Classic Graph Problems Made Temporal – a Parameterized Complexity Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Classic Graph Problems Made Temporal – a Parameterized Complexity Analysis Foundations of computing Volume 13 Hendrik Molter Classic Graph Problems Made Temporal – A Parameterized Complexity Analysis Universitätsverlag der TU Berlin Hendrik Molter Classic Graph Problems Made Temporal – A Parameterized Complexity Analysis The scientifc series Foundations of computing of the Technische Universität Berlin is edited by: Prof. Dr. Stephan Kreutzer, Prof. Dr. Uwe Nestmann, Prof. Dr. Rolf Niedermeier Foundations of computing j 13 Hendrik Molter Classic Graph Problems Made Temporal – A Parameterized Complexity Analysis Universitätsverlag der TU Berlin Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografe; detailed bibliographic data are available on the internet at http://dnb.dnb.de. Universitätsverlag der TU Berlin, 2020 http://www.verlag.tu-berlin.de Fasanenstr. 88, 10623 Berlin Tel.: +49 (0)30 314 76131 / Fax: -76133 E-Mail: [email protected] Zugl.: Berlin, Techn. Univ., Diss., 2019 Gutachter: Prof. Dr. Rolf Niedermeier Gutachter: Prof. Dr. Thomas Erlebach (University of Leicester) Gutachter: Dr. Ralf Klasing (Université de Bordeaux) Die Arbeit wurde am 19. Dezember 2019 an der Fakultät IV unter Vorsitz von Prof. Dr. Benjamin Blankertz erfolgreich verteidigt. This work – except for quotes and where otherwise noted – is licensed under the Creatice Commons Licence CC BY 4.0 http://creativecommons.org/licenses/by/4.0/ Cover image: Hendrik Molter, 2011 CC BY 4.0 j http://creativecommons.org/licenses/by/4.0/ Print: docupoint GmbH Layout/Typesetting: Hendrik Molter ORCID iD Hendrik Molter: 0000-0002-4590-798X http://orcid.org/0000-0002-4590-798X ISBN 978-3-7983-3172-3 (print) ISBN 978-3-7983-3173-0 (online) ISSN 2199-5249 (print) ISSN 2199-5257 (online) Published online on the institutional repository of the Technische Universität Berlin: DOI 10.14279/depositonce-10551 http://dx.doi.org/10.14279/depositonce-10551 Zusammenfassung In dieser Dissertation untersuchen wir die parametrisierte Berechnungskomplexi- tät von sechs klassischen Graphproblemen, die in einen temporalen Kontext gestellt werden. Formaler ausgedrückt betrachten wir Probleme, die auf temporalen Graphen defniert sind, wobei temporale Graphen aus einer unveränderlichen Knotenmenge bestehen, zusammen mit einer Kantenmenge, die sich über einen diskreten Zeit- raum hinweg verändern darf. Temporale Graphen eignen sich besonders gut zum Modellieren dynamischer Daten und sind daher in Situationen von Bedeutung, in denen dynamische Veränderungen oder zeitabhängige Interaktionen eine wichtige Rolle spielen. Beispiele hierfür sind das Betrachten von Kommunikationsnetzwerken, sozialen Netzwerken oder Netzwerken, deren Interaktionen räumliche Annäherun- gen modellieren. Das wichtigste Auswahlkriterium für unsere Problemstellungen war, dass sie in Kontexten der Analyse dynamischer Daten wohlmotiviert sind. Da temporale Graphen mathematisch gesehen komplexer sind als statische Gra- phen, ist es vielleicht nicht sehr überraschend, dass alle Probleme, die wir in dieser Dissertation betrachten, NP-schwer sind. Wir konzentrieren uns auf die Entwicklung exakter Algorithmen, wobei wir versuchen FPT-Resultate zu erzielen oder durch spezialisierte Reduktionen zu zeigen, dass das betrachtete Problem NP-schwer auf sehr eingeschränkten Instanzen ist, oder berechnungsschwer im parametrisierten Sinne bezüglich möglichst „großer“ Parameter ist. Im Kontext temporaler Graphen betrachten wir in erster Linie Strukturparameter des unterliegenden Graphen, das heißt des Graphen, den man erhält, wenn man alle Zeitinformationen ignoriert. Allerdings studieren wir auch andere Parameter, zum Beispiel solche, die das Aus- maß der zeitlichen Veränderung eines temporalen Graphen messen. Im Folgenden geben wir einen kurzen Überblick über unsere Problemstellungen und wichtigsten Ergebnisse. Restless Temporal Paths. Ein Pfad in einem temporalen Graph muss Kausalität oder Zeit respektieren. Dies bedeutet, dass die Kanten, die von dem temporalen Pfad benutzt werden, nicht zu abnehmenden Zeitpunkten erscheinen dürfen. Wir untersuchen temporale Pfade, die darüber hinaus eine maximal erlaubte Wartezeit in allen Knoten haben. Unsere Hauptresultate sind, dass Pfade dieser Art zu fnden NP- schwer ist, sogar in sehr restriktiven Instanzen, und dass das Problem W[1]-schwer bezüglich der kreiskritischen Knotenzahl des unterliegenden Graphen ist. Temporal Separators. Ein temporaler Separator ist eine Knotenmenge, die, wenn sie aus einem temporalen Graph entfernt wird, alle temporalen Pfade zwischen zwei i ausgewählten Knoten zerstört. Wir erzielen hier zwei Hauptresultate: Auf der einen Seite untersuchen wir die Berechnungskomplexität des Findens von temporalen Separatoren in temporalen Einheitsintervallgraphen, einer Verallgemeinerung von Einheitsintervallgraphen im temporalen Kontext. Wir zeigen, dass das Problem auf temporalen Einheitsintervallgraphen NP-schwer ist, aber identifzieren eine weitere Einschränkung, die es erlaubt, das Problem in Polynomzeit zu lösen. Auf Letzterem aufbauend entwickeln wir einen FPT-Algorithmus, der eine „Distanz-zur-Trivialität“- Parametrisierung nutzt. Auf der anderen Seite zeigen wir, dass das Finden temporaler §P Separatoren, die alle ruhelosen temporalen Pfade zerstören, 2 -schwer ist. Temporal Matchings. Wir führen ein Modell für Matchings in temporalen Gra- phen ein, bei dem sich zwei Knoten „erholen“ müssen, nachdem sie zu einem bestimmten Zeitpunkt einander zugeordnet wurden. Das heißt, für eine gewisse Zeit können diese Knoten nicht wieder einander zugeordnet werden. Wir nutzen das Konzept von temporalen Kantengraphen, um zu zeigen, dass das Finden von temporalen Matchings NP-schwer ist, selbst wenn der unterliegende Graph ein Pfad ist. Temporal Coloring. Wir übertragen das klassische Knotenfärbungsproblem in den temporalen Rahmen. In unserem Modell muss jede Kante in jedem Zeitfenster einer bestimmten Größe mindestens einmal gültig gefärbt sein, also beide End- punkte eine andere Farbe haben. Wir zeigen, dass dieses Problem schon auf sehr eingeschränkten Instanzen NP-schwer ist – sogar für zwei Farben. Wir beschreiben einfache Exponentialzeitalgorithmen für dieses Problem. Eines unserer Hauptre- sultate ist, dass diese Algorithmen vermutlich nicht signifkant verbessert werden können. Temporal Cliques and s-Plexes. Wir stellen ein Modell für temporale s-Plexe vor, das eine kanonische Verallgemeinerung eines existierenden Modells für temporale Cliquen ist. Unser Hauptresultat ist ein FPT-Algorithmus, der alle maximalen tempo- ralen s-Plexe aufzählt, wobei wir eine temporale Variante von Degeneriertheit von Graphen als Parameter benutzen. Temporal Cluster Editing. Wir stellen ein Modell für Clustereditierung in tem- poralen Graphen vor, bei dem wir alle „Schichten“ eines temporalen Graphens in hinreichend ähnliche Cluster überführen wollen. Unsere Hauptergebnisse sind zum einen ein FPT-Algorithmus bezüglich des Parameters „Anzahl der Editierungen plus Ähnlichkeit der Cluster“. Zum anderen geben wir eine effziente Vorverarbeitungs- methode an, welche die Größe der Eingabeinstanz beweisbar so reduziert, dass sie unabhängig von der Anzahl der Knoten der ursprünglichen Instanz ist. ii Abstract This thesis investigates the parameterized computational complexity of six classic graph problems lifted to a temporal setting. More specifcally, we consider problems defned on temporal graphs, that is, a graph where the edge set may change over a discrete time interval, while the vertex set remains unchanged. Temporal graphs are well-suited to model dynamic data and hence they are naturally motivated in contexts where dynamic changes or time-dependent interactions play an important role, such as, for example, communication networks, social networks, or physical proximity networks. The most important selection criteria for our problems was that they are well-motivated in the context of dynamic data analysis. Since temporal graphs are mathematically more complex than static graphs, it is maybe not surprising that all problems we consider in this thesis are NP-hard. We focus on the development of exact algorithms, where our goal is to obtain fxed- parameter tractability results, and refned computational hardness reductions that either show NP-hardness for very restricted input instances or parameterized hard- ness with respect to “large” parameters. In the context of temporal graphs, we mostly consider structural parameters of the underlying graph, that is, the graph obtained by ignoring all time information. However, we also consider parameters of other types, such as ones trying to measure how fast the temporal graph changes over time. In the following we briefy discuss the problem setting and the main results. Restless Temporal Paths. A path in a temporal graph has to respect causality, or time, which means that the edges used by a temporal path have to appear at non- decreasing times. We investigate temporal paths that additionally have a maximum waiting time in every vertex of the temporal graph. Our main contributions are establishing NP-hardness for the problem of fnding restless temporal paths even in very restricted cases, and showing W[1]-hardness with respect to the feedback vertex number of the underlying graph. Temporal Separators. A temporal separator is a vertex set that, when removed from the temporal graph, destroys all temporal paths between two dedicated ver- tices. Our contribution here is twofold: Firstly, we investigate the computational
Recommended publications
  • The Vertex Coloring Problem and Its Generalizations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AMS Tesi di Dottorato UNIVERSITA` DEGLI STUDI DI BOLOGNA Dottorato di Ricerca in Automatica e Ricerca Operativa MAT/09 XIX Ciclo The Vertex Coloring Problem and its Generalizations Enrico Malaguti Il Coordinatore Il Tutor Prof. Claudio Melchiorri Prof. Paolo Toth A.A. 2003{2006 Contents Acknowledgments v Keywords vii List of ¯gures ix List of tables xi 1 Introduction 1 1.1 The Vertex Coloring Problem and its Generalizations . 1 1.2 Fair Routing . 6 I Vertex Coloring Problems 9 2 A Metaheuristic Approach for the Vertex Coloring Problem 11 2.1 Introduction . 11 2.1.1 The Heuristic Algorithm MMT . 12 2.1.2 Initialization Step . 13 2.2 PHASE 1: Evolutionary Algorithm . 15 2.2.1 Tabu Search Algorithm . 15 2.2.2 Evolutionary Diversi¯cation . 18 2.2.3 Evolutionary Algorithm as part of the Overall Algorithm . 21 2.3 PHASE 2: Set Covering Formulation . 22 2.3.1 The General Structure of the Algorithm . 24 2.4 Computational Analysis . 25 2.4.1 Performance of the Tabu Search Algorithm . 25 2.4.2 Performance of the Evolutionary Algorithm . 26 2.4.3 Performance of the Overall Algorithm . 26 2.4.4 Comparison with the most e®ective heuristic algorithms . 30 2.5 Conclusions . 33 3 An Evolutionary Approach for Bandwidth Multicoloring Problems 37 3.1 Introduction . 37 3.2 An ILP Model for the Bandwidth Coloring Problem . 39 3.3 Constructive Heuristics . 40 3.4 Tabu Search Algorithm . 40 i ii CONTENTS 3.5 The Evolutionary Algorithm .
    [Show full text]
  • Indian Journal of Science ANALYSIS International Journal for Science ISSN 2319 – 7730 EISSN 2319 – 7749
    Indian Journal of Science ANALYSIS International Journal for Science ISSN 2319 – 7730 EISSN 2319 – 7749 Graph colouring problem applied in genetic algorithm Malathi R Assistant Professor, Dept of Mathematics, Scsvmv University, Enathur, Kanchipuram, Tamil Nadu 631561, India, Email Id: [email protected] Publication History Received: 06 January 2015 Accepted: 05 February 2015 Published: 18 February 2015 Citation Malathi R. Graph colouring problem applied in genetic algorithm. Indian Journal of Science, 2015, 13(38), 37-41 ABSTRACT In this paper we present a hybrid technique that applies a genetic algorithm followed by wisdom of artificial crowds that approach to solve the graph-coloring problem. The genetic algorithm described here, utilizes more than one parent selection and mutation methods depending u p on the state of fitness of its best solution. This results in shifting the solution to the global optimum, more quickly than using a single parent selection or mutation method. The algorithm is tested against the standard DIMACS benchmark tests while, limiting the number of usable colors to the chromatic numbers. The proposed algorithm succeeded to solve the sample data set and even outperformed a recent approach in terms of the minimum number of colors needed to color some of the graphs. The Graph Coloring Problem (GCP) is also known as complete problem. Graph coloring also includes vertex coloring and edge coloring. However, mostly the term graph coloring refers to vertex coloring rather than edge coloring. Given a number of vertices, which form a connected graph, the objective is that to color each vertex so that if two vertices are connected in the graph (i.e.
    [Show full text]
  • List of NP-Complete Problems from Wikipedia, the Free Encyclopedia
    List of NP -complete problems - Wikipedia, the free encyclopedia Page 1 of 17 List of NP-complete problems From Wikipedia, the free encyclopedia Here are some of the more commonly known problems that are NP -complete when expressed as decision problems. This list is in no way comprehensive (there are more than 3000 known NP-complete problems). Most of the problems in this list are taken from Garey and Johnson's seminal book Computers and Intractability: A Guide to the Theory of NP-Completeness , and are here presented in the same order and organization. Contents ■ 1 Graph theory ■ 1.1 Covering and partitioning ■ 1.2 Subgraphs and supergraphs ■ 1.3 Vertex ordering ■ 1.4 Iso- and other morphisms ■ 1.5 Miscellaneous ■ 2 Network design ■ 2.1 Spanning trees ■ 2.2 Cuts and connectivity ■ 2.3 Routing problems ■ 2.4 Flow problems ■ 2.5 Miscellaneous ■ 2.6 Graph Drawing ■ 3 Sets and partitions ■ 3.1 Covering, hitting, and splitting ■ 3.2 Weighted set problems ■ 3.3 Set partitions ■ 4 Storage and retrieval ■ 4.1 Data storage ■ 4.2 Compression and representation ■ 4.3 Database problems ■ 5 Sequencing and scheduling ■ 5.1 Sequencing on one processor ■ 5.2 Multiprocessor scheduling ■ 5.3 Shop scheduling ■ 5.4 Miscellaneous ■ 6 Mathematical programming ■ 7 Algebra and number theory ■ 7.1 Divisibility problems ■ 7.2 Solvability of equations ■ 7.3 Miscellaneous ■ 8 Games and puzzles ■ 9 Logic ■ 9.1 Propositional logic ■ 9.2 Miscellaneous ■ 10 Automata and language theory ■ 10.1 Automata theory http://en.wikipedia.org/wiki/List_of_NP-complete_problems 12/1/2011 List of NP -complete problems - Wikipedia, the free encyclopedia Page 2 of 17 ■ 10.2 Formal languages ■ 11 Computational geometry ■ 12 Program optimization ■ 12.1 Code generation ■ 12.2 Programs and schemes ■ 13 Miscellaneous ■ 14 See also ■ 15 Notes ■ 16 References Graph theory Covering and partitioning ■ Vertex cover [1][2] ■ Dominating set, a.k.a.
    [Show full text]
  • Combinatorial Optimization and Recognition of Graph Classes with Applications to Related Models
    Combinatorial Optimization and Recognition of Graph Classes with Applications to Related Models Von der Fakult¨at fur¨ Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Mathematiker George B. Mertzios aus Thessaloniki, Griechenland Berichter: Privat Dozent Dr. Walter Unger (Betreuer) Professor Dr. Berthold V¨ocking (Zweitbetreuer) Professor Dr. Dieter Rautenbach Tag der mundlichen¨ Prufung:¨ Montag, den 30. November 2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.¨ Abstract This thesis mainly deals with the structure of some classes of perfect graphs that have been widely investigated, due to both their interesting structure and their numerous applications. By exploiting the structure of these graph classes, we provide solutions to some open problems on them (in both the affirmative and negative), along with some new representation models that enable the design of new efficient algorithms. In particular, we first investigate the classes of interval and proper interval graphs, and especially, path problems on them. These classes of graphs have been extensively studied and they find many applications in several fields and disciplines such as genetics, molecular biology, scheduling, VLSI design, archaeology, and psychology, among others. Although the Hamiltonian path problem is well known to be linearly solvable on interval graphs, the complexity status of the longest path problem, which is the most natural optimization version of the Hamiltonian path problem, was an open question. We present the first polynomial algorithm for this problem with running time O(n4). Furthermore, we introduce a matrix representation for both interval and proper interval graphs, called the Normal Interval Representation (NIR) and the Stair Normal Interval Representation (SNIR) matrix, respectively.
    [Show full text]
  • Variations on Memetic Algorithms for Graph Coloring Problems Laurent Moalic, Alexandre Gondran
    Variations on Memetic Algorithms for Graph Coloring Problems Laurent Moalic, Alexandre Gondran To cite this version: Laurent Moalic, Alexandre Gondran. Variations on Memetic Algorithms for Graph Coloring Problems. Journal of Heuristics, Springer Verlag, 2018, 24 (1), pp.1–24. hal-00925911v3 HAL Id: hal-00925911 https://hal.archives-ouvertes.fr/hal-00925911v3 Submitted on 20 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Variations on Memetic Algorithms for Graph Coloring Problems Laurent Moalic∗1 and Alexandre Gondrany2 1Université de Haute-Alsace, LMIA, Mulhouse, France 2MAIAA, ENAC, French Civil Aviation University, Toulouse, France Abstract Graph vertex coloring with a given number of colors is a well-known and much-studied NP-complete problem. The most effective methods to solve this problem are proved to be hybrid algorithms such as memetic algorithms or quantum annealing. Those hybrid algorithms use a powerful local search inside a population-based algorithm. This paper presents a new memetic algorithm based on one of the most effective algorithms: the Hybrid Evolutionary Algorithm (HEA) from Galinier and Hao (1999). The proposed algorithm, denoted HEAD - for HEA in Duet - works with a population of only two indi- viduals.
    [Show full text]
  • On the Achromatic Number of Certain Distance Graphs 1 Introduction
    b b International Journal of Mathematics and M Computer Science, 15(2020), no. 4, 1187–1192 CS On the Achromatic Number of Certain Distance Graphs Sharmila Mary Arul1, R. M. Umamageswari2 1Division of Mathematics Saveetha School of Engineering SIMATS Chennai, Tamilnadu, India 2Department of Mathematics Jeppiaar Engineering College Chennai, Tamilnadu, India email: [email protected], [email protected] (Received July 9, 2020, Accepted September 8, 2020) Abstract The achromatic number for a graph G = (V, E) is the largest integer m such that there is a partition of V into disjoint independent sets (V 1,. ,Vm) satisfying the condition that for each pair of distinct sets Vi,Vj,Vi Vj is not an independent set in G. In this paper, we ∪ present O(1) approximation algorithms to determine the achromatic number of certain distance graphs. 1 Introduction A proper coloring of a graph G is an assignment of colors to the vertices of G such that adjacent vertices are assigned different colors. A proper coloring of a graph G is said to be complete if, for every pair of colors i and j, there are adjacent vertices u and v colored i and j respectively. The achromatic number of the graph G is the largest number m such that G has a complete coloring Key words and Phrases: Achromatic number, approximation algorithms, graph algorithms, NP-completeness. AMS (MOS) Subject Classifications: 05C15, 05C85. ISSN 1814-0432, 2020, http://ijmcs.future-in-tech.net 1188 S. M. Arul, R. M. Umamageswari with m colors. Thus the achromatic number for a graph G = (V, E) is the largest integer m such that there is a partition of V into disjoint independent sets (V , V ,..., Vm) such that for each pair of distinct sets Vi,Vj, Vi Vj is 1 2 ∪ not an independent set in G.
    [Show full text]
  • The First-Fit Chromatic and Achromatic Numbers
    The First-fit Chromatic and Achromatic Numbers Stephanie Fuller December 17, 2009 Abstract This project involved pulling together past work on the achromatic and first-fit chromatic numbers, as well as a description of a proof by Yegnanarayanan et al. Our work includes attempting to find patterns for them in specific classes of graphs and the beginnings of an attempt to prove that for any given a, b, c, such that 2 a b c, there exists a graph with chromatic number a, first-fit chromatic number≤ ≤ b,≤ and achromatic number c. Executive Summary This project involved looking at properties of two chromatic invariants of graphs. The first-fit chromatic number is the largest number of colors which may be used in a greedy coloring. More precisely it is defined to be the maximum size of a collection of ordered sets such that no two vertices in the same set are connected and every vertex is connected to an element of all previous sets. The achromatic number is the maximum number of colors which can be used in a proper coloring such that all pairs of colors are adjacent somewhere in the graph. A complete coloring is one which has all pairs of colors adjacent somewhere in the graph. Tying together what has been done in the past, we read journal articles about the first-fit and achromatic numbers and share some of these results. In the general case, both of these are NP-hard, and they both have been proven to remain so when restricted to some classes of graphs.
    [Show full text]
  • Graph Coloring Algorithms on Random Graphs
    Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Summer 1989 Graph coloring algorithms on random graphs Shi-Jen Lin Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Computer Sciences Commons Department: Computer Science Recommended Citation Lin, Shi-Jen, "Graph coloring algorithms on random graphs" (1989). Doctoral Dissertations. 736. https://scholarsmine.mst.edu/doctoral_dissertations/736 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. GRAPH COLORING ALGORITHMS ON RANDOM GRAPHS BY SHI-JEN LIN, 1955- A DISSERTATION Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI - ROLLA In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in COMPUTER SCIENCE 1989 i i i ABSTRACT The graph coloring problem, which is to color the vertices of a simple undirected graph with the minimum number of colors such that no adjacent vertices are assigned the same color, arises in a variety of scheduling problems. This dissertation focuses attention on vertex sequential coloring. Two basic approaches, backtracking and branch-and-bound, serve as a foundation for the developed algorithms. The various algorithms have been programmed and applied to random graphs. This dissertation will present several variatons of the Korman algorithm, Korw2, Pactual, and Pactmaxw2, which produce exact colorings quicker than the Korman algorithm in the average for some classes of graphs.
    [Show full text]
  • Graph Colorings
    Algorithmic Graph Theory Part II - Graph Colorings Martin Milanicˇ [email protected] University of Primorska, Koper, Slovenia Dipartimento di Informatica Universita` degli Studi di Verona, March 2013 1/59 What we’ll do 1 THE CHROMATIC NUMBER OF A GRAPH. 2 HADWIGER’S CONJECTURE. 3 BOUNDS ON χ. 4 EDGE COLORINGS. 5 LIST COLORINGS. 6 ALGORITHMIC ASPECTS OF GRAPH COLORING. 7 APPLICATIONS OF GRAPH COLORING. 1/59 THE CHROMATIC NUMBER OF A GRAPH. 1/59 Chromatic Number Definition A k-coloring of a graph G = (V , E) is a mapping c : V → {1,..., k} such that uv ∈ E ⇒ c(u) = c(v) . G is k-colorable if there exists a k-coloring of it. χ(G) = chromatic number of G = the smallest number k such that G is k-colorable. 2/59 Graph Coloring Example: Figure: A 4-coloring of a graph k-coloring ≡ partition V = I1 ∪ . ∪ Ik , where Ij is a (possibly empty) independent set independent set = a set of pairwise non-adjacent vertices 3/59 Graph Coloring Example: Figure: A 3-coloring of the same graph k-coloring ≡ partition V = I1 ∪ . ∪ Ik , where Ij is a (possibly empty) independent set independent set = a set of pairwise non-adjacent vertices 3/59 Graph Coloring Examples: complete graphs: χ(Kn)= n. 2, if n is even; cycles: χ(Cn)= 3, if n is odd. χ(G) ≤ 2 ⇔ G is bipartite. N 4/59 Greedy Coloring How could we color, in a simple way, the vertices of a graph? Order the vertices of G linearly, say (v1,..., vn). for i = 1,..., n do c(vi ) := smallest available color end for 5/59 Greedy Coloring How many colors are used? For every vertex vi , at most d(vi ) different colors are used on its neighbors.
    [Show full text]
  • An Exact Algorithm with Learning for the Graph Coloring Problem$
    Computers & Operations Research 51 (2014) 282–301 Contents lists available at ScienceDirect Computers & Operations Research journal homepage: www.elsevier.com/locate/caor An exact algorithm with learning for the graph coloring problem$ Zhaoyang Zhou a,c, Chu-Min Li a,b, Chong Huang a, Ruchu Xu a,n a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China b MIS, Université de Picardie Jules Verne, 33 Rue St. Leu 80039 Amiens Cedex, France c Library, Hubei University, Wuhan, China article info abstract Available online 24 May 2014 Given an undirected graph G¼(V,E), the Graph Coloring Problem (GCP) consists in assigning a color to each Keywords: vertex of the graph G in such a way that any two adjacent vertices are assigned different colors, and the Backtracking number of different colors used is minimized. State-of-the-art algorithms generally deal with the explicit Clause learning constraints in GCP: any two adjacent vertices should be assigned different colors, but do not specially deal with Graph Coloring the implicit constraints between non-adjacent vertices implied by the explicit constraints. In this paper, we SAT propose an exact algorithm with learning for GCP which exploits the implicit constraints using propositional logic. Our algorithm is compared with several exact algorithms among the best in the literature. The experi- mental results show that our algorithm outperforms other algorithms on many instances. Specifically, our algorithm allows to close the open DIMACS instance 4-Fullins_5. & 2014 Published by Elsevier Ltd. 1. Introduction Given an undirected graph G¼(V, E), where V is a set of vertices and E a set of unordered pairs of vertices called edges fðvi; vjÞjvi AV; vj AVg, the Graph Coloring Problem (GCP) consists in assigning a color to each vertex of the graph G in such a way that any two adjacent vertices are assigned different colors, and the number of different colors used is minimized.
    [Show full text]
  • Analysis of Algorithms for Star Bicoloring and Related Problems A
    Analysis of Algorithms for Star Bicoloring and Related Problems A dissertation presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Jeffrey S. Jones May 2015 © 2015 Jeffrey S. Jones. All Rights Reserved. 2 This dissertation titled Analysis of Algorithms for Star Bicoloring and Related Problems by JEFFREY S. JONES has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by David Juedes Professor of Electrical Engineering and Computer Science Dennis Irwin Dean, Russ College of Engineering and Technology 3 Abstract JONES, JEFFREY S., Ph.D., May 2015, Computer Science Analysis of Algorithms for Star Bicoloring and Related Problems (171 pp.) Director of Dissertation: David Juedes This dissertation considers certain graph-theoretic combinatorial problems which have direct application to the efficient computation of derivative matrices “Jacobians”) which arise in many scientific computing applications. Specifically, we analyze algorithms for Star Bicoloring and establish several analytical results. We establish complexity-theoretic lower bounds on the approximability of algorithms for Star Bicoloring, showing that no such polynomial-time algorithm can achieve an 1 ǫ approximation ratio of O(N 3 − ) for any ǫ > 0 unless P = NP. We establish the first algorithm (ASBC) for Star Bicoloring with a known approximation upper-bound, 2 showing that ASBC is an O(N 3 ) polynomial-time approximation algorithm. Based on extension of these results we design a generic framework for greedy Star Bicoloring, and implement several specific methods for comparison.
    [Show full text]
  • NP-Completeness Results for Some Problems on Subclasses of Bipartite and Chordal Graphs
    Theoretical Computer Science 381 (2007) 248–259 www.elsevier.com/locate/tcs NP-completeness results for some problems on subclasses of bipartite and chordal graphs Katerina Asdre, Stavros D. Nikolopoulos∗ Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece Received 29 August 2006; received in revised form 26 April 2007; accepted 9 May 2007 Communicated by O. Watanabe Abstract Extending previous NP-completeness results for the harmonious coloring problem and the pair-complete coloring problem on trees, bipartite graphs and cographs, we prove that these problems are also NP-complete on connected bipartite permutation graphs. We also study the k-path partition problem and, motivated by a recent work of Steiner [G. Steiner, On the k-path partition of graphs, Theoret. Comput. Sci. 290 (2003) 2147–2155], where he left the problem open for the class of convex graphs, we prove that the k- path partition problem is NP-complete on convex graphs. Moreover, we study the complexity of these problems on two well-known subclasses of chordal graphs namely quasi-threshold and threshold graphs. Based on the work of Bodlaender [H.L. Bodlaender, Achromatic number is NP-complete for cographs and interval graphs, Inform. Process. Lett. 31 (1989) 135–138], we show NP- completeness results for the pair-complete coloring and harmonious coloring problems on quasi-threshold graphs. Concerning the k-path partition problem, we prove that it is also NP-complete on this class of graphs. It is known that both the harmonious coloring problem and the k-path partition problem are polynomially solvable on threshold graphs.
    [Show full text]