Geothermal Resource Assessment of Mississippi

Total Page:16

File Type:pdf, Size:1020Kb

Geothermal Resource Assessment of Mississippi University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2019 Geothermal Resource Assessment of Mississippi Adam Blake Goodwin University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Engineering Science and Materials Commons Recommended Citation Goodwin, Adam Blake, "Geothermal Resource Assessment of Mississippi" (2019). Electronic Theses and Dissertations. 1595. https://egrove.olemiss.edu/etd/1595 This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. GEOTHERMAL RESOURCE ASSESSMENT OF MISSISSIPPI A Thesis Presented in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geology and Geological Engineering The University of Mississippi by ADAM B. GOODWIN May 2019 Copyright © 2019 by Adam Blake Goodwin All rights reserved ABSTRACT Geothermal energy is exploited through the process of using hot water or steam extracted from reservoirs of geothermal heat in Earth's crust which is derived from the upward convection and conduction of heat from Earth’s mantle and core. This energy can be harnessed to power geothermal heat pumps, heat water, or to generate electricity. Previous geothermal assessments of Mississippi have been locally focused, either in the southern Mississippi River flood plains or in eastern north central Mississippi at an active lignite coal mine. The focus of this project was to calculate and map heat flow estimates within the entire state of Mississippi. Assessment of well log datasets, estimating thermal conductivity values within broad stratigraphic intervals, and creating a new geothermal gradient model allowed me to delineate patterns of temperature resources sufficient for future geothermal applications. This study also provides preliminary geophysical evidence of a high geothermal temperature gradient spatially associated with major tectonic features in Mississippi. The potential economic reward for mapping this clean, renewable energy source could be enormous. The overall environmental impacts are considerably lower than fossil fuel and nuclear power plants. The future of geothermal systems also has the potential for lower impacts in comparison to other renewables like solar, biomass, and wind. This is because the power source is contained underground, and the energy conversion equipment is relatively compact making the overall environmental footprint very small in comparison with other sources. ii DEDICATION This thesis is dedicated to Grace and Meghan Goodwin, I would not have been able to complete this without the love, patients, and encouragement from both of you. iii LIST OF ABBREVIATIONS AND SYMBOLS BHT Bottom hole temperature DEM Digital elevation model EGS Enhanced geothermal systems IDW Inverse distance weighting ISO Isopach TC Thermal conductivity Th Thorium K Potassium U Uranium Cz Cenozoic K-Pg Cretaceous – Paleogene LK Lower Cretaceous Pz Paleozoic UK Upper Cretaceous UJ Upper Jurassic °C/km Degrees Celsius per kilometer Δ °C Change in temperature, degrees Celsius kwh Kilowatt hour MW Megawatts mW/m2 Milliwatts per square meter W/m2 Watts per square meter W/m∙K Watts per meter degrees kelvin WTC Weighted thermal conductivity AAPG American Association of Professional Geologist DOE Department of Energy iv GSNA Geothermal Survey of North America MDEQ Mississippi Department of Environmental Quality MISB Mississippi Interior Salt Basin OPEC Organization of the Petroleum Exporting Countries SMU Southern Methodist University USEIA United States Energy Information Agency v ACKNOWLEDGMENTS I would first like to thank the Department of Geology and Geological Engineering along with my thesis committee, which consisted of Dr. Louis Zachos, Dr. Greg Easson, and Dr. Lance Yarbrough. I met with Dr. Zachos during my first semester with an idea on doing a project that something to do with geothermal resources. Throughout my thesis, Dr. Zachos’s experience in ArcGIS, geology, and engineering applications guided me through this project. Dr. Zachos is a patient mentor, great advisor, and most of all a good friend, thank you for all your help in our weekly meetings. I am very grateful for Mississippi Mineral Resource Institute for providing a sponsorship for my studies during my final year at the University of Mississippi. Dr. Easson surprised me with the opportunity to continue my research with a research assistantship position, and I want to say thank you very much. Without it I doubt I would have had time to finish with my busy family life. I would also like to thank Dr. Yarbrough for his support with the engineering calculations he helped derive. The complex raster creation and processing I was preforming would sometimes cloud my judgement and he was always there to assist with equations. Thank you all very much, I will never forget all the help you have given me. Thank you to Dr. David Dockery, Mississippi Department of Environmental Quality, for sending me the available data set for the state of Mississippi and for your geological interpretations. vi I would also like to thank Dr. Murlene Clark for the motivation, help, and encouragement to go for my masters. Without your help I would have never submitted my application for the geological program. Her personality and intelligence have provided so much inspiration and I want to thank you for everything you have done for me. I also want to thank Dr. David Allison for all the opportunities he has given me preforming undergraduate research along with the mentorship he provided in making me a better geologist. Lastly, I want to thank my parents Peggy R. Goodwin, Gary Goodwin, my brother and Zach Goodwin and wife Jennifer Goodwin, and my grandparents Libby Williford and Henry Williford. I am sincerely thankful for all the love, support, and encouragement you all have given me. Without it I would not be where I am today, thank you so much. vii TABLE OF CONTENTS ABSTRACT ………………………………………………………………………………...…....ii DEDICATION …………………………………………………………………...……………...iii LIST OF ABBREVIATIONS AND SYMBOLS ………………………………………………..iv ACKOWLEDGMENTS …………………………………………………………………………vi LIST OF TABLES ………………………………………………...…………………………..….x LIST OF FIGURES…………………………………………………………………...………….xi INTRODUCTION ………………………………………………………………………………..1 GEOLOGICAL SETTING ……………………………………………………………………….4 GULF OF MEXICO GEOLOGICAL SETTING ………………………………………...4 MISSISSIPPI GEOLOGICAL SETTING ………………………………………………..6 MISSISSIPPI INTERIOR SALT BASIN ………………………………………………...8 SALT DOMES AS A POSSIBLE SOURCE OF GEOTHERMAL ENERGY ………….9 JACKSON DOME ………………………………………………………………………11 HEAT FLOW …………………………………………………………………………...14 MATERIALS AND METHODOLOGY ………………………………………………………..17 BOTTOME HOLE TEMPERATURE CORRECTION ………………………………...20 GEOTHERMAL GRADIENT …………………………………………….…………….21 GEOLOGIC STRUCTURE...……………….. ………………………………………….25 ISOPACH ……………………………………………………………………………….29 THERMAL CONDUCTIVITY …………………………………………………………35 viii RESULTS ……………………………………………………………………………………….38 BOTTOM HOLE TEMPERATURE …………………………………………...…….…38 ABSOLUTE TEMPERATURE …………………………………………….…………...40 GEOTHERMAL GRADIENT …………………………………………….………….....42 THERMAL CONDUCTIVITY ………………………………………….…...………....43 HEAT FLOW …………………………………………………………….…...………....49 CONCLUSION ………………………………………………………………………….………51 REFERENCES ……………………………………………………….…………………………53 APPENDIX ….………………….………….………………...………………….………………58 VITA …………………………………………………………………….………………………71 ix LIST OF TABLES Table 1 — Thermal Conductivities Based on Composition ……………………………………35 Table 2 — Thermal conductivities estimates used based on composition for each era. …....….36 x LIST OF FIGURES Figure 1 — Map of Mississippi and the Interior Salt Basin ………………………….….………3 Figure 2 — Map of the Opening of the Gulf of Mexico ………………………………………...4 Figure 3 — Map of the Distribution of Salt Deposits along the Gulf Coast ………………….....6 Figure 4 — A typical Salt Dome ………………………………………………………………...7 Figure 5 — Geological Structure Map of Mississippi …………………………….…………….8 Figure 6 — Cross section through a Gulf Regional Salt Dome ……………………………......10 Figure 7 — Locator Map of the Jackson Dome ……………………………………………......11 Figure 8 — Cross Section of the Jackson Dome …………………………………………....….12 Figure 9 — SMU’s conterminous United States Heat flow map ……………………………....16 Figure 10 — The locations of different data sets used in this assessment ………………….….18 Figure 11 — Histogram showing number of wells versus depth ……………………………....19 Figure 12 — Geothermal Gradient Map of Mississippi …………………………………….….23 Figure 13 — Geothermal Gradient Anomalies within the data ………………………………...24 Figure 14 — Top of Upper Cretaceous …………………….….………….….………………...26 Figure 15 — Top of Lower Cretaceous ………………………...……………….….……….….27 Figure 16 — Top of Upper Jurassic …………………….….………….………….….…………27 Figure 17 — Top of Paleozoic …………………….….……………….……………….……….28 Figure 18 — Top of Precambrian ……….…………….….….….….….……………..….……..28 Figure 19 — Cenozoic Isopach Map ..………………………………………………...………..30 Figure 20 — Upper Cretaceous Isopach Map ...………………………………………………...31 Figure 21 — Lower Cretaceous Isopach Map ..…………………………………….…………..32 Figure 22 — Upper Jurassic Isopach Map ..………………………………………….…………33 Figure 23 — Paleozoic Isopach Map …..……………………………………………………….34 Figure 24 — Scatter plot of wells BHT versus depth imperial …..…. ...………….….….……..38 Figure 25 — Scatter plot of wells BHT versus depth
Recommended publications
  • Constraining Basin Parameters Using a Known Subsidence History
    geosciences Article Constraining Basin Parameters Using a Known Subsidence History Mohit Tunwal 1,2,* , Kieran F. Mulchrone 2 and Patrick A. Meere 1 1 School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland; [email protected] 2 School of Mathematical Sciences, University College Cork, Western Gateway Building, Western Road, T12 XF62 Cork, Ireland; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +353-21-490-4580 Received: 5 June 2020; Accepted: 6 July 2020; Published: 9 July 2020 Abstract: Temperature history is one of the most important factors driving subsidence and the overall tectono-stratigraphic evolution of a sedimentary basin. The McKenzie model has been widely applied for subsidence modelling and stretching factor estimation for sedimentary basins formed in an extensional tectonic environment. Subsidence modelling requires values of physical parameters (e.g., crustal thickness, lithospheric thickness, stretching factor) that may not always be available. With a given subsidence history of a basin estimated using a stratigraphic backstripping method, these parameters can be estimated by quantitatively comparing the known subsidence curve with modelled subsidence curves. In this contribution, a method to compare known and modelled subsidence curves is presented, aiming to constrain valid combinations of the stretching factor, crustal thickness, and lithospheric thickness of a basin. Furthermore, a numerical model is presented that takes into account the effect of sedimentary cover on thermal history and subsidence modelling of a basin. The parameter fitting method presented here is first applied to synthetically generated subsidence curves. Next, a case study using a known subsidence curve from the Campos Basin, offshore Brazil, is considered.
    [Show full text]
  • Coupled Onshore Erosion and Offshore Sediment Loading As Causes of Lower Crust Flow on the Margins of South China Sea Peter D
    Clift Geosci. Lett. (2015) 2:13 DOI 10.1186/s40562-015-0029-9 REVIEW Open Access Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea Peter D. Clift1,2* Abstract Hot, thick continental crust is susceptible to ductile flow within the middle and lower crust where quartz controls mechanical behavior. Reconstruction of subsidence in several sedimentary basins around the South China Sea, most notably the Baiyun Sag, suggests that accelerated phases of basement subsidence are associated with phases of fast erosion onshore and deposition of thick sediments offshore. Working together these two processes induce pressure gradients that drive flow of the ductile crust from offshore towards the continental interior after the end of active extension, partly reversing the flow that occurs during continental breakup. This has the effect of thinning the continental crust under super-deep basins along these continental margins after active extension has finished. This is a newly recognized form of climate-tectonic coupling, similar to that recognized in orogenic belts, especially the Himalaya. Climatically modulated surface processes, especially involving the monsoon in Southeast Asia, affects the crustal structure offshore passive margins, resulting in these “load-flow basins”. This further suggests that reorganiza- tion of continental drainage systems may also have a role in governing margin structure. If some crustal thinning occurs after the end of active extension this has implications for the thermal history of hydrocarbon-bearing basins throughout the area where application of classical models results in over predictions of heatflow based on observed accommodation space.
    [Show full text]
  • Geothermal Gradient Calculation Method: a Case Study of Hoffell Low- Temperature Field, Se-Iceland
    International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 4(6) pp. 163-175, September, 2014 DOI: http:/dx.doi.org/10.14303/irjgm.2014.026 Available online http://www.interesjournals.org/irjgm Copyright©2014 International Research Journals Full Length Research Paper Geothermal Gradient Calculation Method: A Case Study of Hoffell Low- Temperature Field, Se-Iceland Mohammed Masum Geological Survey of Bangladesh, 153, Pioneer Road, Segunbagicha, Dhaka-1000, BANGLADESH E-mail: [email protected] ABSTRACT The study area is a part of the Geitafell central volcano in southeast Iceland. This area has been studied extensively for the exploration of geothermal resources, in particular low-temperature, as well as for research purposes. During the geothermal exploration, geological maps should emphasize on young corresponding rocks that could be act as heat sources at depth. The distribution and nature of fractures, faults as well as the distribution and nature of hydrothermal alteration also have to known. This report describes the results of a gradient calculation method which applied to low-temperature geothermal field in SE Iceland. The aim of the study was to familiarize the author with geothermal gradient mapping, low-temperature geothermal manifestations, as well as studying the site selection for production/exploration well drilling. Another goal of this study was to make geothermal maps of a volcanic field and to analyse if some relationship could be established between the tectonic settings and the geothermal alteration of the study area. The geothermal model of the drilled area is consistent with the existence of a structurally controlled low-temperature geothermal reservoir at various depths ranging from 50 to 600 m.
    [Show full text]
  • Geothermal Energy
    GEOLOGICAL SURVEY CIRCULAR 519 Geothermal Energy Geothermal Energy By Donald E. White GEOLOGICAL SURVEY CIRCULAR 519 Washington 1965 United States Department of the Interior STEWART l. UDALL, Secretary Geological Survey William T. Pecora, Director First printing 1965 Second printing 1966 Free on application to the U.S. Geological Survey, Washington, D.C. 20242 CONTENTS Page Page Abstract--------------------------- 1 Hydrothermal systems of composite Introduction------------------------ 1 type---------------------------- 9 Acknowledgments------------------- 2 General problems of utilization ----- 10 Areas of "normal" geothermal Domestic and world resources of gradient ------------------------- 2 geothermal energy--------------- 12 Large areas of higher-than-"normal" Assumptions# statistics, and geothermal gradient--------------- 3 conversion factors--------------- 14 Hot spring areas-------------------- 4 References cited___________________ 14 TABLE Page Table 1. Natural heat flows of some hot spring areas of the world--------------------- 5 III Geothermal Energy By Donald E. White ABSTRACT commercially developed hot spring areas at rates of five to more than 10 times their rates of natural heat flow prior to The earth is a tremendous reservoir of heat, most of which development. Such overdrafts, in at least some systems, can is too deeply buried or too diffuse to consider as recoverable continue for many years, the excess heat being suppli-ed energy. Some large areas are higher-than-"normal" in heat from the heat reservoir. Eventually, depending on the char­ content, particularly in regions of volcanic and tectonic ac­ acteristics of each individual system, the effects of sus­ tivity. Recovery of stored heat from these large areas may tained overdraft must become evident. be economically feasible in the future but cannot compete in cost now with other forms of energy.
    [Show full text]
  • Modern and Ancient Hiatuses in the Pelagic Caps of Pacific Guyots and Seamounts and Internal Tides GEOSPHERE; V
    Research Paper GEOSPHERE Modern and ancient hiatuses in the pelagic caps of Pacific guyots and seamounts and internal tides GEOSPHERE; v. 11, no. 5 Neil C. Mitchell1, Harper L. Simmons2, and Caroline H. Lear3 1School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK doi:10.1130/GES00999.1 2School of Fisheries and Ocean Sciences, University of Alaska-Fairbanks, 905 N. Koyukuk Drive, 129 O’Neill Building, Fairbanks, Alaska 99775, USA 3School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK 10 figures CORRESPONDENCE: neil .mitchell@ manchester ABSTRACT landmasses were different. Furthermore, the maximum current is commonly .ac .uk more important locally than the mean current for resuspension and transport Incidences of nondeposition or erosion at the modern seabed and hiatuses of particles and thus for influencing the sedimentary record. The amplitudes CITATION: Mitchell, N.C., Simmons, H.L., and Lear, C.H., 2015, Modern and ancient hiatuses in the within the pelagic caps of guyots and seamounts are evaluated along with of current oscillations should therefore be of interest to paleoceanography, al- pelagic caps of Pacific guyots and seamounts and paleotemperature and physiographic information to speculate on the charac- though they are not well known for the geological past. internal tides: Geosphere, v. 11, no. 5, p. 1590–1606, ter of late Cenozoic internal tidal waves in the upper Pacific Ocean. Drill-core Hiatuses in pelagic sediments of the deep abyssal ocean floor have been doi:10.1130/GES00999.1. and seismic reflection data are used to classify sediment at the drill sites as interpreted from sediment cores (Barron and Keller, 1982; Keller and Barron, having been accumulating or eroding or not being deposited in the recent 1983; Moore et al., 1978).
    [Show full text]
  • Deep Geothermal Processes Acting on Faults and Solid Tides in Coastal
    Physics of the Earth and Planetary Interiors 264 (2017) 76–88 Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China ⇑ Guoping Lu a,b, , Xiao Wang b, Fusi Li b, Fangyiming Xu b, Yanxin Wang b, Shihua Qi b, David Yuen c a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China b School of Environmental Studies, China University of Geosciences, Wuhan 430074, China c Institute of Supercomputing, The University of Minnesota, Twins, United States article info abstract Article history: This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Received 13 April 2016 Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, Received in revised form 27 December 2016 which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order Accepted 27 December 2016 to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as Available online 29 December 2016 a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature mea- surements at the springs or wells constrain the upper boundary, and the temperature inferred from the Keywords: Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to Solid tide revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in Geothermal Reservoir terms of its formation and heat distribution.
    [Show full text]
  • Part 1 Classical Numerical Models of Basin Formation and Evolution with Applications to the Central European Basin System
    Part 1 Classical numerical models of basin formation and evolution with applications to the Central European Basin System (CEBS) 1.1 Kinematic models for basin formation and evolution 1.1.1 Purely thermal models The first class of models to explain vertical movements in continental regions closely resembled the thermal model which has been successfully used for oceanic lithosphere (e.g. Vogt & Ostenso, 1967). Following this approach, the subsidence of continental shelves could in principle be related to thermal contraction beneath the crust. This conclusion reflects the concept that the tectonic subsidence of continental lithosphere decreases exponentially as a function of time with a time constant very close to that typical of a mid-ocean ridge (Sleep, 1971; Steckler & Watts, 1978). Sleep (1971) proposed a major thermal perturbation as the driving mechanism for subsidence, see Figure 1. Following his model, the thermal anomaly heats the entire lithosphere causing consequent uplifting of the crust by thermal expansion. Subsequent removal of the upper crustal layers by erosion together with the resultant cooling produce subsidence below the original surface level creating a basin. Figure 1. Cartoon illustrating the thermal driven subsidence as proposed by Sleep (1971). Doming due to thermal perturbation causes uplift. Erosion and subsequent subsidence creates a basin. - 1 - The model of Sleep (1971) accounts rather well for the time history of subsidence, however, the explanation is inconsistent with the large sediment accumulations frequently observed. Once the temperature of the lithosphere increased, first the surface is elevated and then starts to subside to its original position due to the cooling of the lithosphere, Case A of Figure 1.
    [Show full text]
  • Geothermal Gradient - Wikipedia 1 of 5
    Geothermal gradient - Wikipedia 1 of 5 Geothermal gradient Geothermal gradient is the rate of increasing temperature with respect to increasing depth in the Earth's interior. Away from tectonic plate boundaries, it is about 25–30 °C/km (72-87 °F/mi) of depth near the surface in most of the world.[1] Strictly speaking, geo-thermal necessarily refers to the Earth but the concept may be applied to other planets. The Earth's internal heat comes from a combination of residual heat from planetary accretion, heat produced through radioactive decay, latent heat from core crystallization, and possibly heat from other sources. The major heat-producing isotopes in the Earth are potassium-40, uranium-238, uranium-235, and thorium-232.[2] At the center of the planet, the temperature may be up to 7,000 K and the pressure could reach 360 GPa (3.6 million atm).[3] Because much of the heat is provided by radioactive decay, scientists believe that early in Earth history, before isotopes with short half- lives had been depleted, Earth's heat production would have been much Temperature profile of the inner Earth, higher. Heat production was twice that of present-day at approximately schematic view (estimated). 3 billion years ago,[4] resulting in larger temperature gradients within the Earth, larger rates of mantle convection and plate tectonics, allowing the production of igneous rocks such as komatiites that are no longer formed.[5] Contents Heat sources Heat flow Direct application Variations See also References Heat sources Temperature within the Earth
    [Show full text]
  • A Seismic Tool to Reduce Source Maturity Risk in Unexplored Basins
    first break volume 32, March 2014 special topic Modelling/Interpretation A seismic tool to reduce source maturity risk in unexplored basins Neil Hodgson1*, Anongporn Intawong1, Karyna Rodriguez1 and Mads Huuse2 present a pow- erful new seismic method for estimating heat flow in undrilled basins. ecent exploration drilling has derisked the presence and maturity of Aptian source rock in the northern R and southern basins offshore Namibia, yet the deep- water of the central Luderitz Basin remains undrilled. While modern regional seismic demonstrates the presence of the Aptian source rock in this basin, conventionally we have no tools to interrogate heat flow in an undrilled basin and have to resort to closeology, trendology and even structural- analogy to derive comfort for source maturity. However, geotherm estimation derived from the pres- ence of bottom-simulating reflections (BSR’s) is a powerful, under-utilized seismic method for evaluating source rock maturity in undrilled basins, and is applied here to the Luderitz basin. A seismically derived geothermal gradient map conflated with new depth mapping of the source rock in this deepwater basin provides a method for defining an oil generative window – the ‘Goldilocks Zone’, and constraining source rock maturity (or ‘effectiveness’) risk. This technique is not exclusive to Namibia, and its applica- tion in many other deepwater clastic basins provides a tool for stimulating explorers to create a constrained geotherm Figure 1 Spectrum dataset, basin distribution and location of the wells dis- and source rock atlas of countless undrilled frontier basins cussed in this article. around the world. factors could affect the localized heat flow within the Setting the scene basin, yielding source rock maturity ‘cold spots’ – even at As revealed in a previous First Break article (Hodgson and an equivalent depth to that seen in wells drilled in offset Intawong, FB Dec 2013), recent exploration wells operated (adjacent) basins.
    [Show full text]
  • Geothermal Regime of the World Sedimentary Basins
    Geothermal Regime of the World Sedimentary Basins Astakhov S.M.*1 – [email protected] Reznikov A.N.2 1OJSC Krasnodarneftegeophysica, 2Southern Federal University Copyright 2012, SBGf - Sociedade Brasileira de Geofísica Este texto foi preparado para a apresentação no V Simpósio Brasileiro de Geofísica, Salvador, 27 a 29 de novembro de 2012. Seu conteúdo foi revisado pelo Comitê Técnico do V SimBGf, mas não necessariamente representa a opinião da SBGf ou de seus associados. É proibida a reprodução total ou parcial deste material para propósitos comerciais sem prévia autorização da SBGf. ________________________________________________________________________ Resume The type of geothermal regime is considered as the significant attribute influenced on the paleotemperature reconstruction methodology and heat flow analysis especially in basin modeling approach. That is the relevance of this study related with. A number of generalized equations were obtained by detailed studying of the temperature-depth profiles and various geothermal indicators al over the world. Three main "summarizing" groups of factors were identified. These allowed classifying all equations obtained into 3 classes: Anomalous, Normal and Magmatic intrusions influenced geothermal regimes. Introduction The temperature distribution along the section is considered to be the quintessence of the various factors influencing the final accumulation of hydrocarbons (HC). In this mind, the generalization up-to-date studies on the sedimentary basins geothermal regime characteristics are of great interest. Temperature-depth profiles and various geothermal indicators in more than 5,000 wells and measurements were studied. 307 equations that characterize the geothermal regime of the various basins were calculated. Certain features of the temperature profiles and calculated equations were identified.
    [Show full text]
  • Geothermal Favorability Model of Washington State
    S E E C R U O S S GEOTHERMAL FAVORABILITY E E MODEL OF WASHINGTON STATE R L by Darrick E. Boschmann, Jessica L. Czajkowski, and A A Jeffrey D. Bowman R R U WASHINGTON DIVISION OF GEOLOGY T T AND EARTH RESOURCES A A N N Open File Report 2014-02 July 2014 GEOTHERMAL FAVORABILITY MODEL OF WASHINGTON STATE by Darrick E. Boschmann, Jessica L. Czajkowski, and Jeffrey D. Bowman WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Open File Report 2014-02 July 2014 DISCLAIMER Neither the State of Washington, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the State of Washington or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the State of Washington or any agency thereof. WASHINGTON STATE DEPARTM ENT OF NATURAL RESOURCES Peter Goldmark—Commissioner of Public Lands DIVISION OF GEOLOGY AND EARTH RESOURCES David K. Norman—State Geologist John P. Bromley—Assistant State Geologist Washington Department of Natural Resources Di vi sion of Geology and Earth Resources Mailing Address: Street Address: MS 47007
    [Show full text]
  • Potential for Geothermal Energy in Northern Louisiana
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2015 Potential for Geothermal Energy in Northern Louisiana: Analysis of the Subsurface Environment in Union and Morehouse Parishes Tessa Shizuko Hermes Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Hermes, Tessa Shizuko, "Potential for Geothermal Energy in Northern Louisiana: Analysis of the Subsurface Environment in Union and Morehouse Parishes" (2015). LSU Master's Theses. 2658. https://digitalcommons.lsu.edu/gradschool_theses/2658 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. POTENTIAL FOR GEOTHERMAL ENERGY IN NORTHERN LOUISIANA: ANALYSIS OF THE SUBSURFACE ENVIRONMENT IN UNION AND MOREHOUSE PARISHES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geology and Geophysics by Tessa Shizuko Hermes B.A., Oberlin College, 2009 December 2015 Acknowledgments I would like to thank my advisors, Drs. Barb Dutrow and Jeff Nunn, for their support, guidance, and patience throughout this endeavor. Dr. Dutrow was the on-campus representative for my advising team, meeting with me at least once a week to discuss my work, progress, and to answer any questions I might have either in person or via email.
    [Show full text]