Lab 1: Loadable Kernel Modules (Lkms)

Total Page:16

File Type:pdf, Size:1020Kb

Lab 1: Loadable Kernel Modules (Lkms) Lab 1: Loadable Kernel Modules (LKMs) Overview For this lab, we will be interfacing with an LCD screen using the Phytec board. This means we will be creating device drivers for our system to allow it to interact with our hardware. Since our board is running Linux­­ which is a pretty advanced operating system for most embedded devices­­ we will want to accomplish this by appending additional functionality to the working kernel. This is done using loadable kernel modules. Background Before we get too far, here is some important information we will need to know in order to interact with the Linux kernel and perform the functions we want. To write device drivers we must first understand what they are. There are three main types of device drivers; character, block, and network. In this class, we will be writing character device drivers. A character device driver is one that transfers data directly to and from a user process. This is the most common type of device driver. Character device drivers normally perform I/O in a byte stream. They can also provide additional interfaces not present in block drivers, such as I/O control commands, memory mapping, and device polling. Drivers that support a file system are known as block device drivers. Block ​ device drivers take a file system request, in the form of a buffer structure, and issue the ​ I/O operations to the disk to transfer the specified block. Block device drivers can also provide a character driver interface that allows utility programs to bypass the file system and access the device directly. This device access is commonly referred to as the raw interface to a block device. A network device driver is a device driver that enables a network device to communicate between the computer and operating system as well as with other network computers and network devices. Character device drivers Character device drivers are a powerful tool for users to write code that creates a connection between the user space and kernel. It utilizes a file system interface to interact with the device. Just like when you echoed values to device files to enable them. In this case, since we will be writing the kernel module ourselves, the functionality of the file system has to be written by us in the module. The kernel module is the code that gives the functionality to some task in user space. In the user space, we will write a user space C code to communicate with the device driver. We will use the system call interface in our user space C code to access the device files that are created to talk to ​ the device driver. You can read more depth about system calls in the documentation section. Writing device drivers for this board revolves around creating the interface to a file system that controls a given device. The behavior attributed to the read and write functionalities are designated by the developer. An example of this was seen in lab 0, where writing to the files were used to interact with gpio pins to turn LEDs on and off or set different attributes of the PWM. In most cases, device drivers will describe functionalities for file init, exit, open, close, read, and write functionalities. Many other functionalities exist that you are able to change the behavior of, but we will not spend too much time on them for this class. If you wish to read more about them, check out the book Linux Device Drivers. It is completely free available online. ​ ​ Figure 1: The details on how device drivers are accessed inside the Linux operating system Sample code Sample code for a device driver is included with this lab titled new_char.c. The behaviour of this code is intended to simple store the string of characters written to the file. Whenever the dev file to this device is written to, it will store the text into the 100 element character array titled data. When a user reads the file, it will return the stored text inside the array (or at least a pointer to the beginning of the array in C­­ this is how Strings work in C). As you will see in this example there are multiple parts to a character device driver that need to be set up in order for it to properly integrate into the linux kernel. Here are a couple of main points that must be done for your module to work correctly. ● The space for the data that you will be writing to the device file must be allocated within the kernel module. In this example it is done with the code below. struct fake_device { char data[100]; struct semaphore sem; } virtual_device; ● A major number must be created for the device and the cdev object must be filled out. In the sample code, this is done with the following structures and the driver_entry(void) function ​ struct cdev* mcdev; int major_number; dev_t dev_num; // Hold major and minor numbers that kernel gives us static int driver_entry(void); ● A semaphore and any data fields within the module must be initialized ● Pointing to the correct functions when inserting and removing the module // WHEN TO START AND STOP DRIVER module_init(driver_entry); module_exit(driver_exit); Part 1 Wiring Interacting with any hardware in a digital way comes down to sending signals of high and low voltage through data pins. The LCD used in this lab is no different. This lab will require that you utilize GPIOs to incorporate the LCD in our system. For this section, you will need to familiarize yourself with reading datasheets. The datasheet provided includes information on how to use the pins connecting to the LCD integrated circuit as well as other useful information needed from a hardware perspective. Although the material in these types of datasheets is extremely dry, learning how to read datasheets is an essential skill when working with any type of hardware in an embedded environment. The display requires an input of 8 data pins (D0 ­ D7) along with 3 control pins (E, R/W, RS). The data pins are used to send 1 parallel byte of data to the LCD at a time, dictating which character is printed on the screen. The control pins are toggled in specific patterns to carry out operations such as write or clear. The GPIOs on the board wired to these pins of the LCD are up to you, just be consistent. The LCD will also require a few pins for power. V will be connected to 5V, and V will ​DD ​SS be connected to ground. You will also want to connect a 10k potentiometer in series between VEE and ground. If you do not have a potentiometer on hand, a 5k resistor ​ ​ should work well enough. Using a potentiometer allows a change in the screen brightness by varying the current output of VEE. ​ ​ Initializing the LCD It is important to note that our LCD display has very specific start up sequence. Page 32 of the datasheet includes a diagram to properly turn on the display. In between each step of the diagram, you will have to toggle the E pin high and back to low to achieve one clock pulse in the LCD­­ this essentially pushes the bit orientation to the board. In order to get precise timing, it is recommended to include <linux/delay> and use the ​ msleep(int) function to delay for a given number of milliseconds. It is recommended that the C and B bits of the initialization sequence are set to 1 to enable cursor and blink functionalities. The initialization code you write for the LCD should be contained in its own function and called in the module’s init function. This will cause the LCD to initialize every time you insert the module you created into the kernel. Get your code to a compilable state so that we can test to see if it works. More on this will be included in the following section. GPIO in kernel space In the previous lab we familiarized ourselves with gpios, but they were called in userspace. For this lab, we will be purely working in the kernel space. Unfortunately, this means you won’t be able to use any of the standard C library functions such as printf or access any of the dev files from other modules. Instead, there is another library of #include statements provided for access within the kernel. There is an ​ appropriate replacement for printf titled printk, which will print its contents to the ​ ​ ​ kernel message log rather than stdout. There are numerous library functions that you are allowed to look up and include in your code when writing your kernel module code. Specifically, you will want to look into using <linux/gpio.h> for this lab. Within ​ <linux/gpio.h> exists functions for you to use to directly call functionalities of gpios on your board without using any dev files. Most of the functions provided by this library are fairly straightforward and only require you know the pin number to use. In order to initialize gpios, you must ensure that it is valid, request the pin, set its direction, and then export it. You will find the ability to do all of these through function calls within <linux/gpio.h>. ​ As with any piece of embedded hardware, timing is also important. Inside of <linux/delay.h> are functions that allow you to delay within your kernel modules. This library isn’t very large, but provides access to functions to delay for accurate amounts of time. It’s possible that the only functions you will use from <linux/delay.h> are msleep and msleep_interruptible to delay for a given ​ ​ ​ number of milliseconds.
Recommended publications
  • Glibc and System Calls Documentation Release 1.0
    Glibc and System Calls Documentation Release 1.0 Rishi Agrawal <[email protected]> Dec 28, 2017 Contents 1 Introduction 1 1.1 Acknowledgements...........................................1 2 Basics of a Linux System 3 2.1 Introduction...............................................3 2.2 Programs and Compilation........................................3 2.3 Libraries.................................................7 2.4 System Calls...............................................7 2.5 Kernel.................................................. 10 2.6 Conclusion................................................ 10 2.7 References................................................ 11 3 Working with glibc 13 3.1 Introduction............................................... 13 3.2 Why this chapter............................................. 13 3.3 What is glibc .............................................. 13 3.4 Download and extract glibc ...................................... 14 3.5 Walkthrough glibc ........................................... 14 3.6 Reading some functions of glibc ................................... 17 3.7 Compiling and installing glibc .................................... 18 3.8 Using new glibc ............................................ 21 3.9 Conclusion................................................ 23 4 System Calls On x86_64 from User Space 25 4.1 Setting Up Arguements......................................... 25 4.2 Calling the System Call......................................... 27 4.3 Retrieving the Return Value......................................
    [Show full text]
  • The Linux Kernel Module Programming Guide
    The Linux Kernel Module Programming Guide Peter Jay Salzman Michael Burian Ori Pomerantz Copyright © 2001 Peter Jay Salzman 2007−05−18 ver 2.6.4 The Linux Kernel Module Programming Guide is a free book; you may reproduce and/or modify it under the terms of the Open Software License, version 1.1. You can obtain a copy of this license at http://opensource.org/licenses/osl.php. This book is distributed in the hope it will be useful, but without any warranty, without even the implied warranty of merchantability or fitness for a particular purpose. The author encourages wide distribution of this book for personal or commercial use, provided the above copyright notice remains intact and the method adheres to the provisions of the Open Software License. In summary, you may copy and distribute this book free of charge or for a profit. No explicit permission is required from the author for reproduction of this book in any medium, physical or electronic. Derivative works and translations of this document must be placed under the Open Software License, and the original copyright notice must remain intact. If you have contributed new material to this book, you must make the material and source code available for your revisions. Please make revisions and updates available directly to the document maintainer, Peter Jay Salzman <[email protected]>. This will allow for the merging of updates and provide consistent revisions to the Linux community. If you publish or distribute this book commercially, donations, royalties, and/or printed copies are greatly appreciated by the author and the Linux Documentation Project (LDP).
    [Show full text]
  • Introduction to Linux Kernel Driver Programming
    IntroductionIntroduction toto LinuxLinux kernelkernel driverdriver programmingprogramming Introduction to Linux kernel driver programming The Linux kernel device model Authors and license ● Authors – Michael Opdenacker ([email protected]) Founder of Bootlin, kernel and embedded Linux engineering company https://bootlin.com/company/staff/michael-opdenacker ● License – Creative Commons Attribution – Share Alike 4.0 https://creativecommons.org/licenses/by-sa/4.0/ – Document sources: https://github.com/e-ale/Slides Need for a device model ● For the same device, need to use the same device driver on multiple CPU architectures (x86, ARM…), even though the hardware controllers are different. ● Need for a single driver to support multiple devices of the same kind. ● This requires a clean organization of the code, with the device drivers separated from the controller drivers, the hardware description separated from the drivers themselves, etc. Driver: between bus infrastructure and framework In Linux, a driver is always interfacing with: ● a framework that allows the driver to expose the hardware features in a generic way. ● a bus infrastructure, part of the device model, to detect/communicate with the hardware. Let’s focus on the bus infrastructure for now Device model data structures The device model is organized around three main data structures: ● The struct bus_type structure, which represent one type of bus (USB, PCI, I2C, etc.) ● The struct device_driver structure, which represents one driver capable of handling certain devices on a certain bus. ● The struct device structure, which represents one device connected to a bus The kernel uses inheritance to create more specialized versions of struct device_driver and struct device for each bus subsystem.
    [Show full text]
  • The Xen Port of Kexec / Kdump a Short Introduction and Status Report
    The Xen Port of Kexec / Kdump A short introduction and status report Magnus Damm Simon Horman VA Linux Systems Japan K.K. www.valinux.co.jp/en/ Xen Summit, September 2006 Magnus Damm ([email protected]) Kexec / Kdump Xen Summit, September 2006 1 / 17 Outline Introduction to Kexec What is Kexec? Kexec Examples Kexec Overview Introduction to Kdump What is Kdump? Kdump Kernels The Crash Utility Xen Porting Effort Kexec under Xen Kdump under Xen The Dumpread Tool Partial Dumps Current Status Magnus Damm ([email protected]) Kexec / Kdump Xen Summit, September 2006 2 / 17 Introduction to Kexec Outline Introduction to Kexec What is Kexec? Kexec Examples Kexec Overview Introduction to Kdump What is Kdump? Kdump Kernels The Crash Utility Xen Porting Effort Kexec under Xen Kdump under Xen The Dumpread Tool Partial Dumps Current Status Magnus Damm ([email protected]) Kexec / Kdump Xen Summit, September 2006 3 / 17 Kexec allows you to reboot from Linux into any kernel. as long as the new kernel doesn’t depend on the BIOS for setup. Introduction to Kexec What is Kexec? What is Kexec? “kexec is a system call that implements the ability to shutdown your current kernel, and to start another kernel. It is like a reboot but it is indepedent of the system firmware...” Configuration help text in Linux-2.6.17 Magnus Damm ([email protected]) Kexec / Kdump Xen Summit, September 2006 4 / 17 . as long as the new kernel doesn’t depend on the BIOS for setup. Introduction to Kexec What is Kexec? What is Kexec? “kexec is a system call that implements the ability to shutdown your current kernel, and to start another kernel.
    [Show full text]
  • System Calls
    System Calls What are they? ● Standard interface to allow the kernel to safely handle user requests – Read from hardware – Spawn a new process – Get current time – Create shared memory ● Message passing technique between – OS kernel (server) – User (client) Executing System Calls ● User program issues call ● Core kernel looks up call in syscall table ● Kernel module handles syscall action ● Module returns result of system call ● Core kernel forwards result to user Module is not Loaded... ● User program issues call ● Core kernel looks up call in syscall table ● Kernel module isn't loaded to handle action ● ... ● Where does call go? System Call Wrappers ● Wrapper calls system call if loaded – Otherwise returns an error ● Needs to be in a separate location so that the function can actually be called – Uses function pointer to point to kernel module implementation Adding System Calls ● You'll need to add and implement: – int start_elevator(void); – int issue_request(int, int, int); – int stop_elevator(void); ● As an example, let's add a call to printk an argument passed in: – int test_call(int); Adding System Calls ● Files to add (project files): – /usr/src/test_kernel/hello_world/test_call.c – /usr/src/test_kernel/hello_world/hello.c – /usr/src/test_kernel/hello_world/Makefile ● Files to modify (core kernel): – /usr/src/test_kernel/arch/x86/entry/syscalls/syscall_64.tbl – /usr/src/test_kernel/include/linux/syscalls.h – /usr/src/test_kernel/Makefile hello_world/test_call.c ● #include <linux/linkage.h> ● #include <linux/kernel.h> ● #include
    [Show full text]
  • Anatomy of Linux Loadable Kernel Modules a 2.6 Kernel Perspective
    Anatomy of Linux loadable kernel modules A 2.6 kernel perspective Skill Level: Intermediate M. Tim Jones ([email protected]) Consultant Engineer Emulex Corp. 16 Jul 2008 Linux® loadable kernel modules, introduced in version 1.2 of the kernel, are one of the most important innovations in the Linux kernel. They provide a kernel that is both scalable and dynamic. Discover the ideas behind loadable modules, and learn how these independent objects dynamically become part of the Linux kernel. The Linux kernel is what's known as a monolithic kernel, which means that the majority of the operating system functionality is called the kernel and runs in a privileged mode. This differs from a micro-kernel, which runs only basic functionality as the kernel (inter-process communication [IPC], scheduling, basic input/output [I/O], memory management) and pushes other functionality outside the privileged space (drivers, network stack, file systems). You'd think that Linux is then a very static kernel, but in fact it's quite the opposite. Linux can be dynamically altered at run time through the use of Linux kernel modules (LKMs). More in Tim's Anatomy of... series on developerWorks • Anatomy of Linux flash file systems • Anatomy of Security-Enhanced Linux (SELinux) • Anatomy of real-time Linux architectures • Anatomy of the Linux SCSI subsystem • Anatomy of the Linux file system • Anatomy of the Linux networking stack Anatomy of Linux loadable kernel modules © Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 11 developerWorks® ibm.com/developerWorks • Anatomy of the Linux kernel • Anatomy of the Linux slab allocator • Anatomy of Linux synchronization methods • All of Tim's Anatomy of..
    [Show full text]
  • Kdump, a Kexec-Based Kernel Crash Dumping Mechanism
    Kdump, A Kexec-based Kernel Crash Dumping Mechanism Vivek Goyal Eric W. Biederman Hariprasad Nellitheertha IBM Linux NetworkX IBM [email protected] [email protected] [email protected] Abstract important consideration for the success of a so- lution has been the reliability and ease of use. Kdump is a crash dumping solution that pro- Kdump is a kexec based kernel crash dump- vides a very reliable dump generation and cap- ing mechanism, which is being perceived as turing mechanism [01]. It is simple, easy to a reliable crash dumping solution for Linux R . configure and provides a great deal of flexibility This paper begins with brief description of what in terms of dump device selection, dump saving kexec is and what it can do in general case, and mechanism, and plugging-in filtering mecha- then details how kexec has been modified to nism. boot a new kernel even in a system crash event. The idea of kdump has been around for Kexec enables booting into a new kernel while quite some time now, and initial patches for preserving the memory contents in a crash sce- kdump implementation were posted to the nario, and kdump uses this feature to capture Linux kernel mailing list last year [03]. Since the kernel crash dump. Physical memory lay- then, kdump has undergone significant design out and processor state are encoded in ELF core changes to ensure improved reliability, en- format, and these headers are stored in a re- hanced ease of use and cleaner interfaces. This served section of memory. Upon a crash, new paper starts with an overview of the kdump de- kernel boots up from reserved memory and pro- sign and development history.
    [Show full text]
  • The Linux Device File-System
    The Linux Device File-System Richard Gooch EMC Corporation [email protected] Abstract 1 Introduction All Unix systems provide access to hardware via de- vice drivers. These drivers need to provide entry points for user-space applications and system tools to access the hardware. Following the \everything is a file” philosophy of Unix, these entry points are ex- posed in the file name-space, and are called \device The Device File-System (devfs) provides a power- special files” or \device nodes". ful new device management mechanism for Linux. Unlike other existing and proposed device manage- This paper discusses how these device nodes are cre- ment schemes, it is powerful, flexible, scalable and ated and managed in conventional Unix systems and efficient. the limitations this scheme imposes. An alternative mechanism is then presented. It is an alternative to conventional disc-based char- acter and block special devices. Kernel device drivers can register devices by name rather than de- vice numbers, and these device entries will appear in the file-system automatically. 1.1 Device numbers Devfs provides an immediate benefit to system ad- ministrators, as it implements a device naming scheme which is more convenient for large systems Conventional Unix systems have the concept of a (providing a topology-based name-space) and small \device number". Each instance of a driver and systems (via a device-class based name-space) alike. hardware component is assigned a unique device number. Within the kernel, this device number is Device driver authors can benefit from devfs by used to refer to the hardware and driver instance.
    [Show full text]
  • Communicating Between the Kernel and User-Space in Linux Using Netlink Sockets
    SOFTWARE—PRACTICE AND EXPERIENCE Softw. Pract. Exper. 2010; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2] Communicating between the kernel and user-space in Linux using Netlink sockets Pablo Neira Ayuso∗,∗1, Rafael M. Gasca1 and Laurent Lefevre2 1 QUIVIR Research Group, Departament of Computer Languages and Systems, University of Seville, Spain. 2 RESO/LIP team, INRIA, University of Lyon, France. SUMMARY When developing Linux kernel features, it is a good practise to expose the necessary details to user-space to enable extensibility. This allows the development of new features and sophisticated configurations from user-space. Commonly, software developers have to face the task of looking for a good way to communicate between kernel and user-space in Linux. This tutorial introduces you to Netlink sockets, a flexible and extensible messaging system that provides communication between kernel and user-space. In this tutorial, we provide fundamental guidelines for practitioners who wish to develop Netlink-based interfaces. key words: kernel interfaces, netlink, linux 1. INTRODUCTION Portable open-source operating systems like Linux [1] provide a good environment to develop applications for the real-world since they can be used in very different platforms: from very small embedded devices, like smartphones and PDAs, to standalone computers and large scale clusters. Moreover, the availability of the source code also allows its study and modification, this renders Linux useful for both the industry and the academia. The core of Linux, like many modern operating systems, follows a monolithic † design for performance reasons. The main bricks that compose the operating system are implemented ∗Correspondence to: Pablo Neira Ayuso, ETS Ingenieria Informatica, Department of Computer Languages and Systems.
    [Show full text]
  • Topic 10: Device Driver
    Topic 10: Device Driver Tongping Liu University of Massachusetts Amherst 1 Administration • Today it is the deadline of Project3 • Homework5 is posted, due on 05/03 • Bonus points: ECE570 – 3 points, ECE670-5 points – Design exam questions – Process&threads, scheduling, synchronization, IPC, memory management, device driver/virtualization – Due: 05/01 • Survey project (ECE570/ECE670): 05/12 University of Massachusetts Amherst 2 Objectives • Understanding concepts of device driver, e.g., device number, device file • Understand the difference of kernel modules and device drivers • Learn how to implement a simple kernel module • Learn how to implement a simple device driver University of Massachusetts Amherst 3 Outline • Basic concepts • Kernel module • Writing device driver University of Massachusetts Amherst 4 Device Driver • A special kind of computer program that operates or controls a particular type of device that is attached to a computer University of Massachusetts Amherst 5 Device Driver • A special kind of computer program that operates or controls a particular type of device that is attached to a computer – Needs to execute privileged instructions – Must be integrated into the OS kernel, with a specific format – Interfaces both to kernel and to hardware University of Massachusetts Amherst 6 Whole System Stack Note: This picture is excerpted from Write a Linux Hardware Device Driver, Andrew O’Shauqhnessy, Unix world University of Massachusetts Amherst 7 Another View from OS University of Massachusetts Amherst 8 Type of Devices • Character device – Read or write one byte at a time as a stream of sequential data – Examples: serial ports, parallel ports, sound cards, keyboard • Block device – Randomly access fixed-sized chunks of data (block) – Examples: hard disks, USB cameras University of Massachusetts Amherst 9 Linux Device Driver • Manage data flow between user programs and device • Typically a self-contained kernel module – Add and remove dynamically • Device is a special file in /dev that user can access, e.g.
    [Show full text]
  • Analyst® Device Driver 1.3 Release Notes 2 / 16 RUO-IDV-03-1997-E Contents
    Analyst® Device Driver 1.3 Release Notes RUO-IDV-03-1997-E May 2018 This document is provided to customers who have purchased SCIEX equipment to use in the operation of such SCIEX equipment. This document is copyright protected and any reproduction of this document or any part of this document is strictly prohibited, except as SCIEX may authorize in writing. Software that may be described in this document is furnished under a license agreement. It is against the law to copy, modify, or distribute the software on any medium, except as specifically allowed in the license agreement. Furthermore, the license agreement may prohibit the software from being disassembled, reverse engineered, or decompiled for any purpose. Warranties are as stated therein. Portions of this document may make reference to other manufacturers and/or their products, which may contain parts whose names are registered as trademarks and/or function as trademarks of their respective owners. Any such use is intended only to designate those manufacturers' products as supplied by SCIEX for incorporation into its equipment and does not imply any right and/or license to use or permit others to use such manufacturers' and/or their product names as trademarks. SCIEX warranties are limited to those express warranties provided at the time of sale or license of its products and are SCIEX’s sole and exclusive representations, warranties, and obligations. SCIEX makes no other warranty of any kind whatsoever, expressed or implied, including without limitation, warranties of merchantability or fitness for a particular purpose, whether arising from a statute or otherwise in law or from a course of dealing or usage of trade, all of which are expressly disclaimed, and assumes no responsibility or contingent liability, including indirect or consequential damages, for any use by the purchaser or for any adverse circumstances arising therefrom.
    [Show full text]
  • Reactos-Devtutorial.Pdf
    Developer Tutorials Developer Tutorials Next Developer Tutorials Table of Contents I. Newbie Developer 1. Introduction to ReactOS development 2. Where to get the latest ReactOS source, compilation tools and how to compile the source 3. Testing your compiled ReactOS code 4. Where to go from here (newbie developer) II. Centralized Source Code Repository 5. Introducing CVS 6. Downloading and configuring your CVS client 7. Checking out a new tree 8. Updating your tree with the latest code 9. Applying for write access 10. Submitting your code with CVS 11. Submitting a patch to the project III. Advanced Developer 12. CD Packaging Guide 13. ReactOS Architecture Whitepaper 14. ReactOS WINE Developer Guide IV. Bochs testing 15. Introducing Bochs 16. Downloading and Using Bochs with ReactOS 17. The compile, test and debug cycle under Bochs V. VMware Testing 18. Introducing VMware List of Tables 7.1. Modules http://reactos.com/rosdocs/tutorials/bk02.html (1 of 2) [3/18/2003 12:16:53 PM] Developer Tutorials Prev Up Next Chapter 8. Where to go from here Home Part I. Newbie Developer (newbie user) http://reactos.com/rosdocs/tutorials/bk02.html (2 of 2) [3/18/2003 12:16:53 PM] Part I. Newbie Developer Part I. Newbie Developer Prev Developer Tutorials Next Newbie Developer Table of Contents 1. Introduction to ReactOS development 2. Where to get the latest ReactOS source, compilation tools and how to compile the source 3. Testing your compiled ReactOS code 4. Where to go from here (newbie developer) Prev Up Next Developer Tutorials Home Chapter 1. Introduction to ReactOS development http://reactos.com/rosdocs/tutorials/bk02pt01.html [3/18/2003 12:16:54 PM] Chapter 1.
    [Show full text]