Long-Term Subsidence and Compaction Rates: a New Model for the Michoud Area, South Louisiana Clint H

Total Page:16

File Type:pdf, Size:1020Kb

Long-Term Subsidence and Compaction Rates: a New Model for the Michoud Area, South Louisiana Clint H Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2008 Long-term subsidence and compaction rates: a new model for the Michoud area, south Louisiana Clint H. Edrington Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Edrington, Clint H., "Long-term subsidence and compaction rates: a new model for the Michoud area, south Louisiana" (2008). LSU Master's Theses. 356. https://digitalcommons.lsu.edu/gradschool_theses/356 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. LONG-TERM SUBSIDENCE AND COMPACTION RATES: A NEW MODEL FOR THE MICHOUD AREA, SOUTH LOUISIANA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science In The Department of Geology By Clint H. Edrington B.S., University of New Orleans, 2005 May, 2008 ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Michael “Mike” Blum, for the many resources provided during my study, particularly for his influence in my choice of a thesis topic, which is such a critical issue facing south Louisiana, as well as the many stimulating ideas provided along the way. I would also like to thank committee members Dr. Jeffrey Nunn and Dr. Jeffrey Hanor for their advice and guidance, as they provided much insight from their respective areas of research. Of course, many others contributed to this thesis in many ways, both large and small: I would like to thank Dominion Exploration and Production for micropaleontological data, GEOMAP Company for structure maps, both the Louisiana Geological Survey and the Louisiana Department of Natural Resources for various subsurface data and guidance, both the Department of Geology and Geophysics at Louisiana State University and the National Science Foundation for financial support, and both faculty and fellow graduate students here in the Department, most notably Dr. Blum’s students, i.e. my good friends. Finally, and certainly not least, I would like to thank my family and friends who provided encouragement, support, and inspiration throughout my study, and an outlet when I needed to break away from it. ii TABLE OF CONTENTS ACKNOWLEDGMENTS ………………………………………………………………………. ii LIST OF TABLES ……………………………………………………………………………..... v LIST OF FIGURES …………………………………………………………………………….. vi ABSTRACT …………………………………………………………………………………… vii INTRODUCTION ……………………………………………………………………………..... 1 BACKGROUND ………………………………………………………………………………... 3 Study Area ………………………………………………………………………………. 3 Evolution of the Gulf of Mexico Basin ...………………………………………………... 3 Migration of Depocenters in South Louisiana and the Adjacent Continental Shelf: Miocene – Present ...……………………………………………………………………... 6 Salt Tectonic Controls: Emphasis on the Northern Gulf Margin ...……………………. 10 Compaction …………………………………………………………………………….. 14 Modern Subsidence …………………………………………………………………….. 15 METHODS …………………………………………………………………………………….. 22 Long-Term Subsidence Rate Calculations ……………………………………………... 22 Long-Term Compaction Rate Calculations ……………………………………………. 27 RESULTS ……………………………………………………………………………………… 37 Subsidence and Compaction Rates …………………………………………………….. 37 Long-Term Subsidence Rates ………………………………………………….. 37 Long-Term Compaction Rates ………………………………………………… 37 Structural Cross Section ……………………………………………………………….. 37 First-Order Interpretations .............................................................................................. 40 Differential Movement of Faults and Subsidence Rates ……………………… 40 A Revised Structural Cross Section …………………………………………… 41 Activation Order of Faults …………………………………………………….. 46 Differential Movement of Faults and Compaction Rates ……………………... 46 DISCUSSION ………………………………………………………………………………….. 48 The Michoud Fault ……………………………………………………………………... 48 Rate Comparison: Dokka (2006) and This Study ……………………………………… 48 Subsidence Rates: The Last 100 kyrs ………………………………………………….. 50 The Last 4,000 yrs ……………………………………………………………… 51 The Baton Rouge-Tepetate Fault System as a Model for the Michoud Fault …………. 54 CONCLUSIONS ………………………………………………………………………………. 56 REFERENCES ………………………………………………………………………………… 59 iii APPENDIX: SOURCES OF ERROR: ASSUMPTIONS AND METHODS …………………. 66 VITA …………………………………………………………………………………………… 70 iv LIST OF TABLES 1. Long-term subsidence and compaction rates for the Michoud study area ……..………. 38 v LIST OF FIGURES 1. LandSat image of southeast Louisiana and the Michoud study area …………….……… 4 2. Late Pliocene – Quaternary glacio-eustasy and the northern Gulf margin ……………… 7 3. The Miocene section of south Louisiana and the adjacent continental shelf .…………… 8 4. Locations of the depocenter during the Pliocene – Pleistocene …………………………. 9 5. The Cenozoic northern GOM margin divided into four structural provinces …………. 11 6. Evolution of allochthonous salt within the Eastern Province ………………………….. 12 7. Mechanisms, both anthropogenic and natural, contributing to modern land subsidence in south Louisiana ……………………………………………………………………… 16 8. Holocene RSL curve for the Mississippi Delta region ………………………………… 17 9. Subsidence model from Dokka (2006) for the Michoud area ………………………….. 20 10. LandSat images of the Michoud study area ……………………………………………. 23 11. Structure maps of the study area ……………………………………………………….. 28 12. Schematic representation of “decompacting” a sediment column ……………………... 31 13. Porosity versus depth profiles for south Louisiana …………………………………….. 33 14. Semi-log graph representations of the Dickinson (1953) porosity versus depth curve ... 34 15. Image of a 700 ft section taken from well log 146563 ………………………………… 35 16. Preliminary cross section of the Michoud study area ………………………………….. 39 17. Modification of Figure 11 (A) …………………………………………………………. 42 18. Final cross section of the Michoud study area …………………………………………. 44 19. Fault interpretations projected onto subsidence rates of the three Miocene horizons …. 45 20. Stratigraphic cross section of East New Orleans ………………………………………. 52 21. The New Orleans Barrier Complex ……………………………………………………. 53 22. Fault displacement history of the Baton Rouge-Tepetate Fault System ………………. 55 vi ABSTRACT This study examined the stratigraphic record of the Michoud area in East New Orleans, Louisiana to address questions concerning the magnitude of, and processes leading to land- surface subsidence. The hypotheses under review are based on recent geodetic studies, which challenge the widely held position that modern subsidence is primarily a function of shallow sediment compaction. Testing these hypotheses involved constructing a structural cross section of the Michoud area using well logs, chronostratigraphic data, and fault picks, so as to evaluate differential motion along specific faults through time. Employing ages and corrected depths for three key subsurface horizons, long-term (Middle Miocene to Present) time-averaged subsidence rates were calculated: rates range from -0.140 to -0.177 m/kyrs (-0.140 to -0.177 mm/yr). Long- term subsidence rates are incompatible with those derived from geodetic studies: geodetically derived subsidence rates (-14.2 to -23.0 mm/yr) for the Michoud area are two orders of magnitude greater than long-term subsidence rates. Considering the scale of resolution of respective techniques, caution is advised when comparing respective subsidence rates. Nevertheless, the new subsurface, structural model for the Michoud area suggests reactivation of local faults, including any recent movement of the Michoud Fault, is a transient phenomenon that is likely related to rapid Quaternary sediment loading. It is reasonable to compare mean long- term compaction rates, which is a component of total subsidence, derived from this research to geodetically derived compaction rates of pre-Holocene strata. Using a standard decompaction technique, mean long-term compaction rates for strata residing above the Middle Miocene Bigenerina Humblei horizon were calculated: rates range from -0.0704 to -0.0914 m/kyrs (-0.0704 to -0.0914 mm/yr), which are two orders of magnitude less than geodetically derived, pre-Holocene strata compaction rates (-4.6 mm/yr). The findings of this research, particularly the discrepancy between mean long-term compaction rates derived in this study and pre- vii Holocene compaction rates derived geodetically, raises questions into the interpretations and/or accuracy of the geodetic data for the Michoud area, and therefore, the subsidence rates determined from such data. viii INTRODUCTION Land-surface subsidence is the cumulative effect of processes that operate over different spatial and temporal scales, and at different depths. At its essence, subsidence creates accommodation. Accommodation leads to sediment accumulation, and over a large spatial and temporal scale, subsidence ultimately forms a sedimentary basin. The structural evolution of the Gulf of Mexico (GOM) basin, in particular, has been, and is currently affected by a number of subsidence mechanisms (Kulp, 2000). The scope of this thesis examines two such mechanisms in south Louisiana: faulting and compaction. Recent research on subsidence mechanisms has produced seemingly incompatible results. One view,
Recommended publications
  • Sediment Diagenesis
    Sediment Diagenesis http://eps.mcgill.ca/~courses/c542/ SSdiedimen t Diagenes is Diagenesis refers to the sum of all the processes that bring about changes (e.g ., composition and texture) in a sediment or sedimentary rock subsequent to deposition in water. The processes may be physical, chemical, and/or biological in nature and may occur at any time subsequent to the arrival of a particle at the sediment‐water interface. The range of physical and chemical conditions included in diagenesis is 0 to 200oC, 1 to 2000 bars and water salinities from fresh water to concentrated brines. In fact, the range of diagenetic environments is potentially large and diagenesis can occur in any depositional or post‐depositional setting in which a sediment or rock may be placed by sedimentary or tectonic processes. This includes deep burial processes but excldludes more extensive hig h temperature or pressure metamorphic processes. Early diagenesis refers to changes occurring during burial up to a few hundred meters where elevated temperatures are not encountered (< 140oC) and where uplift above sea level does not occur, so that pore spaces of the sediment are continually filled with water. EElarly Diagenesi s 1. Physical effects: compaction. 2. Biological/physical/chemical influence of burrowing organisms: bioturbation and bioirrigation. 3. Formation of new minerals and modification of pre‐existing minerals. 4. Complete or partial dissolution of minerals. 5. Post‐depositional mobilization and migration of elements. 6. BtilBacterial ddtidegradation of organic matter. Physical effects and compaction (resulting from burial and overburden in the sediment column, most significant in fine-grained sediments – shale) Porosity = φ = volume of pore water/volume of total sediment EElarly Diagenesi s 1.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Sedimentary Test 2 Review Guide Making Sedimentary Rocks 1
    Name: KEY Unit III: Section 3: Sedimentary Processes Earth & Environmental Systems Science Test 2 Review Guide Sedimentary Test 2 Review Guide Making Sedimentary Rocks 1. What vocabulary word describes turning sediment into solid rock? Lithification = compaction + cementation 2. List and describe the processes to form sediment and then a sedimentary rock in order? - Weathering – breaking down - Erosion – moving/transporting sediment - Deposition – putting sediment into place Sediment MADE! Lithification: Turning sediment into a solid rock -Compaction – generally through burial and reduces pore space -Cementation – gluing sediment together using a mineral water solution Sedimentary Rock MADE! 3. What acts as glue to form Clastic and Bioclastic textured sedimentary rocks? Water moves through soil and rocks and dissolves minerals along the way. The mineral water solution settles in the sediment, the water evaporates, and the minerals are left behind to bind sediment. Uniformitarianism and Stratigraphy 4. What geological principle states that the same processes that operate today also operated in the past? Uniformitarianism – James Hutton 5. List and describe the 3 laws of Stratigraphy: -Law of Horizontal Deposition – Sediment is deposited and lithified in flat layers -Law of Superposition – oldest layers are on the bottom and youngest is on the top -Law of Cross-cutting – anything that cuts across sedimentary layers (faults or igneous intrusions) are younger than the layers that they cut across 6. What is an unconformity? Any process that disturbs sedimentary layers 7. List and describe the 3 types of unconformities: -Angular – beds are tilted (by plate tectonics), weathered and eroded, and new beds are placed on top at a different angle -Nonconformity – Igneous beds eat through sedimentary beds from the bottom -Disconformity – Sedimentary beds are missing due to weathering and erosion generally drawn as a straight squiggly line.
    [Show full text]
  • Scientist Guide the Crayon Rock Cycle
    Scientist Guide The Crayon Rock Cycle Introduction Soil is one of Earth’s most important natural resources. It is the bridge between the living and non- living worlds and ultimately where most of our food originates. Soil is composed of organic materi- al (humus), water, air and minerals. Rocks are mixtures of minerals such as quartz, feldspar, mica and calcite. They are the source of all soil mineral material and the origin of all plant nutrients with the exception of nitrogen, hydrogen and carbon. As rock is chemically and physically weathered, eroded and precipitated, it is trans- formed into soil. The rock cycle shows how rocks change over time by a variety of physical and chemical processes (see Figure 1). Natural processes that are part of the rock cycle include weathering, erosion, lithifi- cation, metamorphism, melting and cooling. • Weathering involves both the chemical and physical IGNEOUS ROCK Weathering breakdown of rock at or near the Earth’s surface. and Erosion Cooling This results in accumulation of sediments – loose materials, such as rock and mineral fragments, or Sediment Magma pieces of animal and plant remains that have been transported. Lithification (Compaction and Cementation) Melting • Erosion is the process by which soil and rock are removed from the Earth’s surface by exogenic SEDIMENTARY METAMORPHIC processes, such as wind or water flow, and then ROCK ROCK transported and deposited in other locations. Metamorphism (Heat and/or Pressure) • Lithification is the transformation of sediment into rock. The main processes involved in lithification are: Figure 1. o Cementation – large sediments are held together by natural cements.
    [Show full text]
  • SUBMERGENCE and EMERGENCE of Rock Layers with Respect to Sea Level
    SUBMERGENCE AND EMERGENCE of Rock Layers With Respect to Sea Level The building up and wearing away of Earth's Crust. Follow the progression of illustrations to see the roles that submergence and emergence of rock layers play in both the addition of rock material to earth's surface as well as its removal. The Key: Be sure to look at the key before observing the Illustration 1: Sedimentary Rocks are typically layered series of illustrations. horizontally and the Law of Superposition dictates that, Notice that not only do symbols exist for sandstone, shale unless overturning of rock layers has occurred, the oldest and conglomerate, but also for the loose sediments that rock layers are towards the bottom of a rock column while will eventually lithify to become these rock types. the youngest layers are at the top. This illustration depicts layers of sedimentary shale, sandstone and limestone, exposed at earth's surface. Illustration 2: The rock layers have been submerged, Illustration 3: Over time the processes of compaction possibly due to crustal movement or to a rise in sea level. and cementation will lithify these loose sediments turning All rock layers are now underwater and there exists the them into sedimentary rocks. The newly lithified rock possibility for additional, loose sediments to be deposited layer will be on top of the original layers shown in on top of the preexisting layers. Illustration 1 and it will be the youngest layer by L. Immoor 2006 Geoteach.com 1 comparison. Notice the unconformity in this illustration. The unconformity is evidenced by the wavy, eroded top surface of a rock layer.
    [Show full text]
  • Meulemans 2020
    Urban Pedogeneses. The Making of City Soils from Hard Surfacing to the Urban Soil Sciences Germain Meulemans To cite this version: Germain Meulemans. Urban Pedogeneses. The Making of City Soils from Hard Surfacing to the Urban Soil Sciences. Environmental Humanities, [Kensington] N.S.W.: Environmental Humanities Programme University of New South Wales, 2020, 12 (1), pp.250-266. 10.1215/22011919-8142330. hal-02882863 HAL Id: hal-02882863 https://hal.archives-ouvertes.fr/hal-02882863 Submitted on 27 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Urban Pedogeneses The Making of City Soils from Hard Surfacing to the Urban Soil Sciences GERMAIN MEULEMANS Centre Alexandre-Koyré, IFRIS, France Abstract This article examines the rise of urban soils as a topic of scientificinquiryandeco- logical engineering in France, and questions how new framings of soil as a material that can be designed reconfigure relationships between urban life and soils in a context of fast- growing cities. As a counterpoint to the current situation, the article first examines how the hard-surfacing of Paris, in the nineteenth century, sought to background the vital qualities of soils in urban areas, making their absence seem perfectly stable and natural.
    [Show full text]
  • Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods
    water Editorial Why and How Do We Study Sediment Transport? Focus on Coastal Zones and Ongoing Methods Sylvain Ouillon ID LEGOS, Université de Toulouse, IRD, CNES, CNRS, UPS, 14 Avenue Edouard Belin, 31400 Toulouse, France; [email protected]; Tel.: +33-56133-2935 Received: 22 February 2018; Accepted: 22 March 2018; Published: 27 March 2018 Abstract: Scientific research on sediment dynamics in the coastal zone and along the littoral zone has evolved considerably over the last four decades. It benefits from a technological revolution that provides the community with cheaper or free tools for in situ study (e.g., sensors, gliders), remote sensing (satellite data, video cameras, drones) or modelling (open source models). These changes favour the transfer of developed methods to monitoring and management services. On the other hand, scientific research is increasingly targeted by public authorities towards finalized studies in relation to societal issues. Shoreline vulnerability is an object of concern that grows after each marine submersion or intense erosion event. Thus, during the last four decades, the production of knowledge on coastal sediment dynamics has evolved considerably, and is in tune with the needs of society. This editorial aims at synthesizing the current revolution in the scientific research related to coastal and littoral hydrosedimentary dynamics, putting into perspective connections between coasts and other geomorphological entities concerned by sediment transport, showing the links between many fragmented approaches of the topic, and introducing the papers published in the special issue of Water on “Sediment transport in coastal waters”. Keywords: sediment transport; cohesive sediments; non cohesive sediments; sand; mud; coastal erosion; sedimentation; morphodynamics; suspended particulate matter; bedload 1.
    [Show full text]
  • Mechanisms of Sediment Compaction Responsible
    MECHANISMSOF SEDIMENT COMPACTIONRESPONSIBLE FOR OIL FIELD SUBSIDENCE. A thesis submitted to the University of London (University College London) for the degree of Doctor of Philosophy in the Department of Geological Sciences. by Michael Anthony Addis October 1987 -1- to my parents for all their encouragement -11- Abstract During the production of a hydrocarbon reservoir, the compaction of weakly cemented sedimentary materials can result from increases in effective stress, and lead to surface subsidence. Such a phenomenon has recently been observed in the oil and gas bearing chalk fields in the Central North Sea. In order to evaluate the compaction potential of sedimentary materials during exploitation of a reservoir, laboratory experiments- were performed on chalks and clays. These experiments were predominantly'Ký (zero lateral strain) tests. The tests were performed in a high pressure triaxial cell, the development of which continued throughout the experimental 'programme. Tests performed on chalks from the Central North Sea, and from two in onshore sites southern -England showed similar deformational trends. The analyses of these results concentrated on the variables of testing and the possible errors resulting from the use of laboratory data in the modelling of field situations. The analyses of the tests also include a comparison between the experimental methods and the interpretation of the results of this study and those of other workers on the subject of reservoir compaction. A parametric description of the compaction of chalk is presented as a summary to these tests. w Two compaction tests on clay samples from the Central North Sea were also undertaken. The clays were uncemented and show contrasting behaviour to the chalks.
    [Show full text]
  • Compaction Trend and Its Implication in the Overpressures Estimate for the Formations of the Colombian Foothills of the Eastern Plains
    COMPACTION TREND AND ITS IMPLICATION IN THE OVERPRESSURES ESTIMATE FOR THE FORMATIONS OF THE COLOMBIAN FOOTHILLS OF THE EASTERN PLAINS Javier-Oswaldo Mendoza1*, Jael-Andrea Bueno2, Darwin Mateus3* and Luis-Eduardo Moreno4 1 Universidad Industrial de Santander, Bucaramanga, Santander, Colombia 2 Universidad Industrial de Santander, Bucaramanga, Santander, Colombia 3 Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia 4 Universidad Industrial de Santander, Bucaramanga, Santander, Colombia e-mail: [email protected] [email protected] (Received, April 15, 2009; Accepted June 16, 2010) he main objective of this article is to raise a hypothesis to explain the main causes of overpressure in the formations of the Tertiary sequence for the stratigraphic column of the Colombian Foothill. For Tthis purpose it was conducted an analysis of compaction trends from the Guayabo Formation until the unit C8 of the Carbonera Formation; in the area of foreland, where the tectonic affectation has been minimal. This analysis integrates the most representative basins modeling and tectono-stratigraphic events for such sedimentary sequence. It mapped overpressure areas, comparing them with geological parameters such as the subsidence, uplift, heat flow and speeds of sedimentation, to identify relations of these parameters with the overpressure of the area. As the main result, it stresses the identification of different sedimentation and compacting rates for each tectono-stratigraphic sequence and its relationship with the overpressure of the formations. These differences are represented in specific equations presented in this work. One of the main conclusions relates the rapid uplift of the basin, occurred in mid Miocene and the lack of liberation of stresses; as one of the causes of the pressures that are currently observed.
    [Show full text]
  • Chapter 6: Sedimentary and Metamorphic Rocks
    66 SediSedimentarymentary What You’ll Learn andand • How sedimentary rocks are formed. • How metamorphic rocks are formed. MMetamorphicetamorphic • How rocks continuously change from one type to another in the rock cycle. RRockockss Why It’s Important Sedimentary rocks pro- vide information about surface conditions and organisms that existed in Earth’s past. In addition, mineral resources are found in sedimentary and metamorphic rocks. The rock cycle further pro- vides evidence that Earth is a dynamic planet, con- stantly evolving and changing. To find out more about sedimentary and metamor- phic rocks, visit the Earth Science Web Site at earthgeu.com Mount Kidd, Alberta, Canada 120 DDiscoveryiscovery LLabab Model Sediment Layering Sedimentary rocks are usually 4. Quickly turn the jar upright and found in layers. How do these layers set it on a flat surface. form? In this activity, you will investi- Observe In your science journal, gate how layers form from particles draw a diagram of what you observe. that settle in water. What type of parti- 1. Obtain 100 mL of soil from a loca- cles settled out first? tion specified by your teacher. What type of parti- Place the soil in a tall, narrow, jar. cles form the topmost layers? How is this 2. Add water to the jar until it is activity related to the three-fourths full. Put the lid on layering that occurs the jar so that it is tightly sealed. in sedimentary rocks? 3. Pick up the jar with both hands and turn it upside down several times to mix the water and soil.
    [Show full text]
  • The Influence of Soil Compaction on Runoff Formation. a Case Study
    geosciences Article The Influence of Soil Compaction on Runoff Formation. A Case Study Focusing on Skid Trails at Forested Andosol Sites Julian J. Zemke * , Michel Enderling, Alexander Klein and Marc Skubski Department of Geography, Institute for Integrated Natural Sciences, University Koblenz-Landau, Campus Koblenz, 1, 56070 Koblenz, Germany; [email protected] (M.E.); [email protected] (A.K.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +49-261-287-2282 Received: 11 March 2019; Accepted: 6 May 2019; Published: 8 May 2019 Abstract: This study discusses the influence of soil compaction on runoff generation with a special focus on forested Andosol sites. Because of their typical soil physical characteristics (low bulk density, high pore volumes) and the existent land use, these areas are expected to show low to no measurable overland flow during heavy rainfall events. However, due to heavy machinery traffic in the course of forestry actions and pumice excavations, skid trails have been established. Here, a distinct shift of soil dry bulk density (DBD) was observable, using a detailed soil mapping and data interpolation in order to generate in-depth DBD-cross profiles. Additionally, infiltration measurements and rainfall simulations (I = 45 mm h 1, t = 30 min) were conducted to evaluate effects · − of observed soil compaction on infiltration rates and overland flow formation. Results show that soil compaction was increased by 21% on average in skid trail wheel ruts. As a consequence, observed runoff was 8.5-times higher on skid trails, while saturated hydraulic conductivity was diminished by 36%. These findings show, that soil compaction leads to a higher possibility of runoff formation during heavy rainfall events, especially at sites which showed initial conditions with presumably low tendencies of runoff formation.
    [Show full text]
  • Seismic Expression and Geological Significance of a Lacustrine Delta in Neogene Deposits of the Western Snake River Plain, Idaho1
    Seismic Expression and Geological Significance of a Lacustrine Delta in Neogene Deposits of the Western Snake River Plain, Idaho1 Spencer H. Wood2 ABSTRACT provides insight into the history of Pliocene “Lake Idaho.” The present depth of the delta/prodelta facies High-resolution seismic reflection profiles and contact of 305 m (1000 ft) is 445 to 575 m (1460–1900 well data from the western Snake River plain basin ft) below the lake deposits on the margins. Estimated are used to identify a buried lacustrine delta system subsidence from compaction is 220 m (656 ft), and within Neogene Idaho Group sediments near Cald- the remaining 225 to 325 m (740–1066 ft) is attributed well, Idaho. The delta system is detected, 305 m to tectonic downwarping and faulting. (1000 ft) deep, near the center of the basin by The original lake area had been reduced to one progradational clinoform reflections having dips of third of the original 13,000 km2 (5000 mi2) by the 2–5°, a slope typical of prodelta surfaces of modern time the delta front prograded to the Caldwell area. lacustrine delta systems. The prodelta slope relief, The original lake area may have been sufficient to corrected for compaction, indicates the delta system evaporate most of the inflow, and the lake may have prograded northwestward into a lake basin 255 m only occasionally spilled into other basins. Dimin- (837 ft) deep. Resistivity logs in the prodelta mud ished area for evaporation later in the history of the and clay facies are characterized by gradual upward lake, combined with reduced evaporation accompa- increase in resistivity and grain size over a thickness nying onset of the ice ages, may have caused the of about 100 m (300 ft).
    [Show full text]