, Department of Physics, Oct. 2004 – June 2007 University of Concepcion´ Visiting Adjunct Professor, Faculty of Astronomical and May 2005 Geophysical Sciences, National University of La Plata Postdoctoral Research Fellow, School of Physics and Astronomy, June 2002 – Oct. 2004 University of Nottingham Postdoctoral Fellow, Kapteyn Astronomical Institute, Oct. 1999 – May 2002 Rijksuniversiteit Groningen Research Fellow, Harvard-Smithsonian Center for Astrophysics June 1994 – Oct. -
NASA Teacher Science Background Q&A
National Aeronautics and Space Administration Science Teacher’s Background SciGALAXY Q&As NASA / Amazing Space Science Background: Galaxy Q&As 1. What is a galaxy? A galaxy is an enormous collection of a few million to several trillion stars, gas, and dust held together by gravity. Galaxies can be several thousand to hundreds of thousands of light-years across. 2. What is the name of our galaxy? The name of our galaxy is the Milky Way. Our Sun and all of the stars that you see at night belong to the Milky Way. When you go outside in the country on a dark night and look up, you will see a milky, misty-looking band stretching across the sky. When you look at this band, you are looking into the densest parts of the Milky Way — the “disk” and the “bulge.” The Milky Way is a spiral galaxy. (See Q7 for more on spiral galaxies.) 3. Where is Earth in the Milky Way galaxy? Our solar system is in one of the spiral arms of the Milky Way, called the Orion Arm, and is about two-thirds of the way from the center of the galaxy to the edge of the galaxy’s starlight. Earth is the third planet from the Sun in our solar system of eight planets. 4. What is the closest galaxy that is similar to our own galaxy, and how far away is it? The closest spiral galaxy is Andromeda, a galaxy much like our own Milky Way. It is 2. million light-years away from us. -
The W. M. Keck Observatory Scientific Strategic Plan
The W. M. Keck Observatory Scientific Strategic Plan A.Kinney (Keck Chief Scientist), S.Kulkarni (COO Director, Caltech),C.Max (UCO Director, UCSC), H. Lewis, (Keck Observatory Director), J.Cohen (SSC Co-Chair, Caltech), C. L.Martin (SSC Co-Chair, UCSB), C. Beichman (Exo-Planet TG, NExScI/NASA), D.R.Ciardi (TMT TG, NExScI/NASA), E.Kirby (Subaru TG. Caltech), J.Rhodes (WFIRST/Euclid TG, JPL/NASA), A. Shapley (JWST TG, UCLA), C. Steidel (TMT TG, Caltech), S. Wright (AO TG, UCSD), R. Campbell (Keck Observatory, Observing Support and AO Operations Lead) Ethan Tweedie Photography 1. Overview and Summary of Recommendations The W. M. Keck Observatory (Keck Observatory), with its twin 10-m telescopes, has had a glorious history of transformative discoveries, instrumental advances, and education for young scientists since the start of science operations in 1993. This document presents our strategic plan and vision for the next five (5) years to ensure the continuation of this great tradition during a challenging period of fiscal constraints, the imminent launch of powerful new space telescopes, and the rise of Time Domain Astronomy (TDA). Our overarching goal is to maximize the scientific impact of the twin Keck telescopes, and to continue on this great trajectory of discoveries. In pursuit of this goal, we must continue our development of new capabilities, as well as new modes of operation and observing. We must maintain our existing instruments, telescopes, and infrastructure to ensure the most efficient possible use of precious telescope time, all within the larger context of the Keck user community and the enormous scientific opportunities afforded by upcoming space telescopes and large survey programs. -
Lesson 5 Galaxies and Beyond
LESSON 5 GALAXIES AND BEYOND Chapter 8 Astronomy OBJECTIVES • Classify galaxies according to their properties. • Explain the big bang and the way in which Earth and its atmosphere were formed. MAIN IDEA The Milky Way is one of billions of galaxies that are moving away from each other in an expanding universe. VOCABULARY • galaxy • Milky Way • spectrum • expansion redshift • big bang • background radiation WHAT ARE GALAXIES? • A galaxy is a group of star clusters held together by gravity. • Stars move around the center of their galaxy in the same way that planets orbit a star. • Galaxies differ in size, age, and structure. • Astronomers place them in three main groups based on shape. • spiral • elliptical • irregular SPIRAL GALAXY • Spiral galaxies look like whirlpools. • Some are barred spiral galaxies. • Have bars of stars, gas, and dust throughout its center. • Spiral arms emerge from this bar. ELLIPTICAL GALAXY • An elliptical galaxy is shaped a bit like a football. • It has no spiral arms and little or no dust. IRREGULAR GALAXY • Has no recognizable shape. • The amount of dust varies. • Collisions with other galaxies may have caused the irregular shape. THE MILKY WAY GALAXY • During the summer at night, overhead, you will see a broad band of light stretching across the sky. • You are looking at part of the Milky Way. • The Milky Way is our home galaxy. • The Milky Way is a spiral galaxy. • The stars are grouped in a bulge around a core. • All of the stars in the Milky Way including our sun orbit this core. • The closer a star is to the core the faster its orbit. -
ELBERTH MANFRON SCHIEFER.Pdf
UNIVERSIDADE FEDERAL DO PARANA´ ELBERTH MANFRON SCHIEFER INSTABILIDADE DE JEANS PARA SISTEMAS ESFERICOS´ EM UM UNIVERSO EM EXPANSAO˜ A PARTIR DAS EQUAC¸ OES˜ DE BOLTZMANN E DE POISSON CURITIBA 2019 ELBERTH MANFRON SCHIEFER INSTABILIDADE DE JEANS PARA SISTEMAS ESFERICOS´ EM UM UNIVERSO EM EXPANSAO˜ A PARTIR DAS EQUAC¸ OES˜ DE BOLTZMANN E DE POISSON Disserta¸c˜ao apresentada ao curso de P´os-Gradua¸c˜ao em F´ısica, Setor de Ciˆencias Exatas, Universidade Federal do Paran´a, como requisito parcial `aob- ten¸c˜ao do t´ıtulo de Mestre em F´ısica. Orientador: Prof. Dr. Gilberto Medeiros Kremer CURITIBA 2019 ! "#$ %$" & #$ ' ( )$ #*$ , , -$ .) )$$ /,0 1 2$,$ $3 4 5 %$" & #$ "#$6 7 ,$ !89:6 ;$ < -$ $ $ = $ %. $$ ><?$, @ !89:6 B$ $ ?$ &$ C$$ 6 96 $ $ )$6 !6 %/, 6 6 %)" D@E6 F6 ' ( 6 '6 -$ $ $ =6 ''6 C$$ ?$ &$6 '''6 @,6 ;; G 869!F =$ % $ - <:59H:F Aos que se mantiveram ao meu lado. AGRADECIMENTOS • Ao Professor Doutor Gilberto Medeiros Kremer pela orienta¸c˜ao, apoio e, acima de tudo, compreens˜ao. • A` Andressa Flores Santos pelo apoio infinito. • Aos meus pais, familiares e amigos que sempre estiveram l´a quando precisei. • Ao Programa de P´os-gradua¸c˜ao em F´ısica e `a CAPES pelo suporte financeiro. ”Eu n˜ao sou livre, e sim `as vezes constrangido por press˜oes estranhas a mim, outras vezes por convic¸c˜oes ´ıntimas.”A. Einstein RESUMO A instabilidade de Jeans ´e investigada para um sistema esf´erico por interm´edio das equa¸c˜oes de Boltzmann e de Poisson a partir de um m´etodo rec´em desenvolvido que utiliza os inva- riantes de colis˜ao da equa¸c˜ao de Boltzmann. -
The W. M. Keck Observatory Scientific Strategic Plan
The W. M. Keck Observatory Scientific Strategic Plan A.Kinney (Keck Chief Scientist), S.Kulkarni (COO Director, Caltech),C.Max (UCO Director, UCSC), H. Lewis, (Keck Observatory Director), J.Cohen (SSC Co-Chair, Caltech), C. L.Martin (SSC Co-Chair, UCSB), C. Beichman (Exo-Planet TG, NExScI/NASA), D.R.Ciardi (TMT TG, NExScI/NASA), E.Kirby (Subaru TG. Caltech), J.Rhodes (WFIRST/Euclid TG, JPL/NASA), A. Shapley (JWST TG, UCLA), C. Steidel (TMT TG, Caltech), S. Wright (AO TG, UCSD), R. Campbell (Keck Observatory, Observing Support and AO Operations Lead) Ethan Tweedie Photography 1. Overview and Summary of Recommendations The W. M. Keck Observatory (Keck Observatory), with its twin 10-m telescopes, has had a glorious history of transformative discoveries, instrumental advances, and education for young scientists since the start of science operations in 1993. This document presents our strategic plan and vision for the next five (5) years to ensure the continuation of this great tradition during a challenging period of fiscal constraints, the imminent launch of powerful new space telescopes, and the rise of Time Domain Astronomy (TDA). Our overarching goal is to maximize the scientific impact of the twin Keck telescopes, and to continue on this great trajectory of discoveries. In pursuit of this goal, we must continue our development of new capabilities, as well as new modes of operation and observing. We must maintain our existing instruments, telescopes, and infrastructure to ensure the most efficient possible use of precious telescope time, all within the larger context of the Keck user community and the enormous scientific opportunities afforded by upcoming space telescopes and large survey programs.