Pedogenic Development of Soils at High Altitude in Burundi. Salvator Kaburungu Louisiana State University and Agricultural & Mechanical College

Total Page:16

File Type:pdf, Size:1020Kb

Pedogenic Development of Soils at High Altitude in Burundi. Salvator Kaburungu Louisiana State University and Agricultural & Mechanical College Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1993 Pedogenic Development of Soils at High Altitude in Burundi. Salvator Kaburungu Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Kaburungu, Salvator, "Pedogenic Development of Soils at High Altitude in Burundi." (1993). LSU Historical Dissertations and Theses. 5646. https://digitalcommons.lsu.edu/gradschool_disstheses/5646 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9419900 Pedogenic development of soils at high altitude in Burundi Kaburungu, Salvator, Ph.D. The Louisiana State University and Agricultural and Mechanical Col., 1993 UMI 300 N. Zeeb Rd. Ann Arbor, M I 48106 PEDOGENIC DEVELOPMENT OF SOILS AT HIGH ALTITUDE IN BURUNDI A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mecanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Agronomy by Salvator Kaburungu B.S., University of Burundi, 1981 M.S., Louisiana State University, 1990 December 1993 ACKNOWLEDGMENTS I would like to express my sincere and deep appreciation to my major professor, Dr. Wayne Hudnall, for his continuous guidance, supervision and encouragement. I feel greatly honored to have worked with him on both my M.S. and Ph.D. programs. My gratitude is also extensive to the Hudnall’s family, Ms.(Callalya) Hudnall and son Eric for their friendship and support. I am sincerely grateful to my graduate committee , Dr. S. E. Feagley, Assoc. Professor, Dept, of Agronomy; Dr. J. S. Hanor, Professor, Dept, of Geology and Geophysics, Dr. W. H. Patrick, Jr., Boyd Professor, Wetland Biogeochemistry Institute, Dr. R. P. Gambrell, Professor, Wetland Biogeochemistry Institute, Dr. W. A. Young, Professor, Dept, of Horticulture, Mr. B. A. Touchet, SCS - State Soil Scientist; and Dr. F. Rhoton, USDA - ARS; for their education, guidance and time devoted to review this manuscript. I wish to express my sincere and deep appreciation to AAI/ATLAS for their financial support on both my graduate degrees without which I could not have undertaken the studies. A deep appreciation is also extended to Ms Michelle Roberts, my educational adviser, and her assistant, Ms Jackie Allen, for their continuous support. I would also like to express appreciation to Scott and Michelle Nesbit for their friendship which made my stay at Louisiana State University an enjoyable experience. Special thanks are extended to Xiaowei Zhang who, in spite of her hectic schedule, managed to help me with the typing of this manuscript while taking her Ph. D. general exams. Last but not the least, I am grateful to Mr. A. Gakoko, ISABU, Mr. A. Ndihokubwayo, ISABU and J.P. Muganza, ISABU, who kindly helped me to describe and collect soil samples. TABLE OF CONTENTS ACKNOWLEDGMENTS ............................................................................ ii ABSTRACT ................................................................................................. iv CHAPTER 1 PEDOGENIC DEVELOPMENT OF SOILS AT HIGH ALTITUDE IN BURUNDI: A LITERATURE REVIEW ..................................... 1 1.1. Introduction .............................................................................. 1 1.2. Rationale ................................................................................. 2 1.3. Brief Characterization and Classification of the Soils ............ 3 1.3.1. Soils under Natural Forest................................................ 3 1.3.2. Soils under Pasture ........................................................... 6 1.3.3. Evolution of Soils under Cultivation ................................. 14 1.3.3.1. Effects of Cultivation on Selected Soil Properties ..... 15 1.3.3.2. Effects of Cultivation on Organic Matter Content and Bulk Density .......................................................... 18 1.3.3.3. Effects of Cultivation on Soil Morphology and hydraulic Conductivity .................................................. 21 1.3.3.4. Effects of Cultivation on Both Surface and Subsurface Horizons ............................................ 21 1.3.4. Effects of Cultivation on Soils at High Altitude in Burundi ............................................................................ 22 2 EFFECTS OF LONG-TERM CULTIVATION AND PASTURE FOLLOWING DEFORESTATION........ .......................... 25 1.1. Introduction .............................................................................. 25 2.2. The Study A re a ....................................................................... 27 2.2.1. Background Information on Burundi ................................ 27 2.2.2. Location of the Study A re a .............................................. 30 2.2.3. Land U se .......................................................................... 30 2.2.4. Geological Setting ............................................................. 32 2.2.5. Clim ate .............................................................................. 33 2.3. Materials and Methods ........................................................... 33 2.3.1. Experimental Design and Field Methods ....................... 33 2.3.2. Laboratory Analysis .......................................................... 37 2.4. Results and Discussions ........................................................ 38 2.4.1. Morphological Comparisons ............................................. 38 2.4.2. General Chemical and Physical Comparisons ............... 41 3 MINERALOGICAL PROPERTIES AND AGGREGATE STABILITY .................................................... 57 3.1. Introduction ........................................................................... 57 iv 3.2. Materials and Methods ........................................................... 58 3.3. Results ...................................................................................... 58 3.4. Discussions ............................................................................. 62 4 GENESIS AND CLASSIFICATION OF HIGH-ALTITUDE SOILS IN BURUNDI....................................................... 78 4.1. Introduction .............................................................................. 78 4.2. Materials and Methods ........................................................... 80 4.2.1. Field Setting ...................................................................... 80 4.2.2. Laboratory Analyses .......................................................... 81 4.3. Results ..................................................................................... 82 4.3.1. Forest S o ils ....................................................................... 82 4.3.2. Culture S oils ...................................................................... 86 4.3.3. Pasture S o ils ..................................................................... 90 4.4. Discussions ............................................................................. 91 4.4.1. Genesis of High-Altitude Soils in Burundi ...................... 91 4.4.2. Evolution of the Soils Following Deforestation ............... 114 4.4.3. Classification of High Altitude Soils in Burundi .............. 115 5 SUMMARY AND CONCLUSIONS ................................................. 122 5.1. Summary ............................................................................ 122 5.2. Conclusions ........................................................................... 125 LITERATURE CITED................................................................................. 129 APPENDIX A ............................................................................................
Recommended publications
  • Morphological Characteristics and Classification of Soils Derived from Diverse Parent Materials in Central Cross River State, Nigeria
    GLOBAL JOURNAL OF PURE AND APPLIED SCIENCES VOL. 14, NO. 3, 2008: 271 - 277 271 COPYRIGHT (C) BACHUDO SCIENCES CO. LTD. PRINTED IN NIGERIA. 1SSN 1118-0579 MORPHOLOGICAL CHARACTERISTICS AND CLASSIFICATION OF SOILS DERIVED FROM DIVERSE PARENT MATERIALS IN CENTRAL CROSS RIVER STATE, NIGERIA M. E. NSOR and I. J. IBANGA (Received 5 October 2007; Revision Accepted 5 December 2007) ABSTRACT Variation in soil characteristics is usually a reflection of the difference in materials from which the soil was formed. This study sought to investigate the characteristics of soils formed on different parent materials with a view to classifying them. This study was carried out in selected soils derived from three major types of parent materials in central Cross River State, South Eastern Nigeria. A total of six (6) pedons were excavated, two (2) pedons in each of the identified parent materials. The parent materials were Sandstone-shale-siltstone intercalations. Basement complex and Basalt. The study indicated that soils derived from sandstone-shale-siltstone materials are characterized by ochric sandy loam and loamy sand epipedons with moderate medium sub-angular blocky structures. These soils are also light coloured with dominant hues of 7.5YR with hard to slightly hard and hard to very hard dry consistence at the surface and sub-soil respectively. Soils of basement complex are characterized by the possession of loamy sand epipedons with weak medium crumb and sub-angular blocky structures having predominantly dull yellowish brown and bright yellowish brown colours at the surface and sub-soils. The dry consistences of the surface soils are slightly hard while the sub-soils are hard to very hard.
    [Show full text]
  • Measuring Soil Ph
    Measuring soil pH Viti-note Summary: Soil pH refers to the acidity or alkalinity Equipment of the soil. It is a measure of the • Equipment Colorimetric test kit available from concentration of free hydrogen ions nurseries (includes mixing stick, plate, • Timing (H+) that are in the soil. Soil pH can dye, barium sulphate, pH colour chart, be measured in water (pH ) or a weak • Method w instructions), teaspoon, recording sheet calcium chloride solution (pH ). The pH CaCl and pen. • Timing range is from 0-14, with value of 7 being neutral. Soil pH values (as measured in a OR water and soil solution) indicate: Hand held pH meter, clear plastic jar with • Strong acidity if less than 5.0. screw-on lid, distilled water, recording sheet and pen. • Moderate acidity at 5.0 to 6.0. • Neutral between 6.5 and 7.5. Timing • Moderate alkalinity at 7.5 to 8.5. This measurement is best undertaken • Strong alkalinity for values of 8.5 when soil sampling is conducted and and above. would normally be done at the same time The limited data available suggests that as assessments for electrical conductivity. soil pHCaCl should be in the range 5.5-7.5 Soil pH should be measured in the fibrous for best vine performance. root zone (ie. 0-20cm depth) as well as Soil pH outside the neutral range can the deeper root zone (>20cm depth). influence the availability of specific Make sure the soil samples are taken nutrients to plants, as well as the inside the irrigation wetting pattern.
    [Show full text]
  • Effects of Erosion Control Practices on Nutrient Loss
    Effects of Erosion Control Practices on Nutrient Loss George F. Czapar, University of Illinois John M. Laflen, Iowa State University Gregory F. McIsaac, University of Illinois Dennis P. McKenna, Illinois Department of Agriculture Elements of Soil Erosion Soil erosion by water is the detachment of soil particles by the direct action of raindrops and runoff water, and the transport of these particles by splash and very shallow flowing water to small channels or rills. Detachment of soil particles also occurs in these rills due to the force exerted by the flowing water. When rills join together and form larger channels, they may become gullies. These gullies can be either temporary (ephemeral) or permanent (classical). Non-erodible channels might be grassed waterways, or designed channels that limit flow conditions so that channel erosion does not occur. Gross erosion includes sheet, rill, gully and channel erosion, and is the first step in the process of sediment delivery. Because much eroded sediment is deposited in or near the field of origin, only a fraction of the total eroded soil from an area contributes to sediment yield from a watershed. Sediment delivery is affected by a number of factors including soil properties, proximity to the stream, man made structures-including sediment basins, fences, and culverts, channel density, basin characteristics, land use/land cover, and rainfall-runoff factors. Coarse- textured sediment and sediment from sheet and rill erosion are less likely to reach a stream than fine-grained sediment or sediment from channel erosion. In general, the larger the area, the lower the ratio of sediment yield at the watershed outlet or point of interest to gross erosion in the entire watershed, defined as the sediment delivery ratio (SDR).
    [Show full text]
  • Fact Sheet 3: Organic Matter Decline
    Sustainable agriculture and soil conservation Soil degradation processes Fact sheet no. 3 Organic matter decline What is organic matter decline? Soil organic matter includes all living soil organisms together with the remains of dead organisms in their various degrees of decomposition. The organic carbon content of a soil is made up of heterogeneous mixtures of both simple and complex substances containing carbon. The sources for organic matter are crop residues, animal and green manures, compost and other organic materials. A decline in organic matter is caused by the reduced presence of decaying organisms, or an increased rate of decay as a result of changes in natural or anthropogenic factors. Organic matter is regarded as a vital component of a healthy soil; its decline results in a soil that is degraded. A soil that is rich in organic matter (Source: Soil Atlas of Europe) Why is soil organic matter/carbon important? Soil organic matter is a source of food for soil fauna, and contributes to soil biodiversity by acting as a reservoir of soil nutrients such as nitrogen, phosphorus and sulphur; it is the main contributor to soil fertility. Soil organic carbon supports the soil’s structure, improving the physical environment for roots to penetrate through the soil. Organic matter absorbs water – it is able to hold about six times its weight in water – making it a lifeline for vegetation in naturally dry and sandy soils. Soils containing organic matter have a better structure that improves water infiltration, and reduces the soil’s susceptibility to compaction, erosion, desertification and landslides. On a global scale, soils contain around twice the amount of carbon held in the atmosphere and three times the amount found in vegetation.
    [Show full text]
  • Basic Soil Science W
    Basic Soil Science W. Lee Daniels See http://pubs.ext.vt.edu/430/430-350/430-350_pdf.pdf for more information on basic soils! [email protected]; 540-231-7175 http://www.cses.vt.edu/revegetation/ Well weathered A Horizon -- Topsoil (red, clayey) soil from the Piedmont of Virginia. This soil has formed from B Horizon - Subsoil long term weathering of granite into soil like materials. C Horizon (deeper) Native Forest Soil Leaf litter and roots (> 5 T/Ac/year are “bio- processed” to form humus, which is the dark black material seen in this topsoil layer. In the process, nutrients and energy are released to plant uptake and the higher food chain. These are the “natural soil cycles” that we attempt to manage today. Soil Profiles Soil profiles are two-dimensional slices or exposures of soils like we can view from a road cut or a soil pit. Soil profiles reveal soil horizons, which are fundamental genetic layers, weathered into underlying parent materials, in response to leaching and organic matter decomposition. Fig. 1.12 -- Soils develop horizons due to the combined process of (1) organic matter deposition and decomposition and (2) illuviation of clays, oxides and other mobile compounds downward with the wetting front. In moist environments (e.g. Virginia) free salts (Cl and SO4 ) are leached completely out of the profile, but they accumulate in desert soils. Master Horizons O A • O horizon E • A horizon • E horizon B • B horizon • C horizon C • R horizon R Master Horizons • O horizon o predominantly organic matter (litter and humus) • A horizon o organic carbon accumulation, some removal of clay • E horizon o zone of maximum removal (loss of OC, Fe, Mn, Al, clay…) • B horizon o forms below O, A, and E horizons o zone of maximum accumulation (clay, Fe, Al, CaC03, salts…) o most developed part of subsoil (structure, texture, color) o < 50% rock structure or thin bedding from water deposition Master Horizons • C horizon o little or no pedogenic alteration o unconsolidated parent material or soft bedrock o < 50% soil structure • R horizon o hard, continuous bedrock A vs.
    [Show full text]
  • Soils Section
    Soils Section 2003 Florida Envirothon Study Sections Soil Key Points SOIL KEY POINTS • Recognize soil as an important dynamic resource. • Describe basic soil properties and soil formation factors. • Understand soil drainage classes and know how wetlands are defined. • Determine basic soil properties and limitations, such as mottling and permeability by observing a soil pit or soil profile. • Identify types of soil erosion and discuss methods for reducing erosion. • Use soil information, including a soil survey, in land use planning discussions. • Discuss how soil is a factor in, or is impacted by, nonpoint and point source pollution. Florida’s State Soil Florida has the largest total acreage of sandy, siliceous, hyperthermic Aeric Haplaquods in the nation. This is commonly called Myakka fine sand. It does not occur anywhere else in the United States. There are more than 1.5 million acres of Myakka fine sand in Florida. On May 22, 1989, Governor Bob Martinez signed Senate Bill 525 into law making Myakka fine sand Florida’s official state soil. iii Florida Envirothon Study Packet — Soils Section iv Contents CONTENTS INTRODUCTION .........................................................................................................................1 WHAT IS SOIL AND HOW IS SOIL FORMED? .....................................................................3 SOIL CHARACTERISTICS..........................................................................................................7 Texture......................................................................................................................................7
    [Show full text]
  • Sborník Příspěvků Z Konference Pedologické Dny, Velké Bílovice, 2003
    PEDOGENEZE A KVALITATIVNÍ ZMĚNY PŮD V PODMÍNKÁCH PŘÍRODNÍCH A ANTROPICKY OVLIVNĚNÝCH ÚZEMÍ Bořivoj ŠARAPATKA a Marek BEDNÁŘ (Eds.) Sborník referátů z 11. pedologických dnů KOUTY NAD DESNOU, 20.–21. 9. 2006 Editoři © Bořivoj Šarapatka, Marek Bednář, 2006 1. vydání Olomouc 2006 ISBN 80-244-1448-1 2 ÚVOD Vážené kolegyně a kolegové, letošní již 11. pedologické dny jsme zasadili do horské oblasti mikro - regionu Jeseníky. Území, ve kterém strávíme dva jistě pěkné a přínosné dny, je velmi cenné přírodovědně. Na rozloze 740 km2 se zde nachází chráněná krajinná oblast Jeseníky. Na různorodém geologickém podloží se vyvinula unikátní společenstva rostlin a živočichů, která byla začleně- na do reprezentativní sítě zvláště chráněných území. Snad nejvýznamněj- ším maloplošným chráněným územím je známá NPR Praděd s takovým přírodním fenoménem, jakým je ledovcový kar Velké kotliny, který náleží botanicky k druhově nejbohatším lokalitám ve střední Evropě. Zájmové území mikroregionu není významné pouze z přírodo- vědného hlediska. Je i intenzivně zemědělsky a lesnicky obhospodařová- no. Od středověkého osídlení postupně docházelo k trvalému odlesňo- vání a zemědělskému využití území, vyšší polohy regionu zůstávaly bez trvalých sídel. Dnes na zemědělské půdě v oblasti dominují trvalé travní porosty. Nebylo tomu ale tak vždy, o čemž svědčí nejen hospodaření po druhé světové válce, ale i starší údaje např. z 19. století. Tehdy v jesenické oblasti tvořila orná půda více než 70 % z celkové půdy zemědělské (na- příklad v Loučné to bylo v roce 1900 74,8 %). O využití krajiny jak z pohledu zemědělského, tak lesnického bude pojednávat řada konferenčních příspěvků. Většinou budou prezentovat široký záběr týkající se nových poznatků o pedogenezi a kvalitativních změnách půd, a to jak v podmínkách přírodních, tak antropicky ovliv- něných území.
    [Show full text]
  • AGR-5: When to Apply Lime and Fertilizer
    AGR-5 C O O P E R A T I V E E X T E N S I O N S E R V I C E U N I V E R S I T Y O F K E N T U C K Y • C O L L E G E O F A G R I C U L T U R E WHEN TO APPLY LIME AND FERTILIZER Kenneth Wells Department of Agronomy early half of all the fertilizer used in Kentucky each The mineral form of individual soil particles and the Nyear is bought by farmers during the rush of the spring extent to which these mineral soil particles have been planting season. As a result, it is often difficult for the coated with layers of oxides and organic materials also fertilizer industry to meet customer demands during this 6 affect the total soil reaction. to 8 week period. All clay particles in soil have a net negative (-) Much of the fertilizer now used during the spring rush electrical charge. Because of this negative charge, clay season could be applied during other seasons of the year. If particles will react with components of lime and fertilizer farmers scheduled fertilizer applications more evenly through- which dissolve as positively (+) charged particles (cations) out the year, dealers would be in a much better position to when added to soil. Lime materials dissolve to release provide them with the kinds and amounts of fertilizer they positively charged calcium (Ca++) and/or magnesium desire. Custom application services could be improved.
    [Show full text]
  • Soils and Fertilizers for Master Gardeners: Soil Organic Matter and Organic Amendments1 Gurpal S
    SL273 Soils and Fertilizers for Master Gardeners: Soil Organic Matter and Organic Amendments1 Gurpal S. Toor, Amy L. Shober, and Alexander J. Reisinger2 This article is part of a series entitled Soils and Fertilizers for Master Gardeners. The rest of the series can be found at http://edis.ifas.ufl.edu/topic_series_soils_and_fertil- izers_for_master_gardeners. A glossary can also be found at http://edis.ifas.ufl.edu/MG457. Introduction and Purpose Organic matter normally occupies the smallest portion of the soil physical makeup (approximately 5% of total soil volume on average, and usually 1 to 3% for Florida’s sandy soils) but is the most dynamic soil component (Figure Figure 1. Typical components of soil. 1). The primary sources of soil organic matter are plant Credits: Gurpal Toor and animal residues. Soil organic matter is important for maintaining good soil structure, which enhances the What is the composition of soil movement of air and water in soil. Organic matter also organic matter? plays an important role in nutrient cycling. This publication is designed to educate homeowners about the importance Soil organic matter contains (i) living biomass: plant, of soil organic matter and provide suggestions about how to animal tissues, and microorganisms; (ii) dead tissues: partly build the organic matter in garden and landscape soils. decomposed materials; and (iii) non-living materials: stable portion formed from decomposed materials, also known as humus. Soil organic matter typically contains about 50% carbon. The remainder of soil organic matter consists of about 40% oxygen, 5% hydrogen, 4% nitrogen, and 1% sulfur. The amount of organic matter in soils varies widely, from 1 to 10% (total dry weight) in most soils to more than 90% in organic (muck) soils.
    [Show full text]
  • Soil Physics and Agricultural Production
    Conference reports Soil physics and agricultural production by K. Reichardt* Agricultural production depends very much on the behaviour of field soils in relation to crop production, physical properties of the soil, and mainly on those and to develop effective management practices that related to the soil's water holding and transmission improve and conserve the quality and quantity of capacities. These properties affect the availability of agricultural lands. Emphasis is being given to field- water to crops and may, therefore, be responsible for measured soil-water properties that characterize the crop yields. The knowledge of the physical properties water economy of a field, as well as to those that bear of soil is essential in defining and/or improving soil on the quality of the soil solution within the profile water management practices to achieve optimal and that water which leaches below the reach of plant productivity for each soil/climatic condition. In many roots and eventually into ground and surface waters. The parts of the world, crop production is also severely fundamental principles and processes that govern limited by the high salt content of soils and water. the reactions of water and its solutes within soil profiles •Such soils, classified either as saline or sodic/saline are generally well understood. On the other hand, depending on their alkalinity, are capable of supporting the technology to monitor the behaviour of field soils very little vegetative growth. remains poorly defined primarily because of the heterogeneous nature of the landscape. Note was According to statistics released by the Food and taken of the concept of representative elementary soil Agriculture Organization (FAO), the world population volume in defining soil properties, in making soil physical is expected to double by the year 2000 at its current measurements, and in using physical theory in soil-water rate of growth.
    [Show full text]
  • Agricultural Soil Compaction: Causes and Management
    October 2010 Agdex 510-1 Agricultural Soil Compaction: Causes and Management oil compaction can be a serious and unnecessary soil aggregates, which has a negative affect on soil S form of soil degradation that can result in increased aggregate structure. soil erosion and decreased crop production. Soil compaction can have a number of negative effects on Compaction of soil is the compression of soil particles into soil quality and crop production including the following: a smaller volume, which reduces the size of pore space available for air and water. Most soils are composed of • causes soil pore spaces to become smaller about 50 per cent solids (sand, silt, clay and organic • reduces water infiltration rate into soil matter) and about 50 per cent pore spaces. • decreases the rate that water will penetrate into the soil root zone and subsoil • increases the potential for surface Compaction concerns water ponding, water runoff, surface soil waterlogging and soil erosion Soil compaction can impair water Soil compaction infiltration into soil, crop emergence, • reduces the ability of a soil to hold root penetration and crop nutrient and can be a serious water and air, which are necessary for water uptake, all of which result in form of soil plant root growth and function depressed crop yield. • reduces crop emergence as a result of soil crusting Human-induced compaction of degradation. • impedes root growth and limits the agricultural soil can be the result of using volume of soil explored by roots tillage equipment during soil cultivation or result from the heavy weight of field equipment. • limits soil exploration by roots and Compacted soils can also be the result of natural soil- decreases the ability of crops to take up nutrients and forming processes.
    [Show full text]
  • Sediment Diagenesis
    Sediment Diagenesis http://eps.mcgill.ca/~courses/c542/ SSdiedimen t Diagenes is Diagenesis refers to the sum of all the processes that bring about changes (e.g ., composition and texture) in a sediment or sedimentary rock subsequent to deposition in water. The processes may be physical, chemical, and/or biological in nature and may occur at any time subsequent to the arrival of a particle at the sediment‐water interface. The range of physical and chemical conditions included in diagenesis is 0 to 200oC, 1 to 2000 bars and water salinities from fresh water to concentrated brines. In fact, the range of diagenetic environments is potentially large and diagenesis can occur in any depositional or post‐depositional setting in which a sediment or rock may be placed by sedimentary or tectonic processes. This includes deep burial processes but excldludes more extensive hig h temperature or pressure metamorphic processes. Early diagenesis refers to changes occurring during burial up to a few hundred meters where elevated temperatures are not encountered (< 140oC) and where uplift above sea level does not occur, so that pore spaces of the sediment are continually filled with water. EElarly Diagenesi s 1. Physical effects: compaction. 2. Biological/physical/chemical influence of burrowing organisms: bioturbation and bioirrigation. 3. Formation of new minerals and modification of pre‐existing minerals. 4. Complete or partial dissolution of minerals. 5. Post‐depositional mobilization and migration of elements. 6. BtilBacterial ddtidegradation of organic matter. Physical effects and compaction (resulting from burial and overburden in the sediment column, most significant in fine-grained sediments – shale) Porosity = φ = volume of pore water/volume of total sediment EElarly Diagenesi s 1.
    [Show full text]