On the Achromatic Number of Certain Distance Graphs 1 Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Vertex Coloring Problem and Its Generalizations
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AMS Tesi di Dottorato UNIVERSITA` DEGLI STUDI DI BOLOGNA Dottorato di Ricerca in Automatica e Ricerca Operativa MAT/09 XIX Ciclo The Vertex Coloring Problem and its Generalizations Enrico Malaguti Il Coordinatore Il Tutor Prof. Claudio Melchiorri Prof. Paolo Toth A.A. 2003{2006 Contents Acknowledgments v Keywords vii List of ¯gures ix List of tables xi 1 Introduction 1 1.1 The Vertex Coloring Problem and its Generalizations . 1 1.2 Fair Routing . 6 I Vertex Coloring Problems 9 2 A Metaheuristic Approach for the Vertex Coloring Problem 11 2.1 Introduction . 11 2.1.1 The Heuristic Algorithm MMT . 12 2.1.2 Initialization Step . 13 2.2 PHASE 1: Evolutionary Algorithm . 15 2.2.1 Tabu Search Algorithm . 15 2.2.2 Evolutionary Diversi¯cation . 18 2.2.3 Evolutionary Algorithm as part of the Overall Algorithm . 21 2.3 PHASE 2: Set Covering Formulation . 22 2.3.1 The General Structure of the Algorithm . 24 2.4 Computational Analysis . 25 2.4.1 Performance of the Tabu Search Algorithm . 25 2.4.2 Performance of the Evolutionary Algorithm . 26 2.4.3 Performance of the Overall Algorithm . 26 2.4.4 Comparison with the most e®ective heuristic algorithms . 30 2.5 Conclusions . 33 3 An Evolutionary Approach for Bandwidth Multicoloring Problems 37 3.1 Introduction . 37 3.2 An ILP Model for the Bandwidth Coloring Problem . 39 3.3 Constructive Heuristics . 40 3.4 Tabu Search Algorithm . 40 i ii CONTENTS 3.5 The Evolutionary Algorithm . -
Distance Labelings of Möbius Ladders
Distance Labelings of M¨obiusLadders A Major Qualifying Project Report: Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by Anthony Rojas Kyle Diaz Date: March 12th; 2013 Approved: Professor Peter R. Christopher Abstract A distance-two labeling of a graph G is a function f : V (G) ! f0; 1; 2; : : : ; kg such that jf(u) − f(v)j ≥ 1 if d(u; v) = 2 and jf(u) − f(v)j ≥ 2 if d(u; v) = 1 for all u; v 2 V (G). A labeling is optimal if k is the least possible integer such that G admits a k-labeling. The λ2;1 number is the largest integer assigned to some vertex in an optimally labeled network. In this paper, we examine the λ2;1 number for M¨obiusladders, a class of graphs originally defined by Richard Guy and Frank Harary [9]. We completely determine the λ2;1 number for M¨obius ladders of even order, and for a specific class of M¨obiusladders with odd order. A general upper bound for λ2;1(G) is known [6], and for the remaining cases of M¨obiusladders we improve this bound from 18 to 7. We also provide some results for radio labelings and extensions to other labelings of these graphs. Executive Summary A graph is a pair G = (V; E), such that V (G) is the vertex set, and E(G) is the set of edges. For simple graphs (i.e., undirected, loopless, and finite), the concept of a radio labeling was first introduced in 1980 by Hale [8]. -
Indian Journal of Science ANALYSIS International Journal for Science ISSN 2319 – 7730 EISSN 2319 – 7749
Indian Journal of Science ANALYSIS International Journal for Science ISSN 2319 – 7730 EISSN 2319 – 7749 Graph colouring problem applied in genetic algorithm Malathi R Assistant Professor, Dept of Mathematics, Scsvmv University, Enathur, Kanchipuram, Tamil Nadu 631561, India, Email Id: [email protected] Publication History Received: 06 January 2015 Accepted: 05 February 2015 Published: 18 February 2015 Citation Malathi R. Graph colouring problem applied in genetic algorithm. Indian Journal of Science, 2015, 13(38), 37-41 ABSTRACT In this paper we present a hybrid technique that applies a genetic algorithm followed by wisdom of artificial crowds that approach to solve the graph-coloring problem. The genetic algorithm described here, utilizes more than one parent selection and mutation methods depending u p on the state of fitness of its best solution. This results in shifting the solution to the global optimum, more quickly than using a single parent selection or mutation method. The algorithm is tested against the standard DIMACS benchmark tests while, limiting the number of usable colors to the chromatic numbers. The proposed algorithm succeeded to solve the sample data set and even outperformed a recent approach in terms of the minimum number of colors needed to color some of the graphs. The Graph Coloring Problem (GCP) is also known as complete problem. Graph coloring also includes vertex coloring and edge coloring. However, mostly the term graph coloring refers to vertex coloring rather than edge coloring. Given a number of vertices, which form a connected graph, the objective is that to color each vertex so that if two vertices are connected in the graph (i.e. -
ABC Index on Subdivision Graphs and Line Graphs
IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728 p-ISSN: 2319–765X PP 01-06 www.iosrjournals.org ABC index on subdivision graphs and line graphs A. R. Bindusree1, V. Lokesha2 and P. S. Ranjini3 1Department of Management Studies, Sree Narayana Gurukulam College of Engineering, Kolenchery, Ernakulam-682 311, Kerala, India 2PG Department of Mathematics, VSK University, Bellary, Karnataka, India-583104 3Department of Mathematics, Don Bosco Institute of Technology, Bangalore-61, India, Recently introduced Atom-bond connectivity index (ABC Index) is defined as d d 2 ABC(G) = i j , where and are the degrees of vertices and respectively. In this di d j vi v j di .d j paper we present the ABC index of subdivision graphs of some connected graphs.We also provide the ABC index of the line graphs of some subdivision graphs. AMS Subject Classification 2000: 5C 20 Keywords: Atom-bond connectivity(ABC) index, Subdivision graph, Line graph, Helm graph, Ladder graph, Lollipop graph. 1 Introduction and Terminologies Topological indices have a prominent place in Chemistry, Pharmacology etc.[9] The recently introduced Atom-bond connectivity (ABC) index has been applied up until now to study the stability of alkanes and the strain energy of cycloalkanes. Furtula et al. (2009) [4] obtained extremal ABC values for chemical trees, and also, it has been shown that the star K1,n1 , has the maximal ABC value of trees. In 2010, Kinkar Ch Das present the lower and upper bounds on ABC index of graphs and trees, and characterize graphs for which these bounds are best possible[1]. -
List of NP-Complete Problems from Wikipedia, the Free Encyclopedia
List of NP -complete problems - Wikipedia, the free encyclopedia Page 1 of 17 List of NP-complete problems From Wikipedia, the free encyclopedia Here are some of the more commonly known problems that are NP -complete when expressed as decision problems. This list is in no way comprehensive (there are more than 3000 known NP-complete problems). Most of the problems in this list are taken from Garey and Johnson's seminal book Computers and Intractability: A Guide to the Theory of NP-Completeness , and are here presented in the same order and organization. Contents ■ 1 Graph theory ■ 1.1 Covering and partitioning ■ 1.2 Subgraphs and supergraphs ■ 1.3 Vertex ordering ■ 1.4 Iso- and other morphisms ■ 1.5 Miscellaneous ■ 2 Network design ■ 2.1 Spanning trees ■ 2.2 Cuts and connectivity ■ 2.3 Routing problems ■ 2.4 Flow problems ■ 2.5 Miscellaneous ■ 2.6 Graph Drawing ■ 3 Sets and partitions ■ 3.1 Covering, hitting, and splitting ■ 3.2 Weighted set problems ■ 3.3 Set partitions ■ 4 Storage and retrieval ■ 4.1 Data storage ■ 4.2 Compression and representation ■ 4.3 Database problems ■ 5 Sequencing and scheduling ■ 5.1 Sequencing on one processor ■ 5.2 Multiprocessor scheduling ■ 5.3 Shop scheduling ■ 5.4 Miscellaneous ■ 6 Mathematical programming ■ 7 Algebra and number theory ■ 7.1 Divisibility problems ■ 7.2 Solvability of equations ■ 7.3 Miscellaneous ■ 8 Games and puzzles ■ 9 Logic ■ 9.1 Propositional logic ■ 9.2 Miscellaneous ■ 10 Automata and language theory ■ 10.1 Automata theory http://en.wikipedia.org/wiki/List_of_NP-complete_problems 12/1/2011 List of NP -complete problems - Wikipedia, the free encyclopedia Page 2 of 17 ■ 10.2 Formal languages ■ 11 Computational geometry ■ 12 Program optimization ■ 12.1 Code generation ■ 12.2 Programs and schemes ■ 13 Miscellaneous ■ 14 See also ■ 15 Notes ■ 16 References Graph theory Covering and partitioning ■ Vertex cover [1][2] ■ Dominating set, a.k.a. -
Combinatorial Optimization and Recognition of Graph Classes with Applications to Related Models
Combinatorial Optimization and Recognition of Graph Classes with Applications to Related Models Von der Fakult¨at fur¨ Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Mathematiker George B. Mertzios aus Thessaloniki, Griechenland Berichter: Privat Dozent Dr. Walter Unger (Betreuer) Professor Dr. Berthold V¨ocking (Zweitbetreuer) Professor Dr. Dieter Rautenbach Tag der mundlichen¨ Prufung:¨ Montag, den 30. November 2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.¨ Abstract This thesis mainly deals with the structure of some classes of perfect graphs that have been widely investigated, due to both their interesting structure and their numerous applications. By exploiting the structure of these graph classes, we provide solutions to some open problems on them (in both the affirmative and negative), along with some new representation models that enable the design of new efficient algorithms. In particular, we first investigate the classes of interval and proper interval graphs, and especially, path problems on them. These classes of graphs have been extensively studied and they find many applications in several fields and disciplines such as genetics, molecular biology, scheduling, VLSI design, archaeology, and psychology, among others. Although the Hamiltonian path problem is well known to be linearly solvable on interval graphs, the complexity status of the longest path problem, which is the most natural optimization version of the Hamiltonian path problem, was an open question. We present the first polynomial algorithm for this problem with running time O(n4). Furthermore, we introduce a matrix representation for both interval and proper interval graphs, called the Normal Interval Representation (NIR) and the Stair Normal Interval Representation (SNIR) matrix, respectively. -
Graceful Labeling of Some New Graphs ∗
Bulletin of Pure and Applied Sciences Bull. Pure Appl. Sci. Sect. E Math. Stat. Section - E - Mathematics & Statistics 38E(Special Issue)(2S), 60–64 (2019) e-ISSN:2320-3226, Print ISSN:0970-6577 Website : https : //www.bpasjournals.com/ DOI: 10.5958/2320-3226.2019.00080.8 c Dr. A.K. Sharma, BPAS PUBLICATIONS, 387-RPS- DDA Flat, Mansarover Park, Shahdara, Delhi-110032, India. 2019 Graceful labeling of some new graphs ∗ J. Jeba Jesintha1, K. Subashini2 and J.R. Rashmi Beula3 1,3. P.G. Department of Mathematics, Women’s Christian College, Affiliated to University of Madras, Chennai-600008, Tamil Nadu, India. 2. Research Scholar (Part-Time), P.G. Department of Mathematics, Women’s Christian College, Affiliated to University of Madras, Chennai-600008, Tamil Nadu, India. 1. E-mail: jjesintha [email protected] , 2. E-mail: [email protected] Abstract A graceful labeling of a graph G with q edges is an injection f : V (G) → {0, 1, 2,...,q} with the property that the resulting edge labels are distinct where the edge incident with the vertices u and v is assigned the label |f (u) − f (v) |. A graph which admits a graceful labeling is called a graceful graph. In this paper, we prove that the series of isomorphic copies of Star graph connected between two Ladders are graceful. Key words Graceful labeling, Path, Ladder Graph, Star Graph. 2010 Mathematics Subject Classification 05C60, 05C78. 1 Introduction In 1967, Rosa [2] introduced the graceful labeling method as a tool to attack the Ringel-Kotzig-Rosa Conjecture or the Graceful Tree Conjecture that “All Trees are Graceful” and he also proved that caterpillars (a caterpillar is a tree with the property that the removal of its endpoints leaves a path) are graceful. -
Total Coloring Conjecture for Certain Classes of Graphs
algorithms Article Total Coloring Conjecture for Certain Classes of Graphs R. Vignesh∗ , J. Geetha and K. Somasundaram Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; [email protected] (J.G.); [email protected] (K.S.) * Correspondence: [email protected] Received: 30 August 2018; Accepted: 17 October 2018; Published: 19 October 2018 Abstract: A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by c00(G), is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, D(G) + 1 ≤ c00(G) ≤ D(G) + 2, where D(G) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph. Keywords: total coloring; lexicographic product; deleted lexicographic product; line graph; double graph MSC: 05C15 1. Introduction All the graphs in this paper are finite, simple and connected. The edge chromatic number of a graph G, denoted by c0(G) , is the smallest number of colors needed to color the edges of G so that no two adjacent edges share the same color. For any graph G, it clear that from the Vizing’s theorem that the edge chromatic number c0(G) ≤ D(G) + 1, where D(G) is the maximum degree of G. If c0(G) = D(G) then G is called class-I graph and if c0(G) = D(G) + 1 then G is called class-II graph. -
On the Euclidean Dimension of Graphs
ON THE EUCLIDEAN DIMENSION OF GRAPHS JIN HYUP HONG GREAT NECK SOUTH HIGH SCHOOL, GREAT NECK, NY AND DAN ISMAILESCU MATHEMATICS DEPARTMENT, HOFSTRA UNIVERSITY, NY arXiv:1501.00204v1 [math.MG] 31 Dec 2014 1 Abstract. The Euclidean dimension a graph G is defined to be the smallest integer d such that the vertices of G can be located in Rd in such a way that two vertices are unit distance apart if and only if they are adjacent in G. In this paper we determine the Euclidean dimension for twelve well known graphs. Five of these graphs, D¨urer, Franklin, Desargues, Heawood and Tietze can be embedded in the plane, while the remaining graphs, Chv´atal, Goldner-Harrary, Herschel, Fritsch, Gr¨otzsch, Hoffman and Soifer have Euclidean dimension 3. We also present explicit embeddings for all these graphs. 1. History and previous work The Euclidean dimension of a graph G = (V, E), denoted dim(G) is the least integer n such that there exists a 1 : 1 embedding f : V Rn for which f(u) f(v) = 1 if and only → | − | if uv E. ∈ The concept was introduced by Erd˝os, Harary and Tutte in their seminal paper [7], where the authors determine the Euclidean dimension for several classes of graphs. For instance, they show that dim(K ) = n 1, where K is the complete graph on n n − n vertices. Using a construction due to Lenz, they also compute the Euclidean dimension of Km,n, the complete bipartite graph with m vertices in one class and n vertices in the other. -
Arxiv:2108.07942V1 [Math.CO]
ALGORITHMIC TECHNIQUES FOR FINDING RESISTANCE DISTANCES ON STRUCTURED GRAPHS E. J. EVANS AND A. E. FRANCIS Abstract. In this paper we give a survey of methods used to calculate values of resistance distance (also known as effective resistance) in graphs. Resistance distance has played a prominent role not only in circuit theory and chemistry, but also in combinatorial matrix theory and spectral graph theory. Moreover resistance distance has applications ranging from quantifying biological struc- tures, distributed control systems, network analysis, and power grid systems. In this paper we discuss both exact techniques and approximate techniques and for each method discussed we provide an illustrative example of the technique. We also present some open questions and conjectures. 1. Introduction The resistance distance (occasionally referred to as the effective resistance) of a graph is a measure that quantifies its structural properties. Resistance distance has its origin in electrical circuit theory and its first known application to graph structure occurred in the analysis of chemical structure [22]. Resistance distance in graphs has played a prominent role not only in circuit theory and chemistry [18, 22, 30], but also in combinatorial matrix theory [4, 36] and spectral graph theory [2, 10, 13, 29]. A few specific examples of the use of resistance distance are: Spielman and Srivastava [29] have used resistance distance between nodes • of graphs to develop an algorithm to rapidly sparsify a given graph while maintaining spectral properties. Ghosh, Boyd, and Saberi [21] considered the problem of minimizing the • total resistance distance by allocating edge weights on a given graph. This problem has applications to Markov chains and continuous-time averaging arXiv:2108.07942v2 [math.CO] 13 Sep 2021 networks. -
Erdös-Ko-Rado Theorems for Chordal and Bipartite Graphs Arxiv
Erdös-Ko-Rado theorems for chordal and bipartite graphs Glenn Hurlbert∗ and Vikram Kamaty School of Mathematical and Statistical Sciences Arizona State University, Tempe, Arizona 85287-1804 April 19, 2019 arXiv:0903.4203v2 [math.CO] 15 Jul 2009 ∗[email protected] (Corresponding author) [email protected] 1 Abstract One of the more recent generalizations of the Erdös-Ko-Rado theorem, for- mulated by Holroyd, Spencer and Talbot [10], denes the Erdös-Ko-Rado prop- erty for graphs in the following manner: for a graph G, vertex v 2 G and some integer r ≥ 1, denote the family of independent r-sets of V (G) by J (r)(G) and (r) (r) the subfamily fA 2 J (G): v 2 Ag by Jv (G), called a star. Then, G is said to be r-EKR if no intersecting subfamily of J (r)(G) is larger than the largest star in J (r)(G). In this paper, we prove that if G is a disjoint union of chordal graphs, including at least one singleton, then is -EKR if µ(G) , where G r r ≤ 2 µ(G) is the minimum size of a maximal independent set. We will also prove Erdös-Ko-Rado results for chains of complete graphs, which are a class of chordal graphs obtained by blowing up edges of a path into complete graphs. We also consider similar problems for ladder graphs and trees, and prove preliminary results for these graphs. Key words. intersecting family, star, independent sets, chordal graphs, trees 2 1 Introduction Let X = [n] = f1; : : : ; ng be a set of size n. -
ON DIFFERENCE CORDIAL GRAPHS 1 Introduction
Mathematica Aeterna, Vol. 5, 2015, no. 1, 105 - 124 ON DIFFERENCE CORDIAL GRAPHS M. A. Seoud Department of Mathematics, Faculty of Science Ain Shams University, Cairo, Egypt [email protected] Shakir M. Salman Department of Mathematics, Basic Education College Diyala University , Diyala , Iraq [email protected] Abstract In this paper we introduce some results in dierence cordial graphs and the dierence cordial labeling for some families of graphs as: lad- der,triangular ladder,grid,step ladder and two sided step ladder graph. Also we discussed some families of graphs which may be dierence cor- dial or not,such as diagonal ladder and some types of one-point union graphs. Mathematics Subject Classication: 05C78 Keywords: Dierence cordial graphs. 1 Introduction In this paper we will deal with nite,simple and undirected graphs. By the expression G = (V; E) we mean a simple undirected graph with vertex set V , jV j is called the order of graph and edge set E, jEj is called its size. Graph labeling connects many branches of mathematics and is considered one of important blocks of graph theory, for more details see [3]. Cordial labeling was rst introduced in 1987 by Cahit [1], then there was a major eort in this area made this topic growing steadily and widely,see[2]. In [4] Ponraj ,Shathish Naraynan and Kala introduce the notions of dier- ence cordial labeling for nite undirected and simple graph,as in the following denition : 106 Seoud and Salman Denition 1.1 Let G = (V; E) be a (p; q) graph,and f be a map from V (G) to 1; 2; :::; p.